SOLUTIONS MANUAL

MECHANICAL VIBRATIONS

SIXTH EDITION

-work the work and is not perfi

SINGIRESU S. RAO University of Miami

<u>srao@miami.edu</u>

January 2016

To Lord Sri Venkateswara

In a the store in the interior of the interior

The work of courses and assessing such that the courses and assessing such that the courses and assessing such that the and the courses and assessing such that the courses and the co

Preface

The MATLAB programs given in the book, answers to problems, and answers to review questions can be found on the Pearson Engineering Resources Portal: www.pearsonhighered.com/engineeringresources/.

The programs and techniques presented in the book and the solutions manual as well as the information provided at Pearson Engineering Resources Portal are intended for use by students in learning the material. Although the material has been tested, no warranty is implied as to their accuracy.

I would appreciate receiving any errors found in the book, solutions manual or at the Pearson Engineering Resources Portal of the book. The errors detected will be posted at the Pearson Engineering Resources Portal of the book.

Singiresu S. Rao srao@miami.edu January 2016

Contents

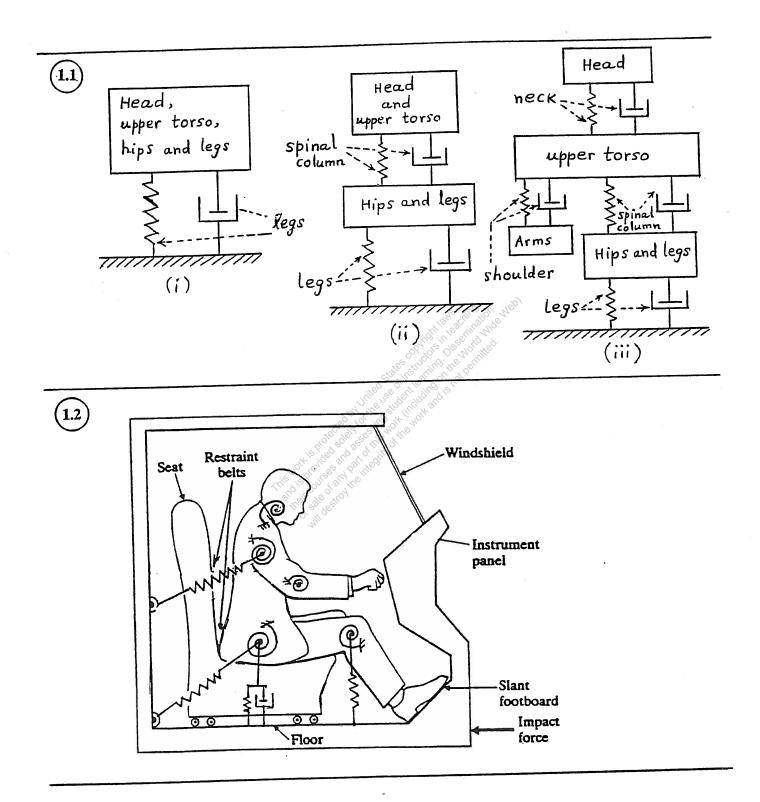
Preface

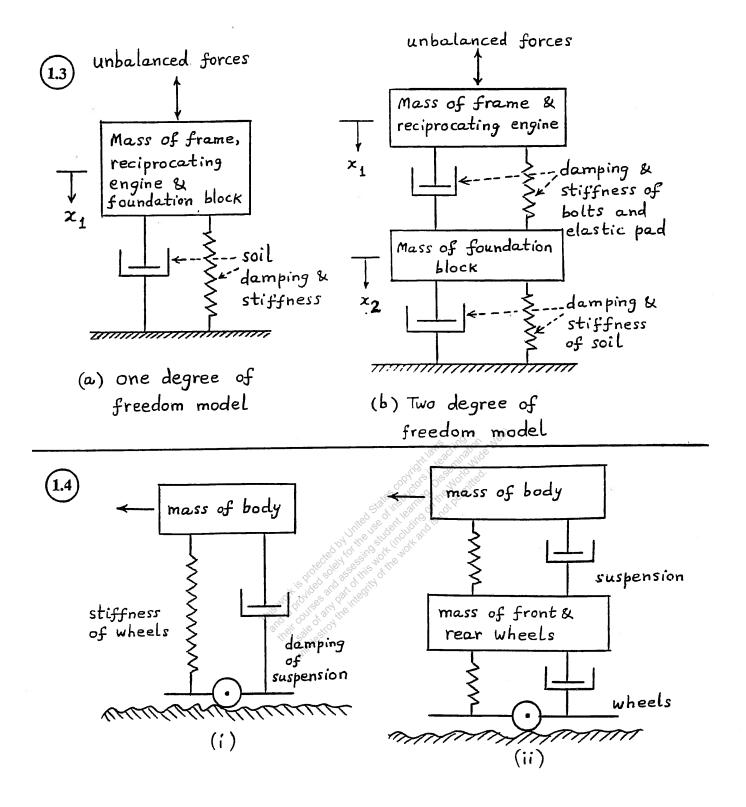
1. Fundamentals of Vibration	1-1 – 1-99
2. Free Vibration of Single-Degree-of-Freedom Systems	2-1 - 2-184
3. Harmonically Excited Vibration	3-1 - 3-138
4. Vibration Under General Forcing Conditions	4-1 – 4-146
5. Two-Degree-of-Freedom Systems	5-1 - 5-133
6. Multidegree-of-Freedom Systems	6-1 - 6-152
7. Determination of Natural Frequencies and Mode Shapes	7-1 - 7-71
8. Continuous Systems	8-1 - 8-83
9. Vibration Control	9-1 - 9-84
10.Vibration Measurement and Applications	10-1 - 10-18
11.Numerical Integration Methods in Vibration Analysis	11-1 - 11-50
12.Finite Element Method	12-1 – 12-96
13.Nonlinear Vibration	13-1 - 13-52
14.Random Vibration	14-1 - 14-28

ERRATA (FOR TEXT BOOK)

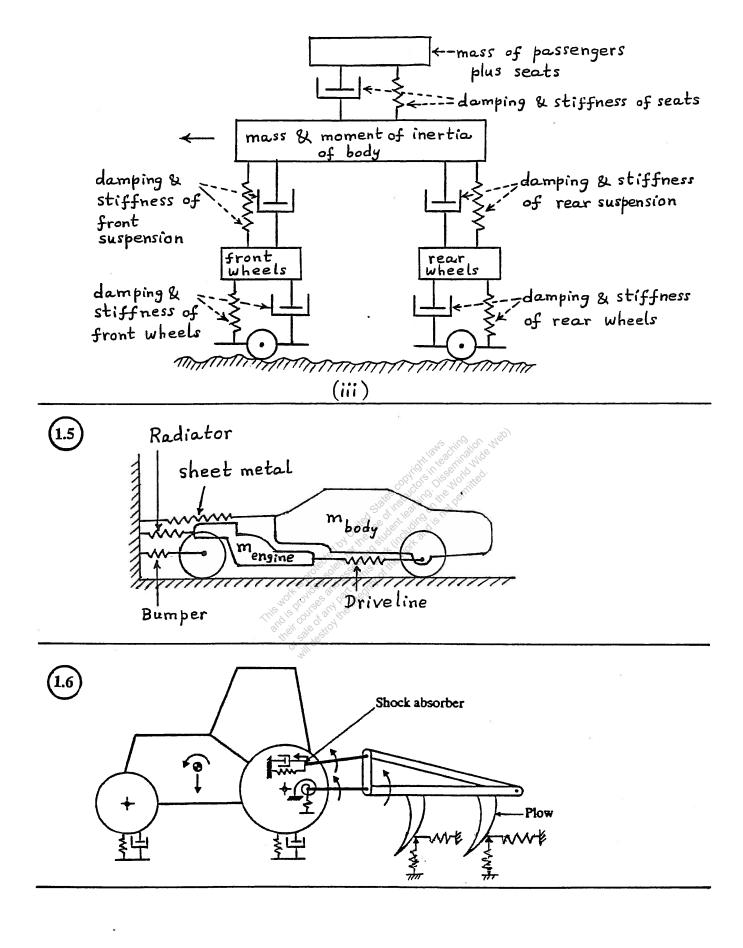
Mechanical Vibrations Sixth Edition, Singiresu S. Rao

(January 10, 2016)


- 1. Page 238 Problems 2.55-2.58 line 3 change k = 10,000 to k = 10,000 N/m
- 2. Page 239 Problem 2.65 Replace (a) by the following:
 - (a) Find whether the trunk of the tree will buckle under the weight of the crown of the tree assuming that the weight of the crown acts as an axial load at the top of the trunk. Assume the height of the trunk as l = $l_h = 10 \text{ m}.$
- 3. Page 253 Problem 2.121 Add the following line after part (d): Assume m = 10 kg and k = 10,000 N/m.
- Add the following line after part (d): 4. Page 253 Problem 2.122 Assume m = 10 kg and k = 10,000 N/m.
- Add the following line after part (d): 5. Page 254 Problem 2.123 Assume m = 10 kg and k = 10,000 N/m.


and sponded soleh of the unit of the solehold and a solehold as and as the solehold as a solehold as

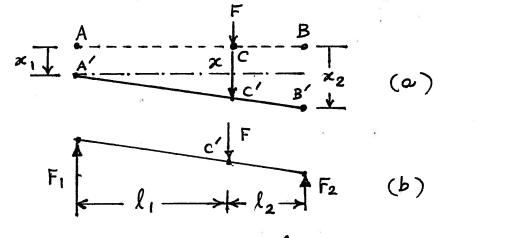
6. Page 368 Problem 3.87 line 3 modify the end of the sentence as follows: Replace "respectively." by "respectively, and $\varepsilon = m/M$." orsale of any part of the boot of the work and their courses and assessing stylender the work


Chapter 1

Fundamentals of Vibration

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.


.

In a their contract of the most of the most of the start of the start

The not sported and assessing such the particulation of the sport of t The work - power of the transformed of the transformed of the power of the power of the transformed of the t

1-4

...

 $x = x_1 + \frac{l_1}{l_1 + l_2} (x_2 - x_1)$ From Fig.(a),

1.8

$$= \frac{l_2}{l_1 + l_2} \times_1 + \frac{l_1}{l_1 + l_2} \times_2 \qquad (1)$$

Vertical force equilibrium from Fig.(b): (2)

F = F1 + F2 Moment equilibrium about (Fig.(b)): (3) $F_2 l_2 = F_1 l_1$

Solution of Eqs. (2) and (3):

$$F_{1} = \frac{Fl_{2}}{l_{1}+l_{2}}, \quad F_{2} = \frac{Fl_{1}}{l_{1}+l_{2}} \quad (4)$$

Displacements of springs k, and k2 are given by $x_{1} = \frac{F_{1}}{k_{1}} = \frac{F_{2}}{k_{1}(l_{1}+l_{2})} , \quad x_{2} = \frac{F_{2}}{k_{2}} = \frac{F_{1}}{k_{2}(l_{1}+l_{2})}$ (5)

Displacement of force F can be found using Eps. (5) in Eq.(1):

$$\mathbf{x} = \frac{l_2}{l_1 + l_2} \cdot \frac{F \, k_2}{\kappa_1 \, (l_1 + l_2)} + \frac{l_1}{l_1 + l_2} \cdot \frac{F \, k_1}{\kappa_2 \, (l_1 + l_2)}$$
$$= \frac{F}{\left(l_1 + l_2\right)^2} \left(\frac{l_1^2 \, \kappa_1 + l_2^2 \, \kappa_2}{\kappa_1 \, \kappa_2} \right) \tag{6}$$

direction of x,
$$k_e$$
, is given by Eq. (6):

$$k_e = \frac{F}{x} = \frac{(l_1 + l_2)^2 k_1 k_2}{l_1^2 k_1 + l_2^2 k_2}$$
(7)

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

(19) Equivalence of potential energies gives

$$\frac{1}{2} \kappa_{t1} \theta^{2} + \frac{1}{2} \kappa_{t2} \theta^{2} + \frac{1}{2} \kappa_{t2} (\theta l_{1})^{2} + \frac{1}{2} \kappa_{2} (\theta l_{1})^{2} + \frac{1}{2} \kappa_{3} (\theta l_{2})^{2} = \frac{1}{2} \kappa_{eg} \theta^{2}$$

$$\therefore \kappa_{eg} = \kappa_{t1} + \kappa_{t2} + \kappa_{t} l_{1}^{2} + \kappa_{2} l_{1}^{2} + \kappa_{3} l_{2}^{2}$$
(10)

$$\kappa_{123} = \text{for series springs } \kappa_{1}, \kappa_{2} \text{ and } \kappa_{3};$$

$$\frac{1}{\kappa_{123}} = \frac{1}{\kappa_{1}} + \frac{1}{\kappa_{2}} + \frac{1}{\kappa_{3}}; \quad \kappa_{123} = \frac{\kappa_{1} \kappa_{2} \kappa_{3}}{\kappa_{1} \kappa_{2} + \kappa_{2} \kappa_{3} + \kappa_{3} \kappa_{1}}$$
Using energy equivalence,

$$\frac{1}{2} \kappa_{eg} \theta^{2} = \frac{1}{2} \kappa_{4} \theta^{2} + \frac{1}{2} \kappa_{123} \theta^{2} + \frac{1}{2} \kappa_{5} (\theta R)^{2} + \frac{1}{2} \kappa_{6} (\theta R)^{2}$$

$$\therefore \kappa_{eg} = \kappa_{4} + \kappa_{123} + R^{2} \kappa_{5} + R^{2} \kappa_{6}$$

$$= \kappa_{4} + \left(\frac{\kappa_{1} \kappa_{2} \kappa_{3}}{\kappa_{1} \kappa_{2} + \kappa_{2} \kappa_{3} + \kappa_{1}}\right) + R^{2} (\kappa_{5} + \kappa_{6})$$
(11) For simply supported beam,
for load at middle,

$$\kappa_{1} = \frac{48}{l^{3}} = \frac{48(206 \times 10^{11})(10^{4})}{l_{1} \kappa_{1} \kappa_{2} + \kappa_{2} \kappa_{3} + \kappa_{3} \kappa_{1}} + R^{2} (\kappa_{5} + \kappa_{6})$$
(11) For simply supported beam,
for load at middle,

$$\kappa_{1} = \frac{48}{l^{3}} = \frac{48(206 \times 10^{11})(10^{4})}{k_{1} \kappa_{2} + \kappa_{2} \kappa_{3} + \kappa_{3} \kappa_{1}} + R^{2} (\kappa_{5} + \kappa_{6})$$
(11) For simply supported beam,
for load at middle,

$$\kappa_{1} = \frac{48}{l^{3}} = \frac{48(206 \times 10^{11})(10^{4})}{k_{1} \kappa_{2} + \kappa_{2} \kappa_{3} + \kappa_{3} \kappa_{1}} + R^{2} (\kappa_{5} + \kappa_{6})$$
(11) For simply supported beam,
for load at middle,

$$\kappa_{1} = \frac{48}{l^{3}} = \frac{48(206 \times 10^{11})(10^{4})}{k_{1} \kappa_{2} + \kappa_{2} \kappa_{3} + \kappa_{1}} + R^{2} (\kappa_{2} + \kappa_{1})$$
(21) For simply supported beam,

$$\kappa_{1} = \kappa_{1} + \kappa_{1} + \frac{1}{2} \cdot 10^{2} \times 10^{7} + \frac{1}{2} \cdot 10^{2} \times 10^{7} + \frac{1}{2} \cdot 10^{7} + \frac{1}{2} \cdot$$

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

For a bar with length L, Young's modulus E and
cross-section A, the axial stiffness(k) is given by

$$k = \frac{AE}{L}$$
 (1)
when cross-section is solid circular with diameter d,
area = A₁ = $\pi d^2/4$ (2)
when cross-section is square with side d,
area = A₂ = d² (3)
when cross-section is hollow circular with mean dia. d and
wall thickness t = 0.1d,
area = $\pi dt = \pi d(0.1d) = 0.1\pi d^2$ (4)
For specified value of $k = \bar{k}$, cross-section area
required is: $A = \frac{\bar{k}L}{E} = c (constant)$ (5)
Weight of bar :
with solid circular section:
 $W_1 = \frac{\pi d^2}{4} L = cL$ with $d^2 = \frac{4C}{\pi}$ (6)
With hollow circular section:
 $W_2 = 0.1\pi d^2 L = 0.1\pi (\frac{4C}{\pi}) L = 0.4 cL$ (7)
with square section:
 $W_2 = d^2 L = \frac{4C}{\pi} L = \frac{4}{\pi} W_1 = 1.2732W_1$ (8)
.: The shaft with the hollow circular cross-section
corresponds to minimum weight.

(

....

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

stiffness of a cantilever beam under a bending force at free end : (1) $k = \frac{3EI}{03}$ For a specified value of K = K, $I = \frac{\bar{k} l^3}{2E} = C = constant$ (2)For a solid circular section with diameter d, $I_1 = \frac{\pi d^4}{64} = C \Rightarrow d^4 = \frac{64C}{\pi} \text{ or } d^2 = \sqrt{\frac{64C}{\pi}}$ (3) weight of beam = $W_1 = \frac{\pi d^2 k}{4} = \frac{\pi l}{4} \sqrt{\frac{64c}{\pi}}$ (4)= 3.5449 l JC For a hollow circular section with mean diameterd and wall thickness t=0.1d, weight of beam (W2) is: $W_{2} = \frac{\pi}{4} \left(d_{0}^{4} - d_{i}^{4} \right) l = \frac{\pi l}{4} \left\{ \left(d + t \right)^{2} - \left(d - t \right)^{2} \right\}$ $= \frac{\pi k}{4} (4 dt) = \pi dt k = \pi k (0.1 d^2)$ $= 0.1 \pi l \sqrt{\frac{64C}{\pi}} = 1.4180 l \sqrt{C}$ (5) For a square section with side d, weight of the beam (W3) is: $W_3 = d^2 l = l \sqrt{\frac{64C}{\pi}} = 4.5135 l \sqrt{C}$ (6)By comparing Eps. (4), (5) and (6), the minimum weight

1.13

beam corresponds to the hollow circular cross-section.

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

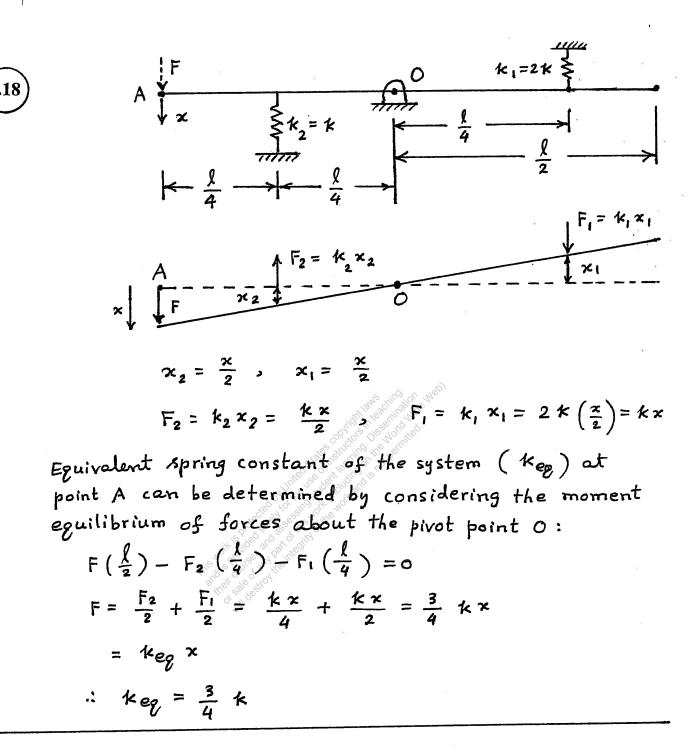
Spring force is given by
$$F = 800 \times + 40 \times^3$$
 (1)
static equilibrium of the rubber mounting (x^*) under
the weight of the electronic instrument is given by
 $F = 200 = 800 \times^* + 40 \times^3$
or $40 \times^3 + 800 \times^* - 200 = 0$ (2)
The roots of the cubic equation (2) can be found from
MATLAB as
 $x^* = 0.2492$, $-0.1246 \pm 4.4773 \div$ (3)
Thus the static equilibrium position of the rubber mounting
is given by the real root of Eq.(2):
 $x^* = 0.2492$ in (4)
(a) Equivalent linear spring constant of rubber mounting
at its static equilibrium position, using Eq.(1.7), is:
 $keg = \frac{dF}{dx} \Big|_{x^*} = 800 + 120 \times^{x^2} = 800 + 1200 (0.2492)^2$
 $= 807.4521 \text{ Ub/in}$ (5)
(b) Deflection of rubber mounting corresponding to
the equivalent linear spring constant is:
 $k = \frac{F}{keg} = \frac{200}{807.4521} = 0.2477 \text{ in}$ (6)

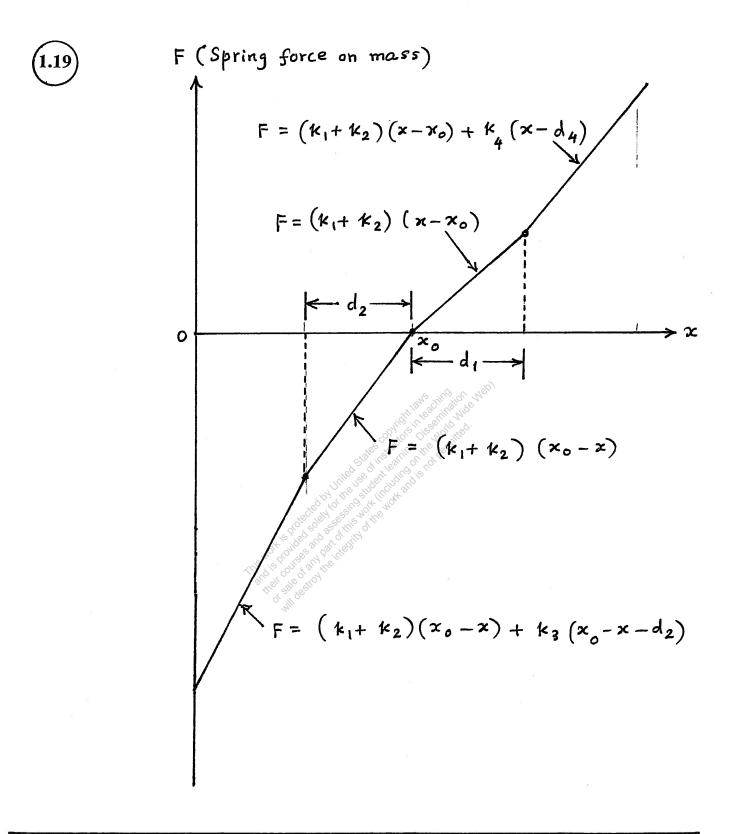
^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

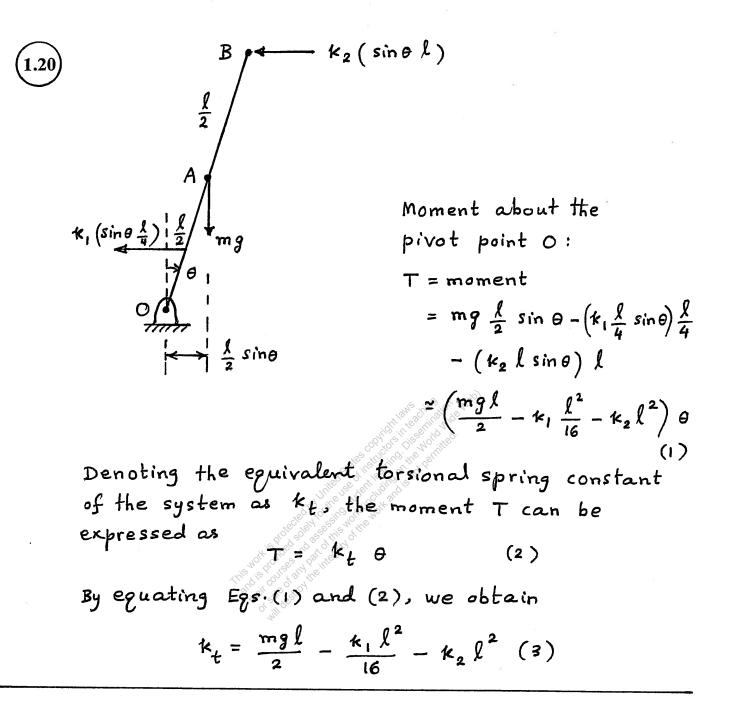
(1) $F(x) = 200 x + 50 x^{2} + 10 x^{3}$ 1.15 when the spring undergoes a steady deflection of $x^* = 0.5$ in during the operation of the engine, the force exerted on the spring can be found as $F = 200(0.5) + 50(0.5)^{2} + 10(0.5)^{3} = 113.75$ Lb (2) Equivalent linear spring constant at its steady deflection is given by Eq. (1.7): $k_{eg} = \frac{dF}{dx} \Big|_{x=x^*} = 200 + 100 x^* + 30 x^*$ $= 200 + 100 (0.5) + 30 (0.5)^{2}$ = 253.75 lb/in

Assectant Part of the work of the start of the stort of t

(1.16) (a)
$$x = down ward deflection
of point A,
 $x_{j} = resulting deformation
of spring
Potential energy equivalence
gives $\frac{1}{2} \kappa_{eg} x^{2} = \frac{1}{2} \kappa x_{j}^{2}$
 $\kappa_{eg} = \kappa \left(\frac{x_{s}}{x}\right)^{2}$
But $x = 2 \left[\sqrt{a^{2} - \left(\frac{b-x_{s}}{2}\right)^{2}} - \sqrt{\frac{a}{a} - \left(\frac{b}{2}\right)^{2}}\right]$
 $= 2 \sqrt{a^{2} - \left(\frac{b}{2}\right)^{2}} \left[\left\{ \frac{a^{2} - \left\{\frac{b}{2}\left(1 - \frac{x_{s}}{b}\right)\right\}^{2}}{a^{2} - \left(\frac{b}{2}\right)^{2}} \right\}^{1/2} - 1 \right]$
 $= 2 \sqrt{a^{2} - \left(\frac{b}{2}\right)^{2}} \left[\left\{ \frac{\left(a^{2} - \frac{b^{2}}{4} - \frac{x_{s}}{4} + \frac{b}{2}\right)}{\left(a^{2} - \frac{b^{2}}{4}\right)} \right\}^{1/2} - 1 \right]$
 $= 2 \sqrt{a^{2} - \frac{b^{2}}{4}} \left[\left\{ \left(- \frac{-x_{s}^{2} + z \cdot z \cdot \varphi}{\left(a^{2} - \frac{b^{2}}{4}\right)} + \frac{b \cdot x_{s}}{2\left(a^{2} - \frac{b^{2}}{4}\right)} \right\}^{1/2} - 1 \right]$
Using the relation $(1 + \theta)^{1/2} \simeq 1 + \frac{\theta}{2}$, we obtain
 $x = 2 \left(a^{2} - \frac{b^{2}}{4}\right)^{1/2} \left[1 + \frac{b \cdot x_{s}}{4\left(a^{2} - \frac{b^{2}}{4}\right)} - 1 \right] = \frac{b \cdot x_{s}}{2\left(a^{2} - \frac{b^{2}}{4}\right)} \right]$
 $\therefore \kappa_{eg} = \kappa \left(\frac{x_{s}}{x}\right)^{2} = 4 \left(\frac{a}{2} - \frac{b^{2}}{b^{2}}\right) = \kappa \left(\frac{4a^{2} - b^{2}}{b^{2}}\right)$
(b) Here $x = x_{s}$ (Spring deflection)
 $\therefore \kappa_{eg} = \kappa$$$$


.


.


^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

(1.17) Let
$$x = vertical$$

displacement
of mass M ,
 $x_{g} = resulting$
deformation of
each inclined
spring.
From equivalence of potential energy,
 $\frac{1}{2} \kappa_{eq} x^{2} = 3 \left(\frac{1}{2} \kappa x_{g}^{2}\right)$; $\kappa_{eq} = 3 \kappa \left(\frac{x_{g}}{x}\right)^{2}$
From geometry, $\left(l - x_{g}\right)^{2} = l^{2} + x^{2} - 2 l x \cos \alpha$
 $x^{2} - 2x l \cos \alpha + 2 l x_{g} - x_{g}^{2} = 0$ (E1)
Solving (E1), $x = l \cos \alpha \left[1 \pm \left\{1 - \frac{(2 l x_{g} - x_{g}^{2})}{l^{2} \cos^{2} \alpha}\right\}^{1/2}\right]$ (E2)
Using the relation $\sqrt{1-\theta} \approx 1 - \frac{\theta}{2}$, (E2) can be rewritten as
 $x = l \cos \alpha \left[1 \pm \left\{1 - \left(\frac{2 l x_{g} - x_{g}^{2}}{2 l^{2} \cos^{2} \alpha}\right)\right\}\right]$ (E3)
Assuming x to be small, we use minus sign and neglect x_{g}^{2}
 $x = \frac{x_{g}}{\cos \alpha}$
 $\therefore \kappa_{eq} = 3 \kappa \cos^{2} \alpha$
En α similar manner, $c_{eq} = 3 c \cos^{2} \alpha$

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

When mercury is displaced by an amount x in one leg of the manometer (Fig. 1.77), the mercury column will undergo a total displacement of 2x. The magnitude of the force, due to the weight of the displaced mercury, acts on the rest of the fluid. The restoring force is given by

1.21

$$F = 2 i^{\prime} A \times$$
 (1)

where is the specific weight of mercury and A is the cross-sectional area of the manometer tube. kep, denotes the spring constant associated If with the restoring force, the restoring force can be expressed as

$$F = k_{eq} \times (2)$$

Equations (1) and (2) yield the equivalent spring constant as $k_{eq} = 2 f A$

(1.22)

When the drum is displaced by an amount x from its static equilibrium position, the weight of the fluid (sea water) displaced is given by

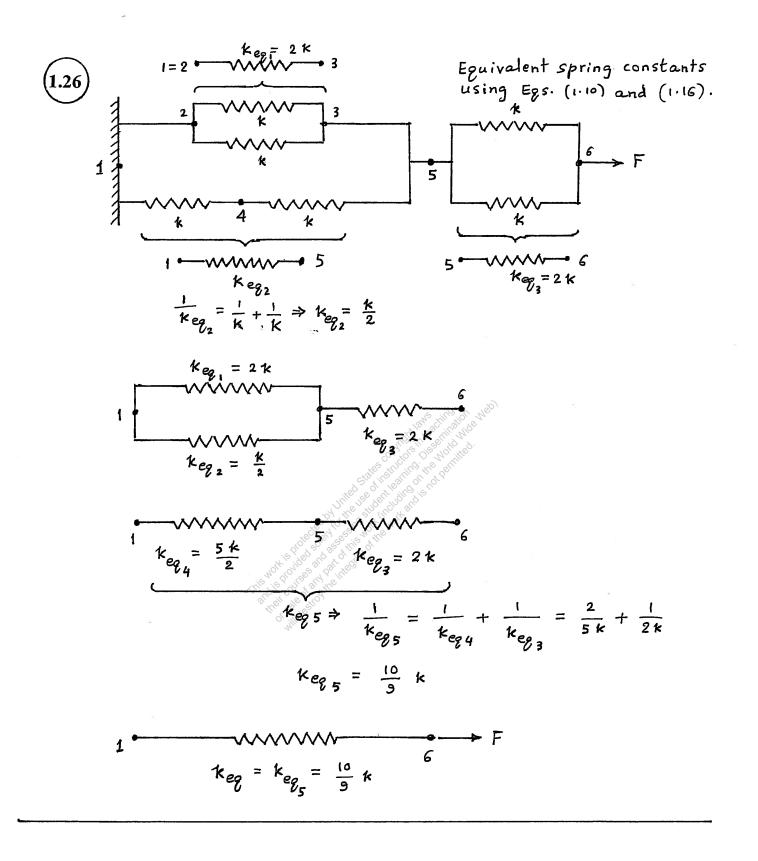
$$W = \int_{W} g\left(\frac{\pi d^{2}}{4}\right) \varkappa \tag{1}$$

where f_w is the density of sea water and g is the acceleration due to gravity. The weight, W, given by Eq.(1) also denotes the restoring force F. By expressing the restoring force as

$$F = \kappa_{eg} \times$$
 (2)

where key denotes the equivalent spring constant associated with the restoring force. Equating (1) and (2), we obtain $k_{eq} = \int_{w} g \frac{\pi d^2}{4}$ (3)

(a) Spring constant (stiffness) of step i in the axial direction:


$$k_{i} = \frac{A_{i}E_{i}}{l_{i}} = \frac{A_{i}E}{l_{i}}, \quad i = 1, 2, 3$$
(b)
$$1 = \frac{2}{3} + F$$

The reaction at any point along the stepped shaft due to an axial force (F) applied at point 4 will be same as F. Hence the springs (stiffnesses) corresponding to the three steps 12, 23 and 34 are to be considered as series springs. In view of Eq.(1), the equivalent spring constant given by Eq. (1.17) becomes

$$\frac{1}{k_{eg}} = \frac{1}{k_1} + \frac{1}{k_2} + \frac{1}{k_3} = \frac{1}{E} \left(\frac{l_1}{A_1} + \frac{l_2}{A_2} + \frac{l_3}{A_3} \right)$$
$$= \frac{1}{E} \frac{(l_1 A_2 A_3 + l_2 A_1 A_3 + l_3 A_1 A_2)}{A_1 A_2 A_3}$$
or
$$k_{eg} = \frac{E A_1 A_2 A_3}{l_1 A_2 A_3 + l_2 A_1 A_3 + l_3 A_1 A_2}$$
(2)

(c) steps behave as series springs.

1-20

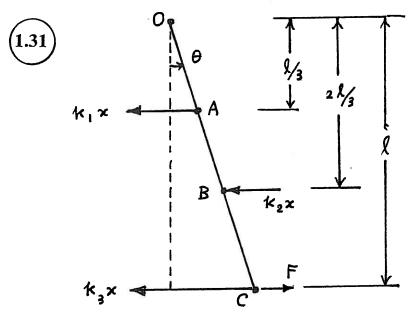
١

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

(1.27)

(0

) Torsional spring constant or stiffness of stepi is


$$k_{ti} = \frac{G_i J_i}{l_i} = \frac{G_i \pi D_i^4}{32 l_i}, \quad i = 1, 2, 3 \quad (1)$$

(b) The reactive torque at any point along the stepped shaft due to an applied torque T at the free end will be T. Hence the torsional stiffnesses (springs) corresponding to the three steps 12,23 and 34 are to be considered as series springs. In view of Eq.(1), the equivalent torsional spring constant given by Eq.(1.17) becomes (Eq.(1.17) is to be interpreted for torsional springs):

$$\frac{1}{\kappa_{eg}} = \frac{1}{\kappa_{t1}} + \frac{1}{\kappa_{t2}} + \frac{1}{\kappa_{t3}} = \frac{32}{\pi G} \left(\frac{l_1}{D_1^4} + \frac{l_2}{D_2^4} + \frac{l_3}{D_3^4} \right)$$
$$= \frac{32}{\pi G} \left(\frac{l_1 D_2^4 D_3^4 + l_2 D_1^4 D_3^4 + l_3 D_1^4 D_2^4}{D_1^4 D_2^4 D_3^4} \right)$$
or
$$\frac{\pi G D_1^4 D_2^4 D_3^4}{D_2^4 D_3^4}$$
(2)

(1.28) (a)
$$F \simeq F|_{x_0} + \frac{dF}{dx}|_{x_0} (x-x_0) = (500 x + 2x^2)_{x=10} + (500 + 6x^2) (x-10)$$

 $\simeq 1100 x - 4000$
(b) at $x = 9 \text{ mm}$:
 $Exact F_9 = 500 x 9 + 2 (9)^3 = 5958 \text{ N}$
Approximate $F_9 = 1100 x 9 - 4000 = 5900 \text{ N}$
 $Error = -0.9735 \frac{1}{2}$
(c) at $x = 11 \text{ mm}$:
 $Exact F_{11} = 500 \times 11 + 2 (11)^3 = 8162 \text{ N}$
Approximate $F_{11} = 1100 \times 11 - 4000 = 8100 \text{ N}$
 $Error = + 0.7596 \frac{1}{2}$
(1.29) $\oint v^F = \text{constant } \dots (E_1)$; Differentiation of (E_1) gives
 $d\beta v^F + \beta \neq v^{F-1} dv = 0$
 $d\beta = -\frac{fT}{v} dv - \dots (E_2)$
change in volume when mass moves by dx , $dv = -A \cdot dx - \dots (E_3)$
 $Egs. (E_2) \text{ and } (E_3)$ give $d\beta = \frac{\beta TA}{v} dx$
Force due to pressure change = $dF = d\beta \cdot A = \frac{\beta TA^2}{v} \cdot dx$
spring constant of air spring = $k = \frac{dF}{dx} = (\frac{fYA^2}{v})$.
(1.30) Equivalent spring constants in differt directions are
 $\frac{k_5 k_6 k_7}{k_6 + k_5 k_7 + k_6 k_7}$, $k_{e2} = (\frac{k_8 k_9}{k_8 + k_9})$.
 $k_{e3} = (\frac{k_1 K_2}{k_1 + k_2})$, $k_{e4} = (\frac{k_3 k_4}{k_3 + k_4})$
If the force P moves by x, spring located at θ_i undergoes and
 $displacement of x_i = x \cos \theta_i$ (derivation as in problem 1.17).
Equivalence of potential energy gives $\frac{1}{2} k_{eg} x^2 = \frac{1}{2} \frac{\frac{4}{2}}{k_{ei}} \frac{k_e}{i}$

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Let the link OABC undergo a small angular displacement 0 as shown in above figure. The spring reaction forces are also indicated in the figure. Equilibrium of moments about the pivot point O gives:

$$-k_{1}^{\chi}\left(\frac{l}{3}\right) - k_{3}^{\chi}\left(l\right) - k_{2}^{\chi}\left(\frac{2l}{3}\right) + F\left(l\right) = 0$$

or
$$F = \left(\frac{k_{1}}{3} + \frac{2}{3}k_{2} + k_{3}\right)^{\chi}$$
(1)

If kee denotes the equivalent spring constant of the link along the direction of F at point C, we have

$$F = k_{eq} \chi \qquad (2)$$

Equations (1) and (2) give

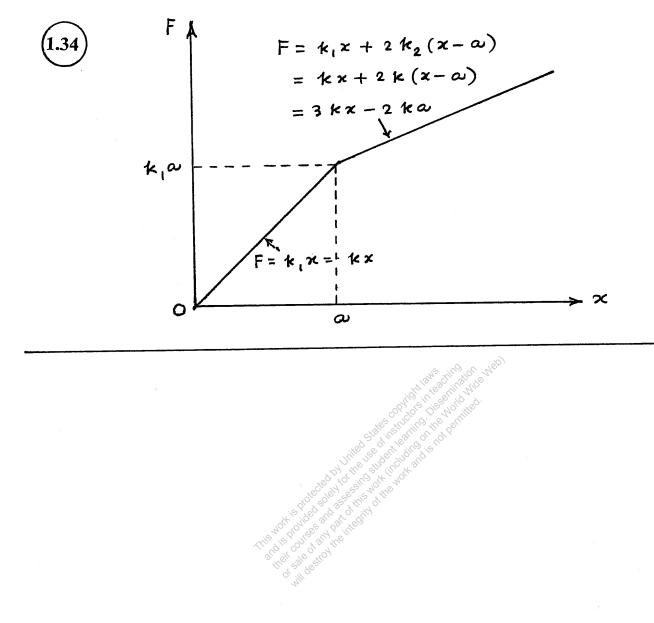
$$k_{eg} = \frac{k_1}{3} + \frac{2}{3} + \frac{k_2}{3} + \frac{k_3}{3} = \frac{k}{3} + \frac{2}{3}(2k) + (3k)$$

 $\therefore k_{eg} = \frac{14}{3}k$
(3)

(1.32)

spring constant of a helical spring is

$$k = \frac{Gd^4}{8 N D^3}$$
(1)


Assuming the shear modulus of steel as G = 79.3 GPa, $E_{0}(1)$ gives, for D = 0.2 m, d = 0.005 m and N = 10, $k = \frac{(79.3 \times 10^{9})(0.005)^{4}}{8(10)(0.2)^{3}} = 77.4414 \text{ N/m}$

(1.33)

D and d: same for both helical springs (a) Weight of a helical spring is: $W = \pi D\left(\frac{\pi d^2}{4}\right) N \Upsilon$ (1)where Y = specific weight of material of spring. For a steel spring with 1's = 76.5 k N/m3, the weight is (for $N_s = 10$): $W_{s} = \pi D \left(\frac{\pi d^{2}}{4}\right) N_{s} V_{s}^{t} = \frac{\pi^{2} D d^{2}}{4} (10) (76.5 \times 10^{3})$ = $19 \cdot 125 \times 10^4 \pi^2 D d^2$ (2) For an aluminum spring with Ya = 26.6 KN/m³, the weight is (for number of turns Now), $W_{\alpha} = \pi D\left(\frac{\pi d^2}{4}\right) N_{\alpha} Y_{\alpha} = \frac{\pi^2 D d^2 N_{\alpha}}{(26.6 \times 10^3)}$ $= 6.65 \times 10^3 \pi^2 D d^2 N_{a}$ (3)Equating (2) and (3), $19.125 \times 10^4 \pi^2 D d^2 = 6.65 \times 10^3 \pi^2 D d^2 N_{a}$ or (4)(b) spring constant of a helical spring is : $k = G d^4 / (8 N D^3)$ For a steel spring with G = 793.3 GPa, $k_{\chi} = (79.3 \times 10^9) d^4 / 58(10) D^3$ (5) $= 0.99125 \times 10^{9} d^{4} / D^{3}$ For an aluminum spring with G= 26.2 GPa, $\kappa_{2} = (26.2 \times 10^{7}) d^{4} / f g (28.7574) D^{3} f$ (6) $= 0.1139 \times 10^{9} d^{4} D^{3}$ Eqs. (5) and (6) indicate that the spring constant of steel spring is 0.99125/0.1139 = 8.7046 times larger than that of aluminum spring.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

This not is projected by United sates copyright

(1.35) From Problem 1.29,
$$k = \frac{p f A^2}{v}$$
 with $f = 1.4$ for air
Let $p = 200$ psi
 $k = 75$ $U/m = \frac{(200)(1.4) A^2}{v} \Rightarrow \frac{A^2}{v} = 0.2679$
Let diameter of piston = $d = 2$ inch ; $A = \frac{\pi}{4} (2)^2 = 3.1416$ in²
 $v = A^2/0.2679 = 36.8408$ in³
Let $h = 2$ inch ; $\frac{\pi}{4} D^2 (2) = v \Rightarrow D = 4.8429$ inch
(1.36) $F = ax + bx^3 = 2(10^4)x + 4(10^7)x^3$
Around x^* : $F(x) \approx F(x^*) + \frac{dF}{dx} |_x (x - x^*)$
When $x^* = 10^{-2}$ m, $F(x^*) = 2(10^4)(10^{-2}) + 4(10^7)(10^{-6}) = 240$ N
 $\frac{dF}{dx} |_x = a + 3bx^2 = 2(10^4) + 3(4)(10^7)(10^{-4}) = 32000$
Hence $F(x) = 240 + 32000(x - 0.01) = (32000x - 80)$ N
Since the linearized spring constant is given by $F(x) = k_{eq} x$, we have $k_{eq} = 32,000$
N/m.

and is portided

"no

(1.37)
$$F_{i} = a_{i} x_{i} + b_{i} x_{i}^{3} ; i = 1, 2$$

Springs in series:

$$W = a_{1} \delta_{1} + b_{1} \delta_{1}^{3} (1)$$

$$W = a_{2} \delta_{2} + b_{2} \delta_{2}^{3} (2)$$

$$W = keg \delta_{st} (3)$$

$$\delta_{st} = \delta_{1} + \delta_{2} (4)$$
Solve Egs.(1) and (2) for δ_{1} and δ_{2} ,
respectively. Substitute the result
in Eg.(4) and then in Eg.(3) to
find keg.
Springs in parallel:

$$W = F_{1} + F_{2}$$

$$= a_{1} \delta_{st} + b_{1} \delta_{st}^{3} + a_{2} \delta_{st} + b_{2} \delta_{st}^{3}$$

$$k_{eg} = a_{1} + b_{1} \delta_{st}^{2} + a_{2} + b_{2} \delta_{st}^{2}$$

(1.38)
$$k = \frac{G d^4}{8 D^3 N} \ge 8 \times 10^6 N/m$$
; $\frac{D}{d} \ge 6$; $N \ge 10$
 $W = \pi DN \mathcal{G} \left(\frac{\pi d^2}{4}\right)$ where $\mathcal{G} =$ weight per unit volume
 $f_1 = \frac{1}{2} \sqrt{\frac{Kg}{W}} = \frac{1}{2} \sqrt{\frac{G d^2 \mathcal{G}}{2 \pi^2 D^4 N^2 \mathcal{G}}} \ge 0.4 \text{ Hz}$
Using $G = 73.1 \times 10^9 N/m^2$, $\mathcal{G} = 76000 N/m^3$, $\mathcal{G} = 9.81 \text{ m/sec}^2$,
 $\frac{D}{d} = 6, 8, 10$; $N = 10, 15, 20$; $d = 0.4, 0.6, ...,$ values of
 k and f_1 are computed.
Combination of $\frac{D}{d} = 6$, $N = 10$ and $d = 2.0 \text{ m}$, corresponding
to $k = 8.4606 \times 10^6 N/m \cdot \text{and}$ $f_1 = 0.4801 \text{ Hz}$, can be
taken as an acceptable design.

Total elongation (strain) is same in each material:

$$\epsilon_{s} = \epsilon_{a} = \frac{x}{\ell_{a}} \tag{1}$$

where x is the total elongation. Equation (1) can be expressed as

 $\frac{\sigma_{\rm s}}{E_{\rm s}} = \frac{\sigma_{\rm a}}{E_{\rm s}} = \frac{{\rm x}}{\ell} \tag{2}$

$$\sigma_{s} = \frac{E_{s} x}{\ell}$$
(3)

$$C_{a} = \frac{E_{a} x}{\ell}$$
(4)

Total axial force is:

1.39

$$\mathbf{F} = \mathbf{F}_{s} + \mathbf{F}_{a} = \sigma_{s} \mathbf{A}_{s} + \sigma_{a} \mathbf{A}_{a}$$
(5)

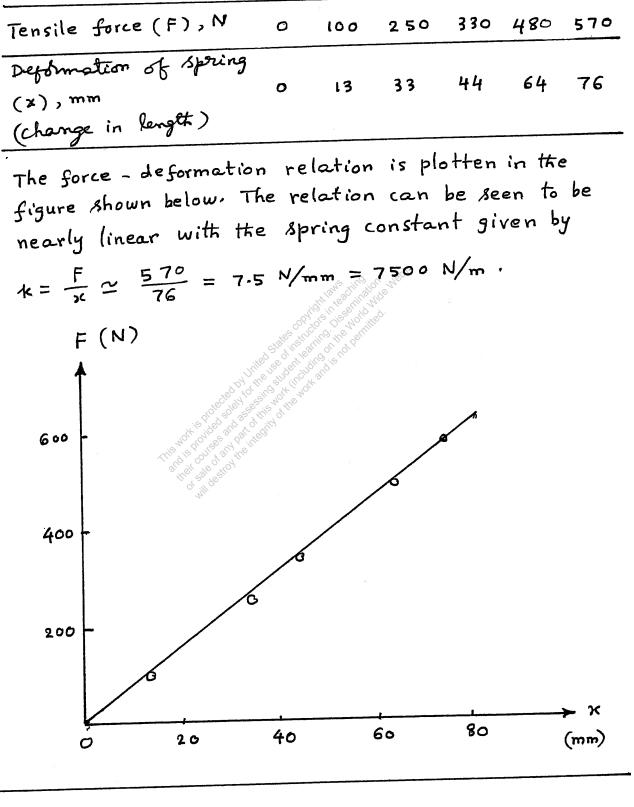
where F_s and F_a denote the axial forces acting on steel and aluminum, respectively, and A_s and A_a represent the cross-sectional areas of the two materials. Equating F to $k_{eq} x$ where k_{eq} denotes the equivalent spring constant of the bimetallic bar, we obtain from Eqs. (3) to (5):

$$F = k_{eq} x = \left(\frac{E_s x}{\ell}\right) A_s + \left(\frac{E_a x}{\ell}\right) A_a$$

or $k_{eq} = \frac{E_s A_s}{\ell} + \frac{E_a A_a}{\ell}$ (6)

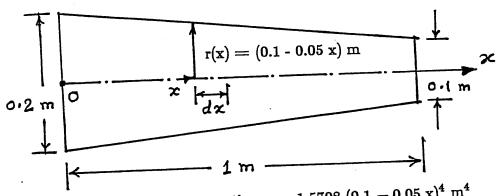
Let the length of the 1.40 spring be h. spring is undeformed at 0=0. when the end A of the spring is displaced B F× by an amount x as shown in the figure, the spring is stretched by the amount $(\sqrt{h^2 + x^2} - h)$ so that the force in the spring (Fg) is given by $F_{\beta} = \kappa \left(\sqrt{h^2 + \chi^2} - h \right)$ (1)The component of the spring force Fg along the direction of x is given by

$$F_{x} = F_{x} \sin \theta = F_{x} \frac{x}{\sqrt{h^{2} + x^{2}}} = \frac{k(\sqrt{h^{2} + x^{2}} - h)x}{\sqrt{h^{2} + x^{2}}}$$
$$= k(1 - \frac{h}{\sqrt{h^{2} + x^{2}}})x \qquad (2)$$


$$F_{\chi} = k_{\chi} \chi$$

A comparison of Eqs. (2) and (3) shows that the spring constant x is not a constant, but depends on the displacement x.

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.


From the given data, the force - deformation relation of the spring can be obtained as :

1.41

1-32

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

 $J = \frac{\pi}{2} r^4$ = area polar moment of inertia at section x = 1.5708 $(0.1 - 0.05 x)^4 m^4$ Knowing that the angle of twist, θ , between the ends of a uniform shaft of length ℓ under a torque T is given by $\theta = \frac{T \ell}{GJ}$, the angle of twist for an element of length dx can be expressed as

$$d\theta = \frac{T dx}{GJ} = \frac{T dx}{(80 (10^9)) 1.5708 (0.1 - 0.05 x)^4}$$
(1)

The total angle of twist can be determined by integrating Eq. (1) from x=0 to 1 as:

$$\theta = \int_{0}^{1} \frac{T \, dx}{(12.5664 \, (10^{10})) \, (0.1 - 0.05 \, x)^4} = \left(\frac{T}{12.5664 \, (10^{10})}\right) \int_{0}^{1} \frac{dx}{(0.1 - 0.05 \, x)^4}$$
(2)

Т

The steel and aluminum hollow shafts can be treated as two torsional springs in parallel. 1.43 For a hollow shaft, $k_{4} = \frac{\pi G}{32 \ell} (D^{4} - d^{4})$ For the steel shaft, G = 80 (10⁹) Pa, $\ell = 5 \text{ m}$, D = 0.25 m, d = 0.15 m, and hence $k_{t_1} = \frac{\pi (8 (10^{10}))}{32 (5)} (0.25^4 - 0.15^4) = 5.34072 (10^6) \text{ N-m/rad}$ (ov) For the aluminum shaft, $G = 26 (10^9)$ Pa, $\ell = 5$ m, D = 0.15 m, d = 0.1 m, and (b) With $G = 26 (10^9)$ Pa, l = 5 m, D = 0.15 m and d = 0.05 m,

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$\begin{aligned} & k_{t_2} = \frac{\pi \left(26 \times 10^3\right)}{32 \left(5\right)} \left(0.(5^4 - 0.05^4)\right) = 0.255255 \times 10^6 \text{ N-my/rad} \\ & k_{eg} = \kappa_{t_1} + \kappa_{t_2} = 5.34072 \times 10^6 + 0.255255 \times 10^6 = 5.595975 \times 10^6 \\ & \text{N-my/rad} \end{aligned}$$

$$\begin{aligned} & \text{(14)} \quad \text{For helical spring: } k = \frac{G \, d^4}{64 \, n \, R^3} \\ & \text{Spring 1: } k_1 = \frac{(12 \times 10^6)(2^4)}{64 \left(10\right)(6^3)} = 1.388.89 \, \text{lb/m} \\ & \text{Spring 2: } k_2 = \frac{(4 \times 10^6)(1^4)}{64 \left(10\right)(5^3)} = 50.00 \, \text{lb/m} \\ & \text{(a) Spring 2 inside spring 1 (parallel): } k_{eq} = k_1 + k_2 = 1.438.89 \, \text{lb/m} \\ & \text{(b) Spring 2 on top of spring 1 (series):} \\ & \frac{1}{k_{eq}} = \frac{1}{k_1} + \frac{1}{k_2} = \frac{k_2 + k_1}{k_1 \, k_2} \\ & \text{which gives } k_{eq} = 48.2025 \, \text{lb/m}. \end{aligned}$$

$$\begin{aligned} & \text{(1.45) For } \alpha \text{ helical spring, } \kappa = \frac{G \, d^4}{64 \, n \, R^3} \\ & \kappa_1 = \frac{(12 \times 10^6) \left(1\right)^9}{64 \left(10\right) \left(6^3\right)} = 3.125 \, \frac{9k}{in} \\ & \kappa_2 = \frac{(4 \times 10^6) \left(0.5\right)^4}{64 \left(10\right) \left(5^3\right)} = 3.125 \, \frac{9k}{in} \\ & \text{(a) Spring 2 inside spring 1: } \kappa_{eg} = \kappa_1 + \kappa_2 = 89.931 \, \frac{1k}{in} \\ & \text{(b) Spring 2 on top of spring 1: } \frac{1}{k_{eg}} = \frac{86.806 \, \frac{1255}{in}}{86.806 \, \frac{1255}{in}} = 3.0164 \, \frac{1k}{in} \\ & \text{(b) Spring 2 on top of spring 1: } \frac{1}{k_{eg}} = \frac{86.306 \left(\frac{1255}{in}\right)}{86.806 \, 43.125} = 3.0164 \, \frac{1k}{in} \end{aligned}$$

30° $x_2 = y \sin 30^\circ$ $x_1 = y \cos 30^\circ$ 60 Equivalence of strain energies: $\frac{1}{2} k_{eg} y^2 = \frac{1}{2} k_2 x_2^2 + \frac{1}{2} k_1 x_1^2 = \frac{1}{2} k_1 y^2 (\sigma^2 30^2)$ $+\frac{1}{2}$ k_2 y^2 $\sin^2 30^{\circ}$ i.e., $k_{eq} = \frac{3}{4}k_1 + \frac{1}{4}k_2$ with $k_1 = \frac{A_1 E_1}{a} = \frac{\pi}{4} \frac{(10^2 - 9.5^2)(30 \times 10^6)}{100} = 2.297295 \times 10^6 \text{ Lb/in}$ and $k_2 = \frac{A_2 E_2}{\ell_2} = \frac{\pi}{4} \frac{(7^2 - 6.5^2)(30 \times 10^6)}{(7^2 - 6.5^2)(30 \times 10^6)} = 2.12058 \times 10^6 lb/in$ = 2.25311625 x106 lb/in similarly, the equivalent damping constant can be found as (using equivalence of kinetic energies): $C_{eq} = \frac{3}{4}C_1 + \frac{1}{4}C_2 = \frac{3}{4}(0.4) + \frac{1}{4}(0.3) = 0.375 \ lb - sec/in$ Stainless steel: $E = 30 \times 10^6 \frac{4b}{in^2}$, $G = 11.5 \times 10^6 \frac{lb}{in^2}$ For each tube:

$$D = 0.30'', d = 0.29'', \lambda = 50''$$

Axial stiffness = $\frac{AE}{l} = \frac{\pi}{4} (D^2 - d^2) \frac{E}{l}$
= $\frac{\pi}{4} (0.30^2 - 0.29^2) (\frac{30 \times 10^6}{50}) = 2780.316$ ^{lb}/in = k_{ab}

1-35

1.47

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Torsional stiffness =
$$\frac{\pi G}{32 l} (p^4 - d^4)$$

= $\frac{\pi (11.5 \times 10^6)}{32 (50)} (0.30^4 - 0.23^4) = 23.1942$ /b - in/rad = k_{\pm}
For heat exchanger with 6 tubes:
Axial stiffness = $G + k_{a} = 16,681.896$ /b/in
Torsional stiffness = $G + k_{\pm} = 139.1652$ /b - in/rad
(1.48) Assume small angles θ_1 and $\theta_2 ; \theta_2 = (\frac{p_1}{k_2})\theta_1$
 $x_1 = horizontal displacement of c.G. of mass $m_1 = \theta_1 r_1$
 $x_2 = vertical displacement of c.G. of mass $m_2 = \theta_2 r_2 = \frac{p_1}{\theta_1} r_2/p_2$
 $g_1 = horizontal displacement of springs k_1 and $k_2 = \theta_1 (r_1 + l_1)$
 $g_2 = vertical displacement of springs k_1 and $k_2 = \theta_1 (r_1 + l_1)$
 $g_2 = vertical displacement of springs $k_2 = r_1 (z_1)^2 + \frac{1}{2} m_2 (z_2)^2$
 $\therefore J_{eq} = J_1 + J_2 (\frac{p_1}{p_2})^2 + m_1 r_1^2 + m_2 r_2^2 (\frac{p_1}{p_2} + \frac{1}{2} m_2 (z_2)^2$
 $\therefore J_{eq} = J_1 + J_2 (\frac{p_1}{p_2})^2 + m_1 r_1^2 + m_2 r_2^2 (\frac{p_1}{p_2} + \frac{p_3}{p_4} + \frac{1}{2} k_{41} \theta_1^2 + \frac{1}{2} k_{42} \theta_2^2$
 $with $k_{12} = k_1 + k_2$, $k_{34} = \frac{k_3}{k_4} + (k_3 + k_4)$
 $g_1 = \theta_1 (r_1 + l_1), g_2 = p_1 l_2 \theta_1/k_2$ and $\theta_2 = p_1 \theta_1/t_2$.
 $\therefore k_{eq} = (k_1 + k_2) (k_1 + k_1)^2 + (\frac{k_3}{k_3} + \frac{k_4}{k_3} + \frac{k_1}{p_2} + \frac{k_1}{k_2} + \frac{k_1}$$$$$$$

(1.5) Let
$$\dot{\theta}_{l} = angular$$
 velocity of the motor (input)
Angular velocities of different gear sets are:

$$\frac{\overline{T_{motor} \cdot \overline{J_{l}}}}{\dot{\theta}_{l}} \frac{\overline{T_{2, J}}}{\overline{J_{2, J}}} \frac{\overline{J_{4, J}}}{\overline{J_{2, J}}} \frac{\overline{J_{4, J}}}{\overline{J_{2, J}}} \frac{\overline{J_{2, J}}}{\overline{J_{2$$

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

When mass m is displaced by x, the bell crank lever rotates by the angle $\theta_b = \frac{x}{\ell_1}$. This makes the center of the sphere displace by $x_s = \theta_b \ell_2$. Since the sphere rotates with out slip, it rotates by an angle

$$\theta_{\rm s} = \frac{{\rm x}_{\rm s}}{{\rm r}_{\rm s}} = \frac{\theta_{\rm b} \,\ell_2}{{\rm r}_{\rm s}} = \frac{{\rm x} \,\ell_2}{\ell_1 \,\,{\rm r}_{\rm s}}$$

The kinetic energy of the system can be expressed as

and is provi

sale of any

$$T = \frac{1}{2} m \dot{x}^{2} + \frac{1}{2} J_{0} \dot{\theta}^{2} + \frac{1}{2} J_{s} \dot{\theta}^{2}_{s} + \frac{1}{2} m_{s} \dot{x}^{2}_{s}$$

$$= \frac{1}{2} m \dot{x}^{2} + \frac{1}{2} J_{0} \left(\frac{\dot{x}}{\ell_{1}}\right)^{2} + \frac{1}{2} \left(\frac{2}{5} m_{s} r_{s}^{2}\right) \dot{x}^{2} \left(\frac{\ell_{2}}{\ell_{1}} r_{s}\right)^{2} + \frac{1}{2} m_{s} \left(\frac{\dot{x} \ell_{1}}{\ell_{1}}\right)^{2}$$

since for a sphere, $J_{s} = \frac{2}{5} m_{s} r_{s}^{2}$. Equating this to $T = \frac{1}{2} m_{eq} \dot{x}^{2}$, we obtain
 $m_{eq} = m + J_{0} \frac{1}{\ell_{1}^{2}} + \frac{7}{5} m_{s} \frac{\ell_{2}^{2}}{\ell_{1}^{2}}$

• :

When the angular position of the crank is @ from x-axis, the angular position of connecting rod \$, shown in Fig. 1.101, is given by $r\sin\theta = \delta + l\sin\phi$ (1)The x- and y- coordinates of piston (xp, yp) are given by $x_p = r \cos \theta + l \cos \phi$ (2)(3) $y_p = \delta$ The x- and y- coordinates of the center of mass of the connecting rod (xc, yc) can be expressed as $x_c = r \cos \Theta + l_1 \cos \phi$ (4) $y_c = r \sin \theta - l_i \sin \phi$ (5) The x- and y- coordinates of the center of mass of the crank are given by (6) $x_r = \frac{r}{2} \cos \theta$ $y_r = \frac{r}{2} \sin \theta$ (7) Differentiation of Egs. (1) - (5) with respect to time yields $r\cos \Theta = l \cos \phi \phi$ or $\phi = \frac{r}{l} \frac{\cos \Theta}{\cos \phi}$ (8)in = - r sin 0 0 - l sin of of (9) (10)y = 0 $\dot{x}_{c} = -r \sin \theta \dot{\theta} - l_{1} \sin \phi \dot{\phi}$ (1) $\dot{y}_c = r \cos \theta \dot{\theta} - l_1 \cos \phi \dot{\phi}$ (12)Using Eq. (8), Eq. (9) can be expressed as $\dot{x}_p = -r \sin \theta \dot{\theta} - l \sin \phi \frac{r}{l} \frac{\cos \theta}{\cos \theta} \dot{\theta}$ (13)= $-r\theta$ (sin θ + cos θ tan ϕ) 1-39

.54

Similarly, using Eq. (8), Eqs. (11) and (12) can be expressed as

$$\dot{x}_{c} = -r\dot{\theta}\left(\sin\theta + \frac{k_{1}}{k}\cos\theta\,\tan\phi\right) \tag{4}$$

$$\dot{y}_{c} = r\dot{\Theta} \frac{l_{2}}{l} \cos\Theta \qquad (15)$$

Finally, differentiation of Egs. (6) and (7) yields

$$\dot{x}_r = -\frac{r}{2} \sin \theta \dot{\theta}$$
(16)

$$\dot{y}_{r} = \frac{r}{2} \cos \Theta \dot{\Theta}$$
(17)

The kinetic energy of the system (T) can be expressed as

$$T = \frac{1}{2} m_{r} (\dot{z}_{r}^{2} + \dot{y}_{r}^{2}) + \frac{1}{2} J_{r} \dot{\Theta}^{2} + \frac{1}{2} m_{c} (\dot{z}_{c}^{2} + \dot{y}_{c}^{2}) \\ + \frac{1}{2} J_{c} \dot{\phi}^{2} + \frac{1}{2} m_{p} (\dot{z}_{p}^{2} + \dot{y}_{p}^{2}) \\ = \frac{1}{2} m_{r} \frac{r^{2}}{4} \dot{\Theta}^{2} + \frac{1}{2} J_{r} \dot{\Theta}^{2} + \frac{1}{2} m_{c} \left\{ (\sin^{2} \theta + \frac{l_{1}^{2}}{l_{2}^{2}} \cos^{2} \theta \cdot \tan^{2} \phi \right\} \\ + 2 \frac{l_{1}}{l} \sin \theta \cos \theta \tan \phi) r^{2} \dot{\Theta}^{2} + \frac{l_{2}^{2}}{l^{2}} \cos^{2} \theta r^{2} \dot{\Theta}^{2} \right\} + \frac{1}{2} J_{c} \dot{\phi}^{2} \\ + \frac{1}{2} m_{p} (r^{2} \sin^{2} \theta \dot{\theta}^{2} + l^{2} \sin^{2} \phi \dot{\phi}^{2} + 2r l \sin \theta \sin \phi \dot{\theta} \dot{\phi}) \quad (18) \\$$

If the equivalent rotatory inertia of the whole system about the point O is denoted as Jeg, the kinetic energy of the system (T) can be written as

$$T = \frac{1}{2} J_{eg} \theta^2 \qquad (19)$$

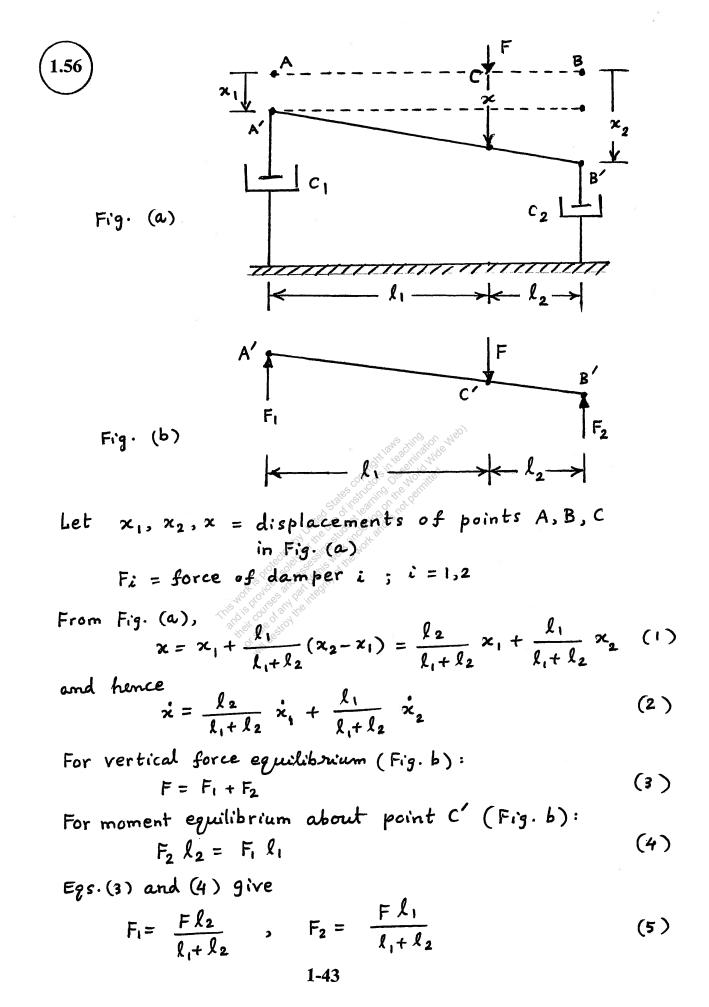
By equating Eqs. (18) and (19), the equivalent rotatory inertia of the offset slider crank mechanism can be expressed as

$$J_{eg} = \frac{1}{4} m_{r} r^{2} + J_{r} + m_{c} \left\{ (\sin^{2}\theta + \frac{l_{1}^{2}}{l^{2}} \cos^{2}\theta \tan^{2}\theta + \frac{l_{1}}{l^{2}} \cos^{2}\theta \tan^{2}\theta + \frac{l_{1}}{l} \sin 2\theta \tan \theta) r^{2} + \frac{l_{2}^{2}}{l^{2}} \cos^{2}\theta r^{2} \right\} + J_{c} \frac{\dot{\phi}^{2}}{\dot{\theta}^{2}} + m_{p} (\sin^{2}\theta r^{2} + l^{2} \sin^{2}\theta \frac{\dot{\phi}^{2}}{\dot{\theta}^{2}} + 2rl \sin \theta \sin \theta \frac{\dot{\phi}}{\dot{\theta}})$$

$$(20)$$

$$1-40$$

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.


In view of Eq. (8), Eq. (20) can be rewritten as

$$J_{eg} = \frac{1}{4} m_{r} r^{2} + J_{r} + m_{c} r^{2} \left\{ (\sin^{2}\theta + \frac{l_{1}^{2}}{l^{2}} \cos^{2}\theta \tan^{2}\phi + \frac{L_{1}}{l^{2}} \cos^{2}\theta \tan^{2}\phi + \frac{L_{1}}{l} \sin 2\theta \tan \phi \right\} + \frac{l_{2}^{2}}{l^{2}} \cos^{2}\theta \left\} + J_{c} \frac{r^{2}}{l^{2}} \frac{\cos^{2}\theta}{\cos^{2}\phi} + m_{p} r^{2} \left(\sin^{2}\theta + \sin^{2}\phi \frac{\cos^{2}\theta}{\cos^{2}\phi} + 2\sin\theta \sin\phi \frac{\cos\theta}{\cos\phi} \right)$$

or

$$J_{eg} = \frac{1}{4} m_{r} r^{2} + J_{r} + m_{c} r^{2} \left\{ \left(\sin^{2} \theta + \frac{k_{1}^{2}}{l^{2}} \cos^{2} \theta \tan^{2} \theta + \frac{k_{1}^{2}}{l^{2}} \cos^{2} \theta \tan^{2} \theta + \frac{j_{c} r^{2}}{l^{2}} \cos^{2} \theta \tan^{2} \theta + \frac{j_{c} r^{2}}{l^{2}} \frac{\cos^{2} \theta}{\cos^{2} \theta} + m_{p} r^{2} \left(\sin^{2} \theta + \cos^{2} \theta \tan^{2} \theta + \sin^{2} \theta + \sin^{2$$

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

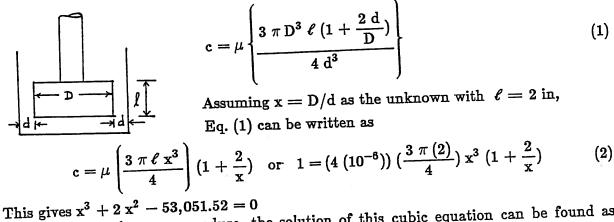
velocities experienced by dampers:

$$\dot{x}_{1} = \frac{F_{1}}{c_{1}} = \frac{F l_{2}}{c_{1}(l_{1}+l_{2})}$$

$$\dot{x}_{2} = \frac{F_{2}}{c_{2}} = \frac{F l_{1}}{c_{2}(l_{1}+l_{2})}$$
(6)
(7)

velocity of point c (or force F) can be found using Egs.(6) and (7) in Eg.(2): , 2

$$\dot{x} = \frac{F}{c_1} \frac{l_2}{(l_1 + l_2)^2} + \frac{F}{c_2} \frac{l_1}{(l_1 + l_2)^2}$$
(8)


The equivalent damping constant of the system in the direction of x, Ce, is given by

their courses

$$C_{e} = \frac{F}{\dot{x}} = \frac{(l_{1} + l_{2})^{2} c_{1} c_{2}}{l_{1}^{2} c_{1} + l_{2}^{2} c_{2}}$$
(9)

(1.57)

Damping constant desired = c = 1 lb-sec/in, viscosity of the fluid = $\mu = 4 \mu \text{ reyn} = 4 (10^{-6}) \text{ lb-sec/in}^2$.

This gives $x^2 + 2x^2 - 53,051.52 = 0$ Using a trial and error procedure, the solution of this cubic equation can be found as $x \approx 36.92$. Using D = 3 in, we get d = 3/36.92 = 0.08126 in.

(1.58)
$$C = \mu \left\{ \frac{3 \pi D^{3} l}{4 d^{3}} \left(1 + 2 \frac{d}{p} \right) \right\};$$

 $\mu = 45 \ \mu \text{ reynolds}$
(from shigley's Mechanical
Engineering Design)
Let $d = 0.001''$, $D = 2.4''$ and above equation gives
 $10^{5} = (45 \times 10^{-6}) \left\{ \frac{3\pi (2.4)^{3} l}{4 (0.001)^{3}} \left(1 + \frac{2 \times 0.001}{2.4} \right) \right\}$
 $\therefore l = 0.6817''$

The sale solution of the product of the solution of the soluti

This work is policies and assessing the reacting the second secon

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

(1.59) Tangential velocity of inner cylinder =
$$\frac{D}{2}$$
 Go
For small d, rate of change of velocity of
fluid is $\frac{dv}{dr} = \frac{D}{2} \frac{\omega}{d}$
shear stress between cylinders is
 $\mathcal{T} = \mu \frac{dv}{dr} = \mu \frac{D\omega}{2d}$
and shear force is
 $\mathcal{F} = \tau \cdot \text{Area} = \tau \pi \mathcal{D}(l-h) = \frac{\pi \mu D^2 \omega (l-h)}{2d}$
Torgue developed = $M_{t1} = F \cdot \frac{D}{2}$
For small h, rate of change of
velocity of fluid in vertical direction is
 $\frac{dv}{dy} = \frac{\Gamma \cdot \omega}{h}$
Shear stress is $\mathcal{T} = \mu \frac{dv}{dy} = \frac{\mu \Gamma \cdot \omega}{h}$
Force on area $dA = dF = \tau dA$
Torgue between bottom surfaces of cylinders is
 $M_{t2} = \iint_{k} dM_{t2} \cdot dA$ where $dM_{t2} = dF \cdot r = \frac{\mu r^3 \omega}{h} dr d\theta$
i.e., $M_{t2} = \frac{\mu \omega}{h} \int_{r=0}^{D/2} \tau^3 dr d\theta = \frac{\mu \omega \pi D^4}{64h}$
Total torgue = $M_t = M_{t1} + M_{t2} = \frac{\pi \mu D^3 \omega (l-h)}{4d} + \frac{\pi \mu \omega D^4}{64h}$
Expressing M_t as $C_t v = C_t \omega D/2$, we get damping constant:
 $C_t = \frac{\pi \mu D^2 (l-h)}{2d} + \frac{\pi \mu D^3}{32h}$

.

1.60

$$F = 1000 v + 400 v^{2} + 20 v^{3}$$
 (1)

Taylor's series expansion of Eq. (1) about the operating velocity v* = 10 m/s gives the linearized damping constant (c) as [see Section 1.9.2]:

$$C = \frac{dF}{dV} |_{V} = V^{*}$$
(2)

For Eq. (1),

$$\frac{dF}{dv}\Big|_{v*} = \left(1000 + 800 v + 60 v^{2}\right)\Big|_{v=v*=10}$$

$$= 1000 + 800(10) + 60(10^{2}) = 15000 N-s/m (3)$$

Hence linearized damping constant is defined by

their courses and assessing student leading the work of the work of the second orsale of any part of this work including of any part of the of the not and the neglities the of the not and the n

F = c v with c = 15000 N - s/m.

LID WORD DIVISION dup ton courses and as (1.61)

From Problem 1.60, the linearized damping constant of the two dampers is given by c = 15000 N - 3/m (for each). When two dampers are connected in parallel, the equivalent damping constant is given by (see section 1.9.3 and Problem 1.55):

 $C_{eg} = C_1 + C_2 = 2C = 30000 \text{ N-s/m}$

The work of concess of particular of the work and a net particular of the particular

1-49

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1.62

From Problem 1.60, the linearized damping constant of each of the two dampers is given by c = 15000 N-s/m.

When two dampers are connected in series, the equivalent damping constant is given by (see section 1.9.3 and Problem 1.55):

or sale of any part of the most in the work and is not performent of the w

$$\frac{1}{C_{eg}} = \frac{1}{c_1} + \frac{1}{c_2} = \frac{2}{c}$$

 $Ce_{g} = \frac{C}{2} = \frac{15000}{2} = 7500 \text{ N-8/m}$ or

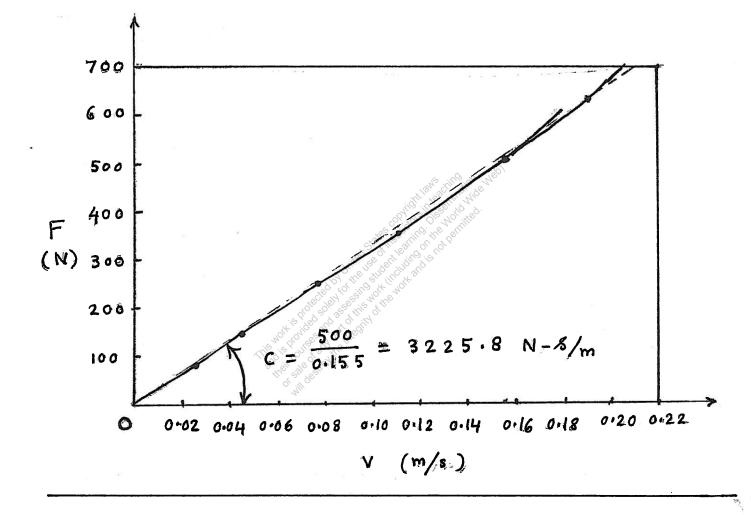
LIN WAR DIVISION

Just Julist all and the state du Phones and se

1.63)

Force - velocity relation of the damper:

$$F = 500 v + 100 v^{2} + 50 v^{3}$$
(1)
Linearized damping constant of the damper at the
operating velocity $v^{*} = 5 m/s$ is given by (see
section $1.9 \cdot 2$):


$$c = \frac{dF}{dv} \Big|_{v = v^{*}} = (500 + 200 v + 150 v^{2}) \Big|_{v^{*}} = 5$$

$$= 500 + 1000 + 3750 = 5250 N^{-S/m}$$
(2)
If linearized damping constant (c) is used at an
operating velocity of 10 m/s, the damping force (F)
is given by
 $F = C v = 5250 (10) = 52,500 N$
(3)
The actual damping force given by the nonlinear
damper, Eq. (1), is
Factal = 500 (10) + 100 (10^{2}) + 50 (10^{3}) = 65,000 N
(4)
Thus the error involved in estimating the damping
force is
 $65,000 - 52,500 = 12,500 N$

The date are plotted in a graph as shown below. The damping constant of the damper is given by the slope of the force - velocity line:

$$c = \frac{F}{V} \simeq \frac{500}{0.155} = 3,225.8 \text{ N} - 3/m$$

1.64

Flat plates in parallel with lubricant film in between: surface area of top plate $(A) = 0.25 \text{ m}^2$ Film thickness (h) = 1.5 mm = 0.0015 mviscosity of lubricant $(\mu) = 0.5 Pa-s$ (a) Damping constant (c): $c = \frac{\mu A}{h} = \frac{0.5(0.25)}{0.0015} = 83.3333 \text{ N-8/m}$ (b) Damping force developed when v = 2 m/s:

1.65

F = CV = 83.3333(2) = 166.6666 N

Juli sale stol the intention

and the work and is not

Torsional damping constant of journal bearing: Viscosity of lubricant = $\mu = 0.35$ Pa - 3 Diameter of shaft = 2R = 0.05 m Length of bearing = l = 0.075 m Bearing clearance = d = 0.005 m Rotational Speed = N = 3000 rpm or c0 = 314.16 rad/s Damping torque developed (T): $T = \frac{2\pi \mu R^3 I \omega}{d} = \frac{2\pi (0.35)(0.025^3)(0.075)(314.16)}{0.005}$ = 0.1619 N-m Torsional damping constant (Ct):

$$C_{t} = \frac{1}{\omega} = \frac{0.1619}{314.16} = 0.0005153 \text{ N-m-8}$$

unit sale of any part of the o

1.66

1.67 Torsional damping constant = $C_t = \frac{2\pi\mu R^3 l}{l}$ Damping torque developed = $T = C_t \omega = \frac{2\pi \mu R^3 l \omega}{l}$ Ranges of parameters: $\mu = 0.35 \pm 5\%$ Pa-s $\Rightarrow (0.3325, 0.3675)$ $R = 0.025 \pm 5\%$ m \Rightarrow (0.02375, 0.02625) l = 0.075 ± 5% m ⇒ (0.07125, 0.07875) d = 0.005 ± 5% m ⇒ (0.00475,0.00525) N = 3000 ± 5% rpm or $\omega = 314.16 \pm 5\%$ rad/s $\Rightarrow (298.452, 329.868)$ By using all possible combinations of lower and upper bound values of the five parameters (a MATLAB program is written for this purpose), the ranges of Cf and T are found to be $C_{+} \Rightarrow (0.0003798, 0.0006924) N-m-8$ T ⇒ (0.1134, 0.2284) N-m These correspond to percent total fluctuations of $C_{1} = \frac{0.0006924 - 0.0003798}{100} \times 100 = 60.6637'.$ $(C_t)_{mean} = 0.0005153$ $T = \frac{0.2284 - 0.1134}{(T)_{mean} = 0.1619} \times 100 = 71.0315\%$ MATLAB program and output are shown on following

page.

```
clear all; close all; clc; format long g
mu mean = 0.35;
R \, mean = 0.025;
1 \text{ mean} = 0.075;
d mean = 0.005;
N = 3000;
w mean = 314.16;
variation = 0.05;
mu = [mu_mean*(1-variation),mu_mean*(1+variation)];
R = [R_mean*(1-variation), R_mean*(1+variation)];
l = [l_mean*(1-variation), l_mean*(1+variation)];
d = [d mean*(1-variation), d mean*(1+variation)];
% N = [N mean*(1-variation), N_mean*(1+variation)];
w = [w mean*(1-variation),w_mean*(1+variation)];
for i1 = 1:length(mu)
    for i2 = 1:length(R)
         for i3 = 1:length(1)
             for i4 = 1:length(d)
                   for i5 = 1:length(w)
                     Ct(i1,i2,i3,i4,i5) = 2*pi*mu(i1)*R(i2)^3*l(i3)/d
(i4);
                     T(i1,i2,i3,i4,i5) = 2*pi*mu(i1)*R(i2)^3*l(i3)/d(i4)
*w(i5);
                 end
             end
         end
    end
end
Min_Ct = min (min (min (min (Ct (:, ; :: :: :))))))
Max Ct = max (max (max (max (max (Ct (:,:,:,:,:)))))))
Min_T = min (min (min (min (T (:,:,:,:))))))
Max^{T} = max(max(max(max(max(T(:,:,:,:)))))))
          Min Ct =
                0.000379828829490285
          Max_Ct =
                 0.000692439904555133
           Min_T =
                    0.113360673819034
           Max_T =
                    0.228413766435793
```

EDU>>

Assumptions made:

1.68

- 1. viscous fluid is incompressible.
- 2. velocity of piston is small.
- 3. Mass flow rate of fluid through the orifice is known in terms of the pressure difference across the orifice: Mass flow rate (Q) = √△p' (1) where Q is a constant, known from experiments [see: B.R. Munson, D.F.Young, T.H. Okiishi and W.W. Huebsch, "Fundamentals of Fluid Mechanics", 6th Edition, John Wiley, 2009].

The volume flow rate of the fluid through the orifice can be expressed as

$$\frac{Q}{\rho} = A v \qquad (2)$$

where p = density of fluid, A = area of piston surface and v = velocity of piston. In view of Eq. (1), Eq. (2) can be expressed as

$$\frac{\sqrt{\Delta \beta}}{\beta \alpha} = A v \quad \text{or} \quad v = \frac{\sqrt{\Delta \beta}}{\alpha \beta A}$$
(3)

Since the piston velocity is assumed to be small, the force on the piston (F) can be found as

$$F = \Delta p \cdot A \quad or \quad \Delta p = \frac{F}{A}$$
 (4)

Using Eq. (4) in Eq. (3), we obtain

$$V = \frac{\sqrt{F}}{\propto p A^{3/2}} \quad \text{or} \quad F = \alpha^2 g^2 A^3 v^2 \quad (5)$$

Thus the force - velocity relation is given by $F = c v^2$ (6) 1-57 where c is the damping constant ($c = \alpha^2 p^2 A^3$).

- Note: 1. The damping force (F) is proportional to the square of velocity. Hence the damper is nonlinear.
 - 2. The damping force velocity relation, Eq. (6), can be linearized about any operating velocity (v*) to find an approximate Linear damping constant.

The not splet and rest of the motion of the motion of the splet of the

$$\begin{array}{|c|c|c|c|c|c|} \hline F = a \, \dot{x} + b \, \dot{x}^2 = 5 \, \dot{x} + 0.2 \, \dot{x}^2 \\ \hline F(\dot{x}) \approx F(\dot{x}_0) + \frac{dF}{d\dot{x}} \big|_{\dot{x}_0} \, (\dot{x} - \dot{x}_0) \\ \hline At \, \dot{x}_0 = 5 \, \text{m/s}, \, F(\dot{x}_0) = 5 \, (5) + 0.2 \, (25) = 30 \, \text{N} \, , \, \frac{dF}{d\dot{x}} \big|_{\dot{x}_0} = (5 + 0.4 \, \dot{x}) \big|_5 = 7 \, \text{and hence} \\ \hline F(\dot{x}) = 30 + 7 \, (\dot{x} - 5) = 7 \, \dot{x} - 5. \\ \hline Thus the linearized damping constant is given by F(\dot{x}) \approx 7 \, \dot{x} = c_{eq} \, \dot{x} \, \text{or} \, c_{eq} = 7 \, \text{N-s/m.} \\ \hline \hline \end{array}$$

 $\mathbf{c} = 100 \ \mu \ \ell^2 \ \mathbf{d} \tag{1}$

Damping constant of a plate-type damper is:

$$c_{p} = \frac{\mu A}{h}$$
(2)

where A = area of plates and h = distance between the plates. If the area of plates (A) in Fig. 1.42 is taken to be same as the area of the plate shown in Fig. 1.107, we have $A = \ell d$. Equating (1) and (2) gives

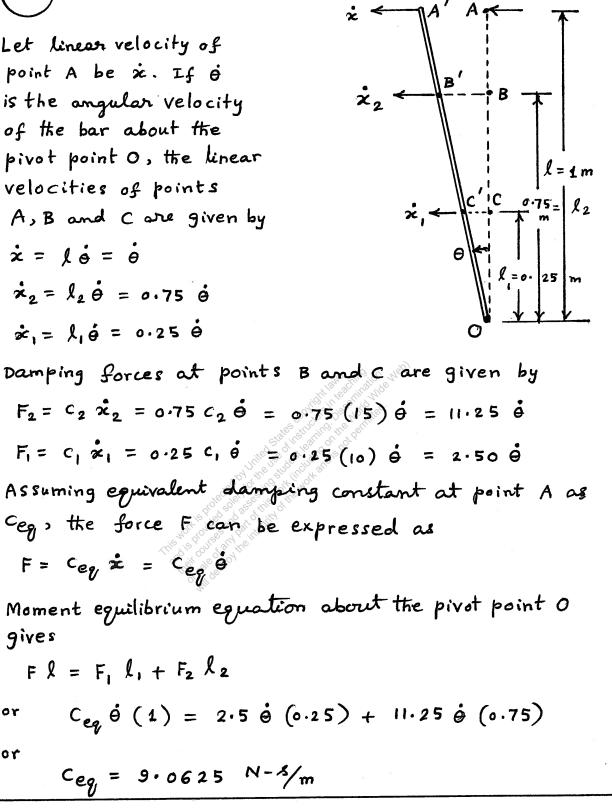
$$100 \ \mu \ \ell^2 \ \mathrm{d} = \frac{\mu \ \ell \ \mathrm{d}}{\mathrm{h}} \tag{3}$$

from which the clearance between the plates can be determined as $h = \frac{1}{100 \ell}$.

(1.71)
$$c = \frac{6 \pi \mu \ell}{h^3} \left\{ (a - \frac{h}{2})^2 - r^2 \right\} \left\{ \frac{a^2 - r^2}{a - \frac{h}{2}} - h \right\}$$

When $\mu = 0.3445$ Pa-s, $\ell = 0.1$ m, h = 0.001 m, a = 0..02 m, and r = 0.005 m:

$$c = \frac{6 \pi (0.3445) (0.1)}{(10^{-3})^3} \left\{ (0.02 - 0.0005)^2 - 0.005^2 \right\} \left\{ \frac{0.02^2 - 0.005^2}{0.02 - 0.0005} - 0.001 \right\}$$
$$= 4,205.6394 \text{ N-s/m}$$

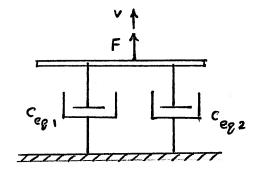

(1.72)

$$c = \frac{6\pi\mu l}{h^3} \left[\left(a - \frac{h}{2} \right)^2 - r^2 \right] \left[\frac{a^2 - r^2}{a - \frac{h}{2}} - h \right]$$
Basic data: $l = 10 \text{ cm}$, $h = 0.1 \text{ cm}$, $a = 2 \text{ cm}$, $r = 0.5 \text{ cm}$,
 $\mu = 0.3445$
Damping constant with basic data:
 $c = 4,205.6230 \text{ N-5/m}$
(a) r changed to 1 cm; new $c = 2,617.7920 \text{ N-5/m}$
(b) h changed to 0.05 cm; new $c = 35,060.8910 \text{ N-5/m}$
(c) a changed to 4 cm; new $c = 38,754.5860 \text{ N-5/m}$

.

1-60


© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



For two dampers in series, the equivalent damping constant is given by

1.74

or

For two dampers in parallel, the equivalent damping constant is given by

 $C_{eq_2} = C_2 + C_2 = 2C_2$

F = Ceq, V

Thus the system can be replaced by the two equivalent dampers in parallel as shown in the figure above. The overall equivalent damping constant is given by

$$C_{eg} = C_{eg_1} + C_{eg_2} = \frac{C_1}{2} + 2C_2$$

so that

(1.80)
$$\begin{aligned} \mathbf{x}(t) &= \mathbf{X} \cos \omega t, \ \mathbf{y}(t) = \mathbf{Y} \cos (\omega t + \phi) \\ \mathbf{(a)} \quad \frac{\mathbf{x}^2}{\mathbf{X}^2} &= \cos^2 \omega t, \ \frac{\mathbf{y}^2}{\mathbf{Y}^2} &= \cos^2 (\omega t + \phi), \\ 2 \frac{\mathbf{x} \frac{\mathbf{y}}{\mathbf{X} \mathbf{Y}}}{\mathbf{x} \mathbf{Y}} \cos \phi &= 2 \cos \omega t \cos (\omega t + \phi) \cos \phi \\ &= \cos^2 \omega t + \cos^2 (\omega t + \phi) - 2 \cos \omega t \cos \phi \cos (\omega t + \phi) \end{aligned}$$
(1)
Noting that $\cos^2 \alpha = \frac{1}{2} (1 + \cos 2 \alpha), \text{ Eq. (1) can be rewritten as} \\ &= \frac{\mathbf{x}^2}{\mathbf{X}^2} + \frac{\mathbf{y}^2}{\mathbf{Y}^2} - 2 \frac{\mathbf{x} \mathbf{y}}{\mathbf{X} \mathbf{Y}} \cos \phi \\ &= \frac{1}{2} + \frac{1}{2} \cos 2 \omega t + \frac{1}{2} + \frac{1}{2} \cos (2 \omega t + 2 \phi) - 2 \cos \omega t \cos \phi \cos (\omega t + \phi) \\ &= 1 + \frac{1}{2} \left\{ 2 \cos \frac{2 \omega t + 2 \omega t + 2 \phi}{2} \cos \frac{2 \omega t - 2 \omega t - 2 \phi}{2} \right\} \\ &- 2 \cos \omega t \cos \phi \cos (\omega t + \phi) \\ &= 1 + \cos (2 \omega t + \phi) \cos \phi - 2 \cos \omega t \cos \phi \cos (\omega t + \phi) \\ &= 1 + \cos (2 \omega t + \phi) \cos \phi - 2 \cos \phi \left\{ \frac{1}{2} \left[\cos (\omega t + \phi - \omega t) + \cos (\omega t + \phi + \omega t) \right] \right\} \\ &= 1 + \cos \phi \cos (2 \omega t + \phi) - \cos \phi \left\{ \cos \phi + \cos (2 \omega t + \phi) \right\} \\ &= 1 - \cos^2 \phi = \sin^2 \phi \end{aligned}$ (2)
(b) When $\phi = 0, \text{ Eq. (2) reduces to} \\ &= \frac{\mathbf{x}^2}{\mathbf{x}^2} + \frac{\mathbf{y}^2}{\mathbf{y}^2} - 2 \frac{\mathbf{x} \mathbf{y}}{\mathbf{x} \mathbf{Y}} = \left(\frac{\mathbf{x}}{\mathbf{x}} - \frac{\mathbf{y}}{\mathbf{y}} \right)^2 = 0 \\ \text{ which gives } \mathbf{X} = \pm \frac{\mathbf{x}}{\mathbf{Y}} \mathbf{y}. \text{ This indicates that the locus of the resultant motion is a straight line. When $\phi = \frac{\pi}{2}, \text{ Eq. (2) reduces to} \end{aligned}$$

$$\frac{x^2}{X^2} + \frac{y^2}{Y^2} = 1$$

which denotes an ellipse with its major and minor axes along x and y directions, respectively. When $\phi = \pi$, Eq. (2) reduces to that of a straight line as in the case of $\phi = 0$.

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Equation for resultant motion:

-

1.81

$$\frac{x^2}{X^2} + \frac{y^2}{Y^2} - 2 \frac{x y}{X Y} \cos^2 \phi = \sin^2 \phi \quad (1)$$
When y = 0, Eq. (1) reduces to $\frac{x^2}{X^2} = \sin^2 \phi$ and hence:
x = $\pm X \sin \phi = \pm 6.2 = OS$ in figure (2)
When x = 0, Eq. (1) reduces to $\frac{y^2}{Y^2} = \sin^2 \phi$ and hence:
y = $\pm Y \sin \phi = \pm 6.0 = OT$ in figure (3)

•

It can be seen that

 $\frac{OS}{OR}$

OR = X cos
$$\phi$$
 = 7.6 in figure (4)
= $\frac{X \sin \phi}{X \cos \phi}$ = tan ϕ = $\frac{6.2}{7.6}$ = 0.8158 or ϕ = 39.2072°

(5)

81

Q

R=7.6

x

From Eqs. (2) and (4), we find

$$X = \sqrt{(X \sin \phi)^2 + (X \cos \phi)^2} = \sqrt{(6.2)^2 + (7.6)^2} = 9.8082 \text{ mm}$$

Equations (3) and (5) give

$$Y = \frac{6.0}{\sin \phi} = \frac{6.0}{\sin 39.2072^{\circ}} = 9.4918 \text{ mm}$$

(1.82) (a)
$$x(t) = \frac{A}{1000} \cos(50t + 4)$$
 m where A is in mm ---- (E1)
 $x(0) = \frac{A}{1000} \cos 4 = 0.003$, A $\cos 4 = 3$ ---- (E2)
 $\dot{x}(0) = -\frac{50}{1000} \sin 4 = 1$, A $\sin 4 = -20$ ---- (E3)
 $A = \left\{ (A\cos 4)^2 + (A\sin 4)^2 \right\}^{\frac{1}{2}} = 20.2237$ mm
 $4 = \tan^{-1} \left(\frac{A \sin 4}{A \cos 4} \right) = \tan^{-1} (-6.6667) = -81.4692^{\circ} = -1.4219$ rad
 $x(t) = 20.2237 \cos(50t - 1.4219)$ mm
(b) $\cos(A+B) = \cos A \cos B - \sin A \sin B$
 $E_{0}(E_{1}) \ can \ be \ expressed \ as} \ x(t) = A \ cos \ sot \ cos \ 4 - 2 \sin 30t \ where \ 6 = 50$, $A_{1} = A \ cos \ 4 - 2 \sin 30t \ where \ 6 = 50$, $A_{1} = A \ cos \ 4 - 2 \sin 30t \ where \ 6 = 50$, $A_{1} = A \ cos \ 4 - 2 \sin 3t \ x(t) = (3 \ cos \ 5 t + 20 \ sin \ 5 t) \ mm$
(1.83) $x(t) = A_{1} \ cos \ 6 t + A_{2} \ sin \ 6 t \ \frac{d^{2}x}{dt^{2}} = -A_{1} \ 6^{2} \ cos \ 6 t - A_{2} \ 6^{2} \ sin \ 6 t \ \frac{d^{2}x}{dt^{2}} = -32^{2} \ x(t) \ where \ 6^{2} \ 15 \ a \ con \ 5 t - A_{2} \ 6^{2} \ sin \ 6 t \ \frac{d^{2}x}{dt^{2}} = -32^{2} \ x(t) \ where \ 6^{2} \ 15 \ a \ con \ 5 t \ -A_{2} \ 6^{2} \ sin \ 6 t \ \frac{d^{2}x}{dt^{2}} = -A_{2} \ 6 \ cos \ 5 t \ -A_{2} \ 6^{2} \ sin \ 6 t \ \frac{d^{2}x}{dt^{2}} = -A_{2} \ 6 \ cos \ 5 t \ -A_{2} \ 6^{2} \ sin \ 6 t \ \frac{d^{2}x}{dt^{2}} = -A_{2} \ 6 \ sin \ 5 t \$

.

(c) Using 'complex numbers:

$$x_{1}(t) = \text{Re} \left\{ A_{1} e^{i(\omega t + 1)} \right\} = \text{Re} \left\{ 5 e^{i(\omega t + 1)} \right\}$$

 $x_{1}(t) = \text{Re} \left\{ A_{2} e^{i(\omega t + 2)} \right\} = \text{Re} \left\{ 10 e^{i(\omega t + 2)} \right\}$
If $x(t) = \text{Re} \left\{ A e^{i(\omega t + \alpha)} \right\}$,
A $\cos(3t + \alpha) = A_{1} \cos(3t + 1) + A_{2} \cos(3t + 2)$
i.e. $A(\cos st \cos \alpha - \sin st \sin \alpha) = 5(\cos st \cdot \cos 1 - \sin st \cdot \sin 2)$
i.e. $A(\cos st \cos \alpha - \sin st \sin \alpha) = 5(\cos st \cdot \cos 2 - \sin st \cdot \sin 2)$
i.e. $A(\cos st - 5 \sin st \sin \alpha) = 5(\cos st \cdot \cos 2 - \sin st \cdot \sin 2)$
i.e. $A(\cos \alpha + 5 \cos 1 + 10 \cos 2, A \sin \alpha + 5 \sin 1 + 10 \sin 2$
 $A = 13 \cdot 3802, \alpha = 1 \cdot 68 \text{ rad}$
 $x(t) = \text{Re} \left\{ 13 \cdot 3802 e^{i(3t + 1 \cdot 68)} \right\}$
(1.85) $x(t) = 10 \sin(\omega t + 60^{\circ}) = x_{1}(t) + x_{2}(t)$
where $x_{1}(t) = 5 \sin(\omega t + 30^{\circ})$ and $x_{2}(t) = A \sin(\omega t + \alpha^{\circ})$
i.e. $\cos 60^{\circ} = 5 \cos 30^{\circ} + A \cos \alpha^{\circ}$; $A \cos \alpha^{\circ} = 0 \cdot 6699$
i.e. $\cos 60^{\circ} = 5 \cos 30^{\circ} + A \cos \alpha^{\circ}$; $A \cos \alpha^{\circ} = 0 \cdot 6699$
i.e. $\cos 60^{\circ} = 5 \sin 30^{\circ} + A \sin \alpha^{\circ}$; $A \sin \alpha^{\circ} = 6 \cdot 1603$
 $A = \sqrt{0 \cdot 6699^{2} + 6 \cdot 1603^{2}} = 6 \cdot 1766$
 $\alpha = \tan^{-1} \left(6 \cdot 1603/0 \cdot 6699 \right) = 83 \cdot 7938^{\circ}$
 $x_{2}(t) = 6 \cdot 1766 \sin(\omega t + 83 \cdot 7938^{\circ})$
 $x_{1}(t) = \frac{1}{2} \cos \frac{\pi}{2} t (1 + 4 \sin \frac{\pi}{2} t)$
From the nature of the
graph of $x(t)$, it
 $\cos be \, seen that $x(t)$
is periodic with α
time period of $T = 4$.

1.87 If $x(t)$ is harmonic, $\ddot{x}(t) = -\omega^{2} x(t)$
Here $x(t) = 2 \cos 2t + \cos 3t$
 $\ddot{x}(t) = -3 \cos 2t - 9 \cos 3t \neq - \cos 3t$ times $x(t)$
 $\therefore x(t)$ is not harmonic$

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

(1.88)
$$x(t) = \frac{1}{2} \cos \frac{\pi}{2} t - \cos \pi t$$

 $\ddot{x}(t) = -\frac{\pi^2}{8} \cos \frac{\pi}{2} t + \pi^2 \cos \pi t \neq -$ constant times $x(t)$
 $\therefore x(t) \text{ is not harmonic}$
(1.89) $x(t) = x_1(t) + x_2(t) = 3 \sin 30t + 3 \sin 29t$
Since $\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$,
 $x(t) = (6 \cos \frac{t}{2}) \sin \frac{59}{2} t$
This equation shows
that the amplitude
 $(6 \cos \frac{t}{2}) \text{ varies with}$
time between a maximum
value of 6 and a
minimum value of 0.
The frequency of this
oscillation (beat
frequency) is $\omega_b = 1$.
Note: Beat frequency is twice the frequency of the term
 $6 \cos \frac{t}{2}$ since two peaks pass in each cycle of $(6 \cos \frac{t}{2})$

The resultant motion of two harmonic motions having identical amplitudes (X) but slightly different frequencies (ω and $\omega + \delta \omega$) is given by Eq. (1.67):

$$\mathbf{x}(\mathbf{t}) = 2 \mathbf{X} \cos \left(\omega \mathbf{t} + \frac{\delta \omega \mathbf{t}}{2} \right) \cos \left(\frac{\delta \omega \mathbf{t}}{2} \right)$$

Thus the maximum amplitude of the resultant motion is equal to 2X and the beat frequency is equal to $\delta \omega$. From Fig. 1.113, we find that $2X \approx 5 \text{ mm or } X = 2.5 \text{ mm}$ and

$$\frac{\delta\omega}{2} = \frac{2\pi}{\tau_{\text{beat}}} = \frac{2\pi}{\tau_{\text{larger}}} = \frac{2\pi}{2(12.6 - 4.2)} = 0.374 \text{ rad/sec}$$

or
$$\delta\omega = 0.748 \text{ rad/sec and } \omega + \frac{\delta \omega}{2} = \frac{2 \pi}{\tau_{\text{smaller}}} = \frac{2 \pi}{1} = 6.2832 \text{ rad/sec}$$

Hence $\omega = 6.2832 - 0.3740 = 5.9092$ rad/sec. Thus the amplitudes of the two motions = X = 2.5 mm and their frequencies are $\omega = 5.9092$ rad/sec and $\omega + \delta \omega$ = 5.9092 + 0.7480 = 6.6572 rad/sec.

A = 0.05 m,
$$\omega = 10$$
 Hz = 62.832 rad/sec
period = $\tau = \frac{2\pi}{\omega} = \frac{2\pi}{62.832} = 0.1$ sec
maximum velocity = A $\omega = 0.05 \times 62.832 = 3.1416$ m/s
maximum acceleration = A $\omega^2 = 0.05 (62.832)^2 = 197.393$ m/s²

.

(1.92)
$$\omega = 15 \text{ cps} = 94.248 \text{ rad/sec}$$

 $\ddot{x}_{max} = 0.59 = 0.5(9.81) = 4.905 \text{ m/s}^2 = A \omega^2$
A = amplitude = $4.905/(94.248)^2 = 0.0005522 \text{ m}$
 $\ddot{x}_{max} = \text{max}. \text{ velocity} = A \omega = 0.05204 \text{ m/s}$
(1.93) $\varkappa = A \cos \omega t, \qquad \varkappa_{max} = A = 0.25 \text{ mm}, \qquad \ddot{\varkappa} = -\omega^2 A \cos \omega t$
 $\dddot{\pi}_{max} = A \omega^2 = 0.49 = 0.4(9.81) \text{ m/s}^2 = 3924 \text{ mm/s}^2$
 $\omega^2 = 3924/0.25 = 15696 (\text{rad/s})^2$
 $\omega = 125.2837 \text{ rad/s} = 125.2837/277 \text{ rev/s}$
 $= 19.9395 \text{ rev/s} = 1196.3682 \text{ rev/min} (rpm).$

The MONTE POLICE and assessing such the second strength of the second se

1-69

•

1.94

$$x(t) = A e^{-\alpha t}$$

$$x(1) = 0.752985 = A e^{-\alpha}$$
(1)

$$x(2) = 0.226795 = A e^{-\alpha t}$$
(2)
Divide Eq.(1) by Eq.(2):

$$\frac{0.752985}{0.226795} = \frac{A e^{-t}}{A e^{-2t}}$$
i.e., $e^{\alpha} = 3.4965$
or $\alpha = \lambda \sigma g_{e} 3.4965 = 1.2517$
(3)
From Eqs. (1) and (3), we find

$$A = \frac{0.752985}{e^{-1.2517}} = 2.6328$$
(4)

1.95 Displacement = $x(t) = 18 \cos 8t \, \text{mm}$ (a) Frequency of harmonic motion = $\omega = 8 \, \text{rad/s}$ Period = $T = \frac{2\pi}{\omega} = \frac{2\pi}{8} = 0.7854 \, \text{s}$ (b) Frequency of oscillation: $\omega = 8 \, \text{rad/s} = \frac{8}{2\pi} \, \text{Hz} = 1.2732 \, \text{Hz}$

Motion of the machine = $x = 8 \sin(5t+1)$ (1)Using the formula for sin (A+B), Eq. (1) can be written as $\sin(5t+1) = \sin 5t \cdot \cos 1 + \cos 5t \cdot \sin 1$ (2)and hence (3) $x = 8 \sin 5t \cdot \cos 1 + 8 \cos 5t \cdot \sin 1$ Eq.(3) is in the form x = A sin 5t + B cos 5t (4) with $A = 8 \cos 1 = 8 (0.5403) = 4.3224$ (5) and (6) $B = 8 \sin 1 = 8 (0.8414) = 6.7312$

1.96

upper solution of any hell

1.97

$$\chi(t) = -3.0 \text{ sin 5t} - 2.0 \text{ cos 5t}$$
 (1)
Eq.(1) can be expressed in the form

$$x(t) = A \cos(5t + \phi)$$

$$= A \cos 5t \cdot \cos \varphi - A \sin 5t \cdot \sin \varphi \qquad (2)$$

Comparing corresponding terms of Egs. (1) and (2), we obtain

$$A \cos \phi = -2 \cdot 0 \tag{3}$$

$$A \sin \phi = 3.0 \tag{4}$$

Dividing Eq. (4) by Eq. (3), we find

$$\tan \phi = -1.5$$
 or $\phi = -56.3099^{\circ}$ (5)

which gives

 $\cos \phi = 0.5547$

Equations (3) and (6) give

$$A = \frac{-2 \cdot 0}{\cos \phi} = \frac{2 \cdot 0}{0 \cdot 5547} = -3 \cdot 6055 \quad (7)$$

$$x(t) = A \cos (5t + \phi)$$

= - 3.6055 cos (5t - 56.3099°)
= -3.6055 cos (5t - 0.9828) (8)

Displacement :

 $x(t) = 0.2 \sin(5t+3)$ m

Velocity:

 $\dot{x}(t) = 1.0 \cos(5t+3) m/s$

Acceleration:

 $\ddot{x}(t) = -5.0 \sin(5t+3) m/s^2$

Amplitudes of displacement, velocity and acceleration are:

 $x_{max} = 0.2 \text{ m}, x_{max} = 1.0 \text{ m/s}, x_{max} = 5.0 \text{ m/s}^2$

or sale of any part of the and of the work and is not performed.

This work sported and assessing subert larmer. ad a for course and a set of the their outses and assessing student under and showing the month of the montho of the month of the month of the

(1.100)

$$x(t) = 0.05 \sin(6t + \phi) m$$

 $x(t = 0) = 0.04 = 0.05 \sin \phi$
or $\sin \phi = \frac{0.04}{0.05} = 0.8$
which gives
 $\phi = 53.1301^{\circ}$ or 0.9273 rad

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1.101

$$z(t) = A \sin (6t + \phi) m$$
 (1)
 $z'(t) = C A \cos (6t + d) - \pi/c$ (2)

$$\mathcal{L}(t) = GA GS (Gt + \varphi) \frac{1}{3}$$

At t=0:

$$x(o) = A \sin \phi = 0.05 m$$
(3)

$$\dot{x}(0) = 6A \cos \phi = 0.005 \text{ m/s}$$
 (4)

Divide Eq. (3) by Eq. (4) to find

$$\frac{\tan \phi}{6} = \frac{0.05}{0.005} = 10$$

or $\phi = \tan^{-1}(60) = 89.0451^{\circ} = 1.5541 \text{ rad}$ (5)
Eqs. (3) and (5) give
A sin (.5541 = 0.05
or $A = \frac{0.05}{0.999861} = 0.05 \text{ m}$ (6)

(1.102)

Frequency = 20 Hz = 20 (2π) = 40 π rad/s Amptitude of acceleration = 0.5 g = 0.5 (9.81) = 4.905 m/s²

If
$$x(t) = A \sin \omega t$$
,
 $\dot{x}(t) = A \omega \cos \omega t$
 $\ddot{x}(t) = -A \omega^2 \sin \omega t$
In the present case,
 $A \omega^2 = 4.905 = A (40 \pi)^2$
or $A = \frac{4.905}{(40 \pi)^2} = 0.0003106 \text{ m} = 0.3106 \text{ mm}$
Hence the displarsement $x(t)$, velocity $\dot{x}(t)$ and
acceleration $\ddot{x}(t)$ of the machine are given by
 $x(t) = A \sin \omega t = 0.3106 \sin 125.6640 t$ mm
 $\dot{x}(t) = A \omega \cos \omega t = 0.03903 \cos 125.6640 t$ m/s
 $\ddot{x}(t) = -A \omega^2 \sin \omega t = -4.9047 \sin 125.6640 t$ m/s²

.103 $\mathcal{X}_{max} = 0.5 \text{ mm}$ $\ddot{\kappa}_{max} = 0.5g = 4.905 m/s^2$ If x(t) is a harmonic function, $x(t) = A \sin \omega t$ and $\ddot{x}(t) = -A\omega^2 \sin \omega t$ For the given data, A = 0.5 mm = 0.0005 mand $A\omega^2 = 4.905$ or $\omega^2 = \frac{4.905}{0.0005} = 9810.0$ Hence w = 99.0454 rad/s = 15.7635 Hz = 945.8121 rpm Hence the rotational speed of the rotor is: 945.8121 rpm.

2

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$\int_{-a}^{a} f(t) dt = \int_{a}^{a} f(t) dt + \int_{a}^{a} f(t) dt = \int_{a}^{a} f(t) dt + \int_{a}^{a} f(t) dt = 0 \qquad ----(E_{2})$$
Equations (E₁) and (E₂) lead to $b_{n} = 0$.
Also, since cos nost is an even function, we get
 $a_{n} = \frac{2}{\tau} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(t) \cos nost dt = \frac{4}{\tau} \int_{a}^{\frac{\pi}{2}} f(t) \cos nost dt$
For odd functions, $x(-t) = -x(t)$.
From Eg. (1.72), $a_{n} = \frac{2}{\tau} \int_{a}^{\pi} x(t) \cos nost dt = \frac{2}{\tau} \int_{a}^{\frac{\pi}{2}} x(t) \cos nost dt$
Since cos nost is an even function, $\cos(-n\omega t) = \cos(n\omega t)$, the product of $x(t)$ and $\cos nost dt$ san odd function.
Hence $a_{n} = 0$.
Further, since $\sin n\omega t$ is an odd function, $x(t) \sin n\omega t$ is an even function and hence
 $b_{n} = \frac{4}{\tau} \int_{a}^{\frac{\pi}{2}} x(t) \sin n\omega t dt$
(1.107)
 $x(t) = \begin{cases} -A, & o \le t \le \frac{\pi}{2} \\ -A, & \frac{\pi}{2} \le t \le \tau \end{cases}$
 $x(t) = \begin{cases} A, & o \le t \le \frac{\pi}{4} \\ A, & \frac{\pi}{2} \le t \le \tau \end{cases}$
 $x(t) = \begin{cases} 2A, & o \le t \le \frac{\pi}{4} \\ 0, & \frac{\pi}{4} \le t \le \frac{3\pi}{4} \end{cases}$
 $(a) = \begin{cases} 2A, & 0 \le t \le \frac{\pi}{4} \\ 0, & \frac{\pi}{4} \le t \le \frac{3\pi}{4} \end{cases}$
 $(b) = \begin{cases} 2A, & 0 \le t \le \frac{\pi}{4} \\ 0, & \frac{\pi}{4} \le t \le \frac{3\pi}{4} \end{cases}$
 $(c) = \begin{cases} 2A, & o \le t \le \frac{\pi}{4} \\ 0, & \frac{\pi}{4} \le t \le \frac{3\pi}{4} \end{cases}$
 $(d) = \begin{cases} 2A, & 0 \le t \le \frac{\pi}{4} \\ 0, & \frac{\pi}{4} \le t \le \frac{3\pi}{4} \end{cases}$

.

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

(a)
$$x(-t) = -x(t)$$
, odd function, hence $a_0 = a_0 = 0$
 $b_n = \frac{2}{\tau} \int_0^{\tau} x(t) \sin n \omega t dt = \frac{2}{\tau} \left[-A \int_{0}^{\sqrt{2}} \sin n \omega t dt + A \int_{\sqrt{2}}^{\sqrt{2}} \sin n \omega t dt \right]$
 $= -\frac{2A}{\tau} \left(-\frac{\cos n \omega t}{n \omega 3} \right)_0^{\frac{1}{2}/3} + \frac{2A}{\tau} \left(-\frac{\cos n \omega t}{n \omega 3} \right)_{\frac{1}{2}/3}^{\frac{1}{2}}$
 $= \frac{2A}{\tau} \left(2 \cos n\pi - \cos 0 - \cos 2n\pi \right)$
 $\therefore x(t) = \frac{4A}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)} \sin (2n-1) \omega t$
(b) $x(-t) = x(t)$, even function, hence $b_n = 0$
 $\omega_0 = \frac{2}{\tau} \int_0^{\tau} x(t) dt = \frac{2}{\tau} \left[A \cdot (t)_0^{\frac{1}{2}} - A \left(t \right)_{\frac{2}{2}/4}^{\frac{1}{2}} + A \left(t \right)_{\frac{3}{2}/4}^{\frac{1}{2}} \right] = 0$
 $\omega_n = \frac{2}{\tau} \int_0^{\tau} x(t) \cos n \omega t dt$
 $= \frac{2A}{\tau} n \omega t \left[\frac{\sqrt{2}}{\sigma} - \sin n \omega t \right]_{\frac{2}{2}/4}^{\frac{2}{2}} + \sin n \omega t \left[\frac{\pi}{3}/4 \right]$
 $= \frac{A}{n\pi} \left[2 \sin \frac{n\pi}{2} - 2 \sin \frac{3n\pi}{2} + \sin 2\pi\pi n \right] = \begin{cases} 4A/n\pi \text{ for } n = 1,5,3,\dots -(-4A/n\pi \text{ for } n = 3,7,1),\dots -(-4A/n\omega \tau) -(-4A/n\omega \tau) (\cos n \omega t) dt = -\frac{4A}{\pi} (\cos \tau (\cos n \omega t)), \frac{\pi}{2} = 0$
 $b_n = \frac{2}{\tau} \int_0^{\tau} x(t) \sin n \omega t dt = -\frac{4A}{\pi} (x - 1, 2} (\cos n \omega t), \frac{\pi}{\tau} = 0$
 $\omega_0 = \frac{2}{\tau} \int_0^{\tau} x(t) dt = \frac{2}{\tau} \left[2A \left(\frac{x}{4} - 0 \right) + 2A \left(\frac{x}{4} - \frac{3x}{4} \right) \right] = 2A$
 $\omega_n = \frac{2}{\tau} \int_0^{\tau} x(t) dt = \frac{2}{\tau} \left[2A \left(\frac{x}{4} - 0 \right) + 2A \left(\frac{x}{4} - \frac{3x}{4} \right) \right] = 2A$

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$\begin{aligned} &= \frac{4A}{n\omega\tau} \left(\sin \frac{\pi}{2} + \sin 2n\pi - \sin \frac{3n\pi}{2} \right) \\ &\therefore x(t) = \frac{4A}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n-1)} \cos \frac{2\pi(2n-1)t}{\tau} \quad \text{with } \omega = 2\pi/\tau. \\ \hline x(t) = \begin{cases} A \sin \frac{2\pi}{\pi} \frac{\pi}{\tau} &, o \leq t \leq \frac{\pi}{2} \\ 0 &, \frac{\pi}{2} \leq t \leq \tau \end{cases} \\ &x = \tau \\ a_o = \frac{2}{\tau} \int_0^{\tau} x(t) dt = \frac{2A}{\tau} \int_0^{t/2} \sin \frac{2\pi}{\tau} dt = \frac{2A}{\tau} \left(-\frac{x}{2\pi} \cos \frac{2\pi t}{\tau} \right)_0^{t/2} \\ &= \frac{2\pi}{\pi} \\ a_n = \frac{2}{\tau} \int_0^{\tau} x(t) \cos n\omega t dt = \frac{2A}{\tau} \int_0^{t/2} \sin \frac{2\pi t}{\tau} \cos n\omega t dt \quad \dots \quad (E_1) \\ &\text{Using the relation } \sin m\omega t \cos n\omega t = \frac{\sin(m+n)\omega t + \sin(m-n)\omega t}{2}, \\ &E_{\tau}(E_{\tau}) \cosh t = rewritten \quad as \\ &a_n = \frac{A}{\tau} \int_0^{t/2} \int_0^{t/2} \sin(1+n)\omega t + \sin(1-n)\omega t \right] dt \\ &\text{when } n = 1, \quad \omega_1 = \frac{A}{\tau} \int_0^{t/2} \sin 2\omega t dt = 0 \\ &\text{when } n = 2, 3, 4, \dots, \quad \omega_n = \frac{A}{\tau} \left[-\frac{\cos(4+n)\omega t}{4n} + \frac{1-\cos(4-n)\pi}{2} \right] \\ &= \left\{ \frac{2A}{\tau} \int_0^{t/2} \left[\cos(1-n)\omega t dt + \frac{2A}{\tau} \int_0^{t/2} \sin \frac{2\pi t}{2} \cos n\omega t dt \right] dt \\ &\text{when } n = 1, \quad \omega_1 = \frac{A}{\tau} \int_0^{t/2} \left[\cos(1-n)\omega t dt - \frac{2A}{\tau} \int_0^{t/2} \sin 2\omega t dt = 0 \\ &\text{similarly} \\ &b_n = \frac{2}{\tau} \int_0^{t} x(t) \sin n\omega t dt = \frac{2A}{2\pi} \int_0^{t/2} \sin \frac{2\pi t}{2} \cos n\omega t dt \\ &= \frac{A}{\tau} \int_0^{t} \frac{1-\cos(4+n)\omega t}{2} + \frac{1-\cos(4-n)\pi}{2} \right] \\ &\text{when } n = 1, \quad b_1 = \frac{A}{\tau} \int_0^{t/2} \left[\cos(1-n)\omega t - \cos(1+n)\omega t \right] dt \\ &\text{when } n = 2, 3, 4, \dots, \quad b_n = \frac{A}{\tau} \left[\frac{\sin(1-n)\omega t}{(1-n)\omega} - \frac{\sin(1+n)\omega t}{(1-n)\omega} \right] \right]_0^{t/2} = 0 \\ &\therefore x(t) = \frac{A}{\pi} + \frac{A}{2} \sin(\omega t - \frac{2A}{\pi} \sum_{n=2, 4, 6, \dots}^{\infty} \frac{\cos n\omega t}{(m-1)} dt \\ &\text{when } n = 2, 3, 4, \dots, \quad b_n = \frac{A}{\tau} \left[\frac{\sin(1-n)\omega t}{(1-n)\omega} - \frac{\sin(1+n)\omega t}{(1+n)\omega} \right] \right]_0^{t/2} = 0 \end{aligned}$$

12

1-83

.

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$\begin{split} \begin{array}{ll} \begin{array}{l} \left(1.109 \right) x\left(t \right) &= \begin{cases} \frac{2A^{t}}{2} &, \quad o \leq t \leq \frac{\pi}{2} \\ -\frac{2A^{t}}{2} + 2A &, \quad \frac{\pi}{2} \leq t \leq \pi \end{cases} \\ \begin{array}{l} c_{o} &= \frac{2}{\tau} \int_{0}^{\tau} x(t) \; dt \; &= \; \frac{2}{\tau} \left[\int_{0}^{\tau/2} \frac{2A^{t}}{\tau} \; dt \; + \; \int_{\tau/2}^{\tau} \left(-\frac{2A^{t}}{\tau} + 2A \right) \; dt \right] \\ &= \; \frac{2}{\tau} \left[\frac{2A}{\tau} \cdot \frac{t^{2}}{2} \Big|_{0}^{\tau/2} - \frac{2A}{\tau} \cdot \frac{t^{2}}{2} \Big|_{\tau/2}^{\tau} \; + 2A \; t \; \Big|_{\tau/2}^{\tau} \right] \\ &= \; \frac{2}{\tau} \left[\left[\frac{AT}{\tau} - \frac{3A^{T}}{4} + A^{T} \right] = \; A \\ a_{n} &= \; \frac{2}{\tau} \int_{0}^{\tau} x(t) \; \cos n\omega t \; dt \\ &= \; \frac{2}{\tau} \left[\int_{0}^{\frac{T}{2}} \; \frac{2A}{\tau} \; t \; \cos n\omega t \; dt \; + \; \int_{\tau/2}^{\tau} \left(\frac{2A}{\tau} t + 2A \right) \; \cos n\omega t \; dt \right] \\ &= \; \frac{2}{\tau} \left[\left[\frac{2A}{\tau} - \frac{3A^{T}}{4} + A^{T} \right] = \; A \\ a_{n} &= \; \frac{2}{\tau} \int_{0}^{\frac{T}{2}} \; \frac{2A}{\tau} \; t \; \cos n\omega t \; dt \; + \; \int_{\tau/2}^{\tau} \left(\frac{2A}{\tau} t + 2A \right) \; \cos n\omega t \; dt \right] \\ &= \; \frac{2}{\tau} \left[\left[\frac{2A}{\tau} \; \left\{ t \; \frac{\sin n\omega t}{\pi \omega} \; t \; \frac{\cos n\omega t}{\pi^{2} \omega^{2}} \right\}_{0}^{\frac{T}{2}} \\ &- \; \frac{2A}{\tau} \left\{ t \; \frac{\sin n\omega t}{\pi \omega} \; t \; \frac{\cos n\omega t}{\pi^{2} \omega^{2}} \right\}_{0}^{\frac{T}{2}} \; + \; 2A \left(-\frac{\sin n\omega t}{\pi \omega} \right)_{\tau/2}^{\frac{T}{2}} \right] \\ &As \; \tau = \; \frac{2\pi}{\tau} \left[\left[\frac{A\tau}{\pi \omega} \; \cos n\pi - \frac{A\omega}{\pi^{2} \omega^{2}} \; - \; \frac{A\omega}{\pi \pi^{2} \omega^{2}} \; \cos n\pi \right] \\ &= \; \frac{2A}{\pi^{2}} \left(\cos n\pi - 1 \right) \; = \; \left\{ -\frac{4A}{\pi \pi^{2}} \; n = \; 4.\; 3, \; 5.\; \cdots \\ 0 \; , \; n = \; 2.\; 4.\; 6 \; \cdots \right] \\ &b_{n} \; = \; \frac{2}{\tau} \; \int_{0}^{\tau} x(t) \; \sin n\omega t \; dt \; = \; \frac{2}{\tau} \left[\int_{0}^{\sqrt{2}} \frac{2}{\tau} \; t \; \sin n\omega t \; dt \right] \\ &= \; \frac{2A}{\tau} \; \left\{ -\frac{t \; \cos n\omega t}{\pi \omega} \; + \; \frac{\sin n\omega t}{\pi^{2} \omega^{2}} \right\}_{0}^{\frac{T}{2}} \\ &- \; \frac{2A}{\tau} \; \left\{ -\frac{t \; \cos n\omega t}{\pi \omega} \; + \; \frac{\sin n\omega t}{\pi^{2} \omega^{2}} \right\}_{0}^{\frac{T}{2}} \; t \; 2A \; \left(-\frac{\cos n\omega t}{\pi \omega^{2}} \right)_{\tau/2}^{\frac{T}{2}} \right] \\ &= \; \frac{2}{\tau} \left[\frac{2A}{\tau} \; \left\{ -\frac{t \; \cos n\omega t}{\pi \omega} \; + \; \frac{\sin n\omega t}{\pi^{2} \omega^{2}} \right\}_{0}^{\frac{T}{2}} \; t \; 2A \; \left(-\frac{\cos n\omega t}{\pi \omega^{2}} \right)_{\tau/2}^{\frac{T}{2}} \right] \\ &= \; \frac{2}{\tau} \left[\frac{2A}{\tau} \; \left\{ -\frac{t \; \cos n\omega t}{\pi \omega^{2}} \; + \; \frac{\sin n\omega t}{\pi^{2} \omega^{2}} \right\}_{0}^{\frac{T}{2}} \\ &= \; \frac{2}{\tau} \left[\frac{2A}{\tau} \; \left\{ -\frac{t \; \cos n\omega t}{\pi \omega} \; + \; \frac{\sin n\omega t}{\pi^{2} \omega^{2}} \right\}_{0}^{\frac{T}{2}} \; t \; 2A \; \left(-\frac{\cos n\omega t}{\pi \omega^{2}} \right)_{\tau/2}^{\frac{T}{2}} \right] \\ &= \; \frac{2}{\tau} \left[\frac{2A}{\tau} \; \left\{ -\frac{t \;$$

.

.

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

٤.,

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

$$-\frac{t}{n\omega}\cos n\omega t \Big|_{\frac{3\pi}{4}}^{2\pi} = \frac{2\pi}{2\omega} - 4A \left(-\frac{\cos n\omega t}{n\omega}\right)_{\frac{3\pi}{4}}^{2\pi} = \frac{3\pi}{2\omega} - \frac{3\pi}{4} \Big|_{\frac{3\pi}{2\omega}}^{2\pi} = \frac{3\pi}{2\omega} - \frac{3\pi}{4} \Big|_{\frac{3\pi}{2\omega}}^{2\pi} = \frac{3\pi}{2\omega} - \frac{3\pi}{2\omega} \Big|_{\frac{3\pi}{4}}^{2\pi} = \frac{3\pi}{2\omega} - \frac{3\pi}{2\omega} - \frac{3\pi}{2\omega} \Big|_{\frac{3\pi}{4}}^{2\pi} = \frac{3\pi}{2\omega} - \frac{3\pi}{2$$

The truncated series of k terms can be denoted as

$$\overline{x}(t) = \frac{\overline{a}_0}{2} + \sum_{n=1}^{k} \overline{a}_n \cos n \,\omega \, t + \sum_{n=1}^{k} \overline{b}_n \sin n \,\omega \, t \tag{1}$$

with $\overline{x}(t)$ denoting an approximation to the exact x(t) given by Eq. (1.70). The error to be minimized is given by

$$E = \int_{-\pi/\omega}^{\pi/\omega} e^2(t) dt$$
⁽²⁾

where
$$e(t) = x(t) - \overline{x}(t)$$
 (3)

and x(t) is the exact value (with infinite series on the right hand side of Eq. (1)). Treating E as a function of the unknowns \overline{a}_n and \overline{b}_n , it can be minimized by setting:

$$\frac{\partial \mathbf{E}}{\partial \mathbf{\bar{\mathbf{z}}}_{-}} = 2 \int_{-\pi/\omega}^{\pi/\omega} \left\{ \mathbf{x}(t) - \mathbf{\bar{x}}(t) \right\} \left(-\cos n \ \omega \ t \right) \, \mathrm{dt} = 0 \tag{4}$$

$$\frac{\partial \mathbf{E}}{\partial \mathbf{\bar{b}}_{n}} = 2 \int_{-\pi/\omega}^{\pi/\omega} \left\{ \mathbf{x}(t) - \mathbf{\bar{x}}(t) \right\} \left(-\sin n \ \omega \ t \right) dt = 0$$
(5)

Rearranging Eq. (4) gives

$$\int_{-\pi/\omega}^{\pi/\omega} \mathbf{x}(t) \cos n \, \omega \, t \, dt = \int_{-\pi/\omega}^{\pi/\omega} \overline{\mathbf{x}}(t) \cos n \, \omega \, t \, dt \tag{6}$$

Using orthogonalty property, the right hand side of Eq. (6) can be expressed as

$$\int_{-\pi/\omega}^{\pi/\omega} \overline{\mathbf{x}}(t) \cos n \ \omega \ t \ dt = \begin{cases} \mathbf{0} \quad \text{for } \mathbf{m} \neq \mathbf{n} \\ \frac{\overline{\mathbf{a}}_n \ \pi}{\omega} & \text{for } \mathbf{m} = \mathbf{n} \end{cases}$$
(7)

This leads to

$$\int_{-\pi/\omega}^{\pi/\omega} \mathbf{x}(t) \cos n \, \omega \, t \, \mathrm{d}t = \frac{\overline{\mathbf{a}}_n \, \pi}{\omega} \tag{8}$$

or
$$\overline{a}_n = \frac{\omega}{\pi} \int_{-\pi/\omega}^{\pi/\omega} x(t) \cos n \, \omega t \, dt$$
; $n = 0, 1, 2, ..., k$ (9)

In a similar manner, we can derive:

$$\overline{\mathbf{b}}_{n} = \frac{\omega}{\pi} \int_{-\pi/\omega}^{\pi/\omega} \mathbf{x}(\mathbf{t}) \sin n \, \omega \, \mathbf{t} \, \mathrm{dt} \quad ; \quad n = 1, 2, ..., \, \mathbf{k}$$
(10)

It can be observed that Eqs. (9) and (10) are similar to those of Eqs. (E.3) and (E.4).

\frown $-$	1	;	n=1	N	1
l.113) i	ti	z	$z_{i} \cos \frac{2\pi t_{i}}{0.32} = z_{i} \sin \frac{2\pi t_{i}}{0.32}$	i	$x_i \cos \frac{6\pi t_i}{0.32} x_i \sin \frac{6\pi t_i}{0.32}$
<u> </u>	0.02	9	8.3149 3.4442	6.3639 6.3640	3.4441 8.3149
2	0.04	! 13	9.1924 9.1924	5	-9.1924 9.1923
3	0.06	17	6.5056 15.7060	-12.0209 12.0208	-15.7059 -6.5057
4	0.08	29	0.0000 29.0000	-29.0000 0.0000	0.0000 -29.0000
5	0.10	43	- 16 . 4556 39 . 726	7 - 30 - 4053 - 30 - 4059	39.7271 -16.4548
6	0.12	59	-41.7195 41.7191	0.0000 -59.0000	41.7187 41.7199
7	0.14	63	-58.2045 24.1087		2 -24.1101 58.2040
8	0.16	57	-57.0000 0.0000	57.0000 0.0000	-57.0000 0.0000
9	0+18	49	-45.2700 -18.7518	34.6477 34.6487	-18.7505 -45.2705
10	0.20	35	-24.7485 -24.748	9 0.0000 35.0000	24.7493 -24.7482
11	0.22	35	-13.3936 -32.3355	- 24.7493 24.7482	32-3354 13.3950
12	0.24	41	1 0.0000 -41.0000	- 41.0000 0.0000	0,0000 41,0000
13	0.26	47	17.9866 -43.4221	-33.2333 -33.2347	7 - 43 - 4229 17 - 9847
14	0.28	41	28.9917 -28.9911	0.0000 -41.0000	-28.9905 -28.9923
15	0.30	13	12.0105 -4.9747	4.1927 -9.1921	4.9755 -12.0102
16	0.32	7	7.0000 0.0000	7.0000 0.0000	7.0000 0.0000

1-87

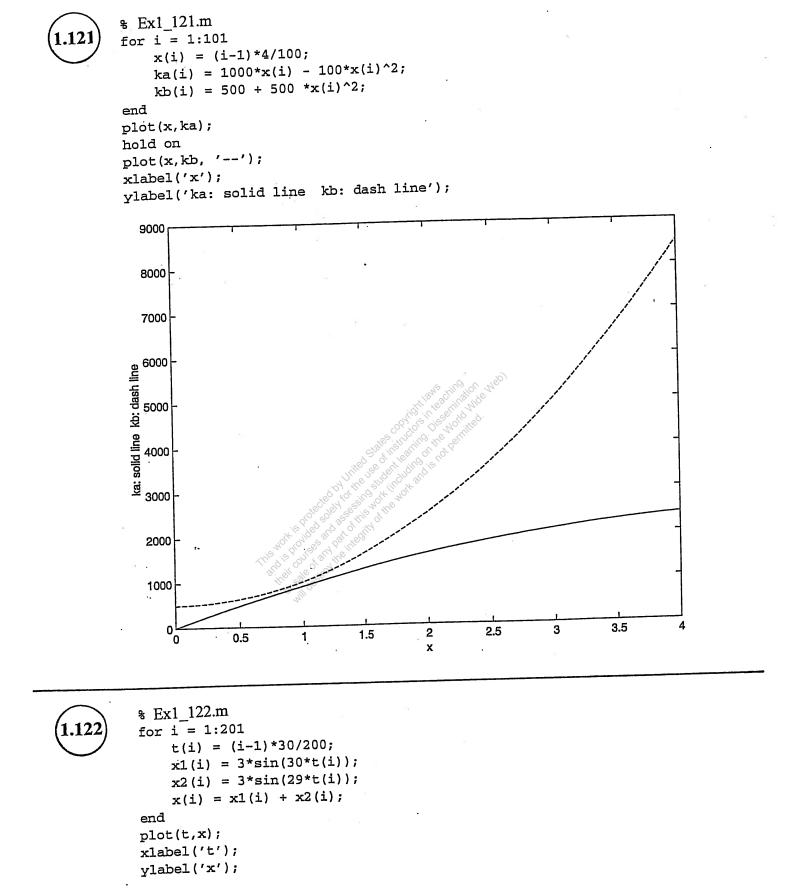
•

speed = 200 rpm pressure, p(t)
(1.115) In a minute, a point will
be subjected to the $A = P_{max}$
maximum pressure, A=
Prmax = 100 psi, 200 x 6 =
1200 times. Hence $0 \frac{\gamma}{4} = 2 \frac{5\tau}{4} = 2\tau \frac{9\tau}{7}$ time, t
$period = \tau = \frac{60}{1200} = 0.05$ sec.
$p(t) = \begin{cases} A , & 0 \le t \le \frac{2}{4} \\ 0 , & \frac{2}{4} \le t \le \frac{2}{4} \end{cases}$
$a_{o} = \frac{2}{\tau} \int_{0}^{\tau} p(t) dt = \frac{2}{\tau} A(t)_{o}^{\tau/4} = \frac{A}{2} = 50 \text{ psi}$
$\omega_m = \frac{2}{\tau} \int_0^{\tau} p(t) \cos m\omega t dt = \frac{2A}{\tau} \left(\frac{\sin m\omega t}{m\omega} \right)_0^{\tau/4} = \frac{A}{\pi m} \sin \frac{m\pi}{2}$
$b_{m} = \frac{2}{\tau} \int_{0}^{\tau} p(t) \sin m\omega t dt = -\frac{2A}{\tau} \left(\frac{\cos m\omega t}{m\omega}\right)_{0}^{\tau/4} = -\frac{A}{\pi m} \left(\cos \frac{m\pi}{2} - 1\right)$
Evaluation of am and bm:
m = 1 $m = 2$ $m = 3$
$\omega_1 = \frac{A}{\pi} \sin \frac{\pi}{2} = \frac{A}{\pi} \qquad \qquad \omega_2 = \frac{A}{2\pi} \sin \pi = 0 \qquad \qquad$
= 31.8309 psi $= -10.6103 psi$
$b_1 = -\frac{A}{\pi} \left(\cos \frac{\pi}{2} - i \right)$ $b_2 = -\frac{A}{2\pi} \left(\cos \pi - i \right)$ $b_3 = -\frac{A}{3\pi} \left(\cos \frac{3\pi}{2} - i \right)$
= 31.8309 psi = 31.8309 psi = 10.6103 psi
$\therefore p(t) = \frac{\alpha_0}{2} + \sum_{m=1}^{\infty} (\alpha_m \cos m\omega t + b_m \sin m\omega t) psi$
n=1 n=2 n=3
$(1.116) i t_i M_{t_i} \cos \frac{2\pi t_i}{0.012} M_{t_i} \sin \frac{2\pi t_i}{0.012} M_{t_i} \cos \frac{4\pi t_i}{0.012} M_{t_i} \sin \frac{4\pi t_i}{0.012} M_{t_i} \cos \frac{6\pi t_i}{0.012} M_{t_i} \sin \frac{6\pi t_i}{0.012}$
1 0.0005 770 743.7627 199.2912 666.8391 385.0010 544.4712 544.4731
2 0.0010 810 701.4802 405.0007 404.9988 701.4812 0.0000 810.0000
3 0.0015 850 601.0398 601.0417 0.0000 850.0000 - 601.0442 601.0373 4 0.0020 910 454.9978 780 845
4 0.0020 910 454.9978 788.0845 -455.0041 788.0808 -910.0000 0.0000

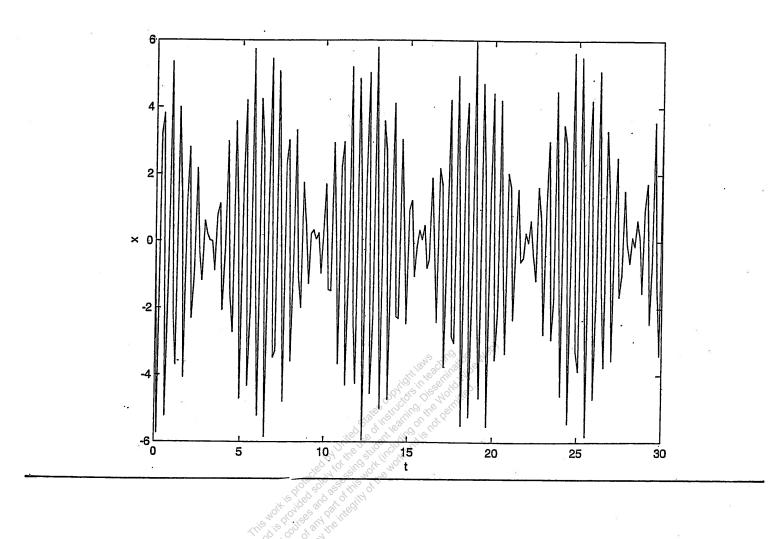
				1			1		
5 0.00	25 1010	261.40	975.	5859 -	- 874 - 689	504.99	5 - 714.1	71 - 714.	184
1 -	1				- 1170.000	0.000	0.0	00 -1170.	000
6 0.00	- I	1			- 1186 . 449	- 685.00	0 968.74	48 - 968.7	725
	35 1370	-			- 804 • 987	-1394.30	9 1610.0	•	
8 0.004		- 805.0		•			0 1 1336.4		
9 0.004	45 1890	-1336.1		4229	0.000		1		
10 0.00	50 1750	- 1515.5		7922	•	-1515.534	- 1		
11 0.00		1-1574	4619 421.	8647	1411.634	-814.97	9 -1152.6	-	
•	60 1 15 10	-1510.	0000 0.	0000 !	1510.000	0.000	2 -1510.0		
	65 1390	-1342.		.7671	1203.767	695.014	+ 1-982.	858 -982.	898
	-	-1117.		.0088	644•982	1117.18	3 0 0	00 -1290.	000
14 0.00				•4648	0.000	i190 · 00	0 841.4	79 - 841.4	+35
15 0.00	1	- 841.			-555.021		6 1110.0	-	00
16 0.00	80 1110	-554.				-			
17 0.00	85 1050	- 271.		4.2249	-909.337				
18 0.00	90 990	0.0	000 -99	0.0000 1	-990.000	0.00		_	
19 0.00	1	240.	7123 -898	18081	-805.393	-465.01	8 - 657.	633 657.5	086
20:0.01	1	445.0	0095 -770	. 75 71	-444.981	-770.7	73 - 890	1000 010	00
•		601-0		.0337	0.000	-850.00	0 1-601.	022 -601	.060
21 0.01		701.4	•	4.9895	405.022	-701.46	58 0.0	000 -810	.000
22 0.01		4		.2798	666.851	-	80 544.5	500 -544.	444
23 0.01		743.7	•		750.000		750.		700
24:0.01	20 750	1750.0	0000 0						
24			79.2747 1	803.7673	343.270	-1,754·	047 428.	734 661.	855
<u>(</u>) ک	27,30	0 1 - 4,1			id the stand	U.	i i		
i=) 24				1129	28.606	° ^{°°} −146 •	171 35.	728 55.	155
		· E 414	4.9436	150 . 2121	N. O. O. N.				
÷Σ	2,27	2 i - TI	T 11	× 3	and the second		i		
$\frac{1}{12}\sum_{i=1}^{n}$	2,2 (State Ins	and of the per				
	2,2 (State Ins	all of the po			n= 3	
			n=		ani or or or	= 2		πt; 6	πt.
$\frac{\frac{1}{12}\sum_{i=1}^{2}}{(1.117)}$		×	n=		ani or or or	= 2		πt; 6	π.t.
			η = x: cos 2πt; 0.6	<u>1</u> Ζ ₂ 5 sin 2πt2 2,5 sin 2πt2	η χ: cos σ.($= 2$ $\frac{1}{5} \times \frac{5}{5} \frac{4\pi}{0}$	ti z; cos	$\frac{\pi t_i}{2.6} \approx \sin \frac{6}{3}$	
		×.: 9.00	n = x; cos 2πt; σ.6 8.69	<u>1</u> z _i sú 2πt. 2.33	χ; ισς <u>4π</u> 7.79	$= 2$ $\frac{1}{5} \times \frac{1}{5} \frac{4\pi}{\sigma}$ 4.50	+;; ~; cos ;	$\frac{\pi t}{5.6} \approx sin \frac{6}{36}$	
	t;	≁; 9.00	n = x: ^{cos 2πt} : 0.6 8.69 14.72	$\frac{1}{z_{i}^{2} s_{i}^{5} \frac{2\pi t_{i}}{a \cdot \epsilon}}$ 2.33 8.50	7.79 8.50	$= 2$ $= 2$ $= \frac{2}{2}$ $= \frac{2}{2}$ $= \frac{4\pi}{2}$ $= \frac{4\pi}{2}$ $= \frac{4\pi}{2}$ $= \frac{4\pi}{2}$	t: 6 6 6 6 6 6 6 6	$\pi t_i \approx s_i \sin \frac{6}{36}$ 6.36 17.00	
1.117 <i>i</i> 1 2 3	t; 0.025; 0.050; 0.075;	∞ ; 9.00 17.00 23.00	n = x: cos 2 #t; 0.6 8.69 14.72 16.26	$\frac{1}{\frac{2}{2} \cdot \frac{2\pi t_{i}}{2 \cdot \frac{2\pi t_{i}}{2$	<u>π</u> <i>x</i> ; cos <i>σ</i> .(7.79 <u>8.50</u> 0.00	$= 2$ $\frac{2}{23.00}$	6.36 0.00 -16.26	$\frac{\pi t}{5.6} \approx -\sin \frac{6}{3}$ $\frac{6.36}{17.00}$ 16.26	
1.117 <i>i</i> 1 2 3 4	t; 0.025; 0.050; 0.075; 0.100;	2 €; 9.00 17.00 23.00 25.00	$n = \frac{n}{x_{i}} \cos \frac{2\pi t_{i}}{\sigma \cdot 6}$ 8.69 14.72 16.26 12.50	$\frac{1}{2:5i} \frac{2\pi t_{i}}{2\cdot 6}$ 2.33 8.50 16.26 21.65	<u>π</u> <u>x</u> ; cos <u>σ.</u> <u>7.79</u> <u>8.50</u> 0.00 1-12.50	$= 2$ $\frac{4\pi}{2}$ $\frac{4.50}{14.72}$ $\frac{14.72}{23.00}$ 21.65	t_{i} z_{i} $cos = \frac{6}{6}$ 6.36 0.00 -16.26 -25.00	$\frac{\pi t_{c}}{26} \approx sin \frac{6}{2}$ $\frac{6.36}{17.00}$ $\frac{16.26}{0.00}$	
$ \begin{array}{c} i = i \\ \hline 1.117 \\ i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ \end{array} $	t: 0.025 0.050 0.075 0.100 0.125	∞ ; 9.00 17.00 23.00 25.00 26.00	$n = \frac{n}{x_{i}} \cos \frac{2\pi t_{i}}{\sigma \cdot \epsilon}$ 8.69 14.72 16.26 12.50 6.73	$\frac{1}{\frac{2}{a_i} \sin \frac{2\pi t_i}{a \cdot c}}$ 2.33 8.50 16.26 21.65 25.11	$ \frac{4\pi}{2:\cos\frac{4\pi}{0.6}} $ 7.79 8.50 0.00 -12.50 -22.52	$= 2$ $\frac{4.50}{14.72}$ 23.00 21.65 13.00	$\frac{1}{6}$ $\frac{1}{6}$	$\frac{\pi t}{5.6} \approx -\sin \frac{6}{3}$ $\frac{6.36}{17.00}$ 16.26	
$ \begin{array}{c} i = i \\ \hline 1.117 \\ i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{array} $	t; 0.025; 0.050; 0.075; 0.100; 0.125; 0.150;	∞ ; 9.00 17.00 23.00 25.00 26.00 28.00	$n = \frac{n}{x_{i}} \cos \frac{2\pi t_{i}}{\sigma \cdot \epsilon}$ 8.69 14.72 16.26 12.50 6.73 0.00	$\frac{1}{2.33}$ 2.33 8.50 16.26 21.65 25.11 28.00	$ \begin{array}{c} & n \\ & 4\pi \\ & 4\pi \\ & 50 \\ & 7.79 \\ & 8.50 \\ & 0.00 \\ & -12.50 \\ & -22.52 \\ & -28.00 \\ \end{array} $	= 2 4.50 4.50 14.72 23.00 21.65 13.00 0.00	6.36 0.00 -16.26 -25.00 -18.38	$\frac{\pi t_{c}}{26} \approx sin \frac{6}{2}$ $\frac{6.36}{17.00}$ $\frac{16.26}{0.00}$ -18.38	
$ \begin{array}{c} i = i \\ \hline 1.117 \\ i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ \end{array} $	t; 0.025; 0.050; 0.075; 0.100; 0.125; 0.150; 0.175;	9.00 17.00 23.00 25.00 26.00 28.00 33.00	$n = \frac{n}{x_{i}} \cos \frac{2\pi t_{i}}{\sigma \cdot \epsilon}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54	$ \frac{1}{z_i \sin \frac{2\pi t_i}{e \cdot \epsilon}} 2.33 8.50 16.26 21.65 25.11 28.00 31.88 $	$ \frac{4\pi}{2:\cos\frac{4\pi}{0.6}} $ 7.79 8.50 0.00 -12.50 -22.52	$= 2$ $\frac{4.50}{14.72}$ 23.00 21.65 13.00	6.36 0.00 -16.26 -25.00 -18.38 0.00	$\frac{\pi t}{2.6} \approx \sin \frac{6}{2} \sin \frac{6}{2}$ $\frac{6.36}{17.00}$ 16.26 0.00 -18.38 -28.00 -23.33 0.00	
1.117 <i>i</i> 1 2 3 4 5 6 7 8	t; 0.025; 0.050; 0.075; 0.100; 0.125; 0.150; 0.175; 0.200;	<pre>%; 9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00</pre>	$n = \frac{n}{x_{i}} \cos \frac{2\pi t_{i}}{\sigma \cdot \epsilon}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50	$\frac{1}{2.33}$ 2.33 8.50 16.26 21.65 25.11 28.00	μ x; cos 7.79 8.50 0.00 -12.50 -22.52 -28.00 -28.58	= 2 4.50 14.72 23.00 21.65 13.00 -16.50 -30.31 -34.00	6.36 0.00 -16.26 -25.00 -18.38 0.00 23.33 35.00 24.04	$\frac{\pi t}{26} \approx \sin \frac{6}{2} \sin \frac{6}{2}$ $\frac{6.36}{17.00}$ 16.26 0.00 -18.38 -28.00 -23.33 0.00 24.04	
1.117 <i>i</i> 1 2 3 4 5 6 7 8 9	t; 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225	<pre> 9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 </pre>	$n = \frac{n}{x_{i}} \cos \frac{2\pi t_{i}}{\sigma \cdot \epsilon}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54	$\frac{1}{2.33}$ 2.33 8.50 16.26 21.65 25.11 28.00 31.88 30.31	$ \begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & $	= 2 4.50 14.72 23.00 21.65 13.00 0.00 -16.50 -30.31 -34.00 -25.11	6.36 0.00 -16.26 -25.00 -18.38 0.00 23.33 35.00 24.04 0.00	$\frac{\pi t}{26} \approx -\sin \frac{6}{2}$ $\frac{6.36}{17.00}$ 16.26 0.00 -18.38 -28.00 -23.33 0.00 24.04 29.00	
1.117 <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i>	t; 0.025; 0.050; 0.050; 0.100; 0.125; 0.150; 0.150; 0.200; 0.225; 0.250;	<pre> 9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 29.00 </pre>	$n = \frac{n}{x_{:}} \frac{c \sigma s 2\pi t_{:}}{\sigma \cdot c}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04	$\frac{1}{2.33}$ 2.33 8.50 16.26 21.65 25.11 28.00 31.88 30.31 24.04	$ \begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & &$	= 2 4.50 14.72 23.00 21.65 13.00 0.00 -16.50 -30.31 -34.00 -25.11 -12.00	6.36 0.00 -16.26 -25.00 -18.38 0.00 23.33 35.00 24.04 0.00 -16.97	$\frac{\pi t}{26} \approx -\sin \frac{6}{2}$ $\frac{6.36}{17.00}$ 16.26 0.00 -18.38 -28.00 -23.33 0.00 24.04 29.00 16.97	
1.117 <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i>	t: 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.250 0.250 0.75	<pre>9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 29.00 24.00</pre>	$n = \frac{n}{2} = \frac{2\pi t_{c}}{2\pi t_{c}}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04 -25.11 -23.18 -26.00	$\frac{1}{2 \cdot 2^{-3}}$ $\frac{2 \cdot 3^{-3}}{2 \cdot 5^{-5}} \cdot \frac{2 \cdot \pi t_{:}}{2 \cdot 6^{-5}}$ $\frac{2 \cdot 3^{-3}}{2 \cdot 6^{-5}}$ $\frac{16 \cdot 26}{2 \cdot 1 \cdot 6^{-5}}$ $\frac{2 \cdot 3^{-5}}{2 \cdot 5 \cdot 1^{-5}}$ $\frac{2 \cdot 3^{-5}}{2 \cdot 5 \cdot 1^{-5}}$ $\frac{3 \cdot 3^{-5}}{3 \cdot 6^{-5}}$	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	= 2 4.50 14.72 23.00 21.65 13.00 0.00 -16.50 -30.31 -34.00 -25.11 -12.00 0.00	t_{i} r_{i} $cos = \frac{6}{6}$ 6.36 0.00 -16.26 -25.00 -18.38 0.00 23.33 35.00 24.04 0.00 -16.97 -26.00	$\frac{\pi t}{26} \approx -\sin \frac{6}{2}$ $\frac{6.36}{17.00}$ 16.26 0.00 -18.38 -28.00 -23.33 0.00 24.04 29.00 16.97 0.00	
1.117 1 1 2 3 4 5 6 7 8 9 10 11 12	t: 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.250 0.250 0.250 0.75 0.300	<pre>9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 29.00 24.00 26.00</pre>	$n = \frac{n}{2.50} = \frac{2\pi t}{0.6}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04 -25.11 -23.18 -26.00 -30.91	$\frac{1}{2 \cdot 2^{-2} \cdot 5^{-5} \cdot 5^{-2} \cdot 5^{-5} \cdot 5^{-2} \cdot 5^{-5} \cdot 5^{-2} \cdot 5$	$\begin{array}{c} & & & & & & & & & & & & \\ & & & & & & $	= 2 4.50 14.72 23.00 21.65 13.00 0.00 -16.50 -30.31 -34.00 -25.11 -12.00 0.00 16.00	t_{i} r_{i} $cos = \frac{6}{6}$ 6.36 0.00 -16.26 -25.00 -18.38 0.00 23.33 35.00 24.04 0.00 -16.97 -26.00 -22.63	$\frac{\pi t}{26} \approx \frac{5 \sin 6}{2}$ $\frac{6.36}{17.00}$ 16.26 0.00 -18.38 -28.00 -23.33 0.00 24.04 29.00 16.97 0.00 -22.63	
1.117 <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i>	t: 0.025 0.050 0.075 0.125 0.150 0.175 0.200 0.250 0.250 0.300 0.325	9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 29.00 24.00 26.00 32.00 40.00	$n = \frac{n}{2} = \frac{2\pi t}{2}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04 -25.11 -23.18 -26.00 -30.91 -34.64	$ \frac{1}{2.33} \frac{2.33}{2.50} \frac{2.33}{1.62} \frac{2.33}{25.11} \frac{2.33}{25.1$	$\begin{array}{c} & & & & & & & & & & & & \\ & & & & & & $	$= 2$ $\frac{4.50}{4.50}$ $\frac{4.50}{21.65}$ $\frac{14.72}{13.00}$ $\frac{0.00}{-16.50}$ -30.31 -34.00 -25.11 -12.00 0.00 16.00 34.64	t_{2} , ϵ_{2} cos 6.36 0.00 -16.26 -25.00 -18.38 0.00 23.33 35.00 24.04 0.00 -16.97 -26.00 -22.63 0.00	$\frac{\pi t_{c}}{26} \approx \frac{5 \sin 6}{2} \frac{6.36}{6}$ $\frac{17.00}{16.26}$ 0.00 -18.38 -28.00 -23.33 0.00 24.04 29.00 16.97 0.00 -22.63 -40.00	
$ \begin{array}{c} i = i \\ i \\ 1.117 \\ i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \end{array} $	t; 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.250 0.250 0.250 0.325 0.350 0.375	<pre>9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 29.00 24.00 26.00 32.00 40.00 18.00</pre>	$n = \frac{n}{x_{:} \cos \frac{2\pi t_{:}}{\sigma \cdot 6}}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04 -25.11 -23.18 -26.00 -30.91 -34.64 -12.73	$\frac{1}{2.33}$ 2.33 8.50 2.33 8.50 16.26 21.65 25.11 28.00 31.88 30.31 24.04 14.50 6.21 0.00 -8.28 120.00 12.73	$\begin{array}{c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & &$	$= 2$ $\frac{4.50}{4.50}$ $\frac{4.50}{14.72}$ $\frac{14.72}{23.00}$ 21.65 13.00 0.00 -16.50 -30.31 -34.00 -25.11 -12.00 0.00 16.00 34.64 18.00	t_2 , ϵ_2 cos 6.36 0.00 -16.26 -25.00 -18.38 0.00 23.33 35.00 24.04 0.00 -16.97 -26.00 -22.63 0.00 12.73	$\frac{\pi t_{c}}{26} \approx \frac{5 \sin 6}{2} \frac{6.36}{17.00}$ $\frac{16.26}{17.00}$ $\frac{16.26}{18.38}$ $\frac{-28.00}{-23.33}$ $\frac{-28.00}{24.04}$ $\frac{29.00}{16.97}$ $\frac{16.97}{0.00}$ -22.63 -40.00 -12.73	
$ \begin{array}{c} i = i \\ i = i \\ i \\ 1.117 \\ i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ \end{array} $	t: 0.025 0.050 0.050 0.075 0.100 0.125 0.150 0.200 0.250 0.250 0.250 0.325 0.350 0.375 0.400	<pre>9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 29.00 24.00 26.00 32.00 40.00 18.00 8.00</pre>	$n = \frac{n}{x_{:}} \cos \frac{2\pi t_{:}}{\sigma \cdot \epsilon}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04 -25.11 -23.18 -26.00 -30.91 -34.64 -12.73 -4.00	$ \frac{1}{2.33} \frac{2.33}{8.50} \frac{2.33}{16.26} \frac{2.33}{25.11} \frac{2.33}{28.00} \frac{31.88}{30.31} \frac{30.31}{24.04} \frac{14.50}{6.21} 0.00 -8.28 \frac{20.00}{-12.73} -6.93 $	$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\$	= 2 4.50 4.50 14.72 23.00 21.65 13.00 -16.50 -30.31 -34.00 -25.11 -12.00 0.00 16.00 34.64 18.00 6.93	t_{2} ϵ_{2} cos^{2} 6.36 0.00 -16.26 -25.00 -18.38 0.00 23.33 35.00 24.04 0.00 -16.97 -26.00 12.73 8.00	$ \frac{\pi t}{2.6} \approx \sin \frac{6}{2} \sin \frac{6}{2} $ $ \frac{6.36}{17.00} $ $ 16.26 \\ 0.00 \\ -18.38 \\ -28.00 \\ -23.33 \\ 0.00 \\ 24.04 \\ 29.00 \\ 16.97 \\ 0.00 \\ -22.63 \\ -40.00 \\ -12.73 \\ 0.00 $	
$ \begin{array}{c} i = i \\ i = i \\ i \\ 1.117 \\ i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ \end{array} $	t: 0.025 0.050 0.050 0.075 0.125 0.150 0.200 0.250 0.250 0.250 0.250 0.325 0.350 0.375 0.400 0.425	<pre>9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 29.00 24.00 26.00 32.00 40.00 18.00 8.00 -5.00</pre>	$n = \frac{n}{2} = \frac{2\pi t_{i}}{2\pi t_{i}}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04 -25.11 -23.18 -26.00 -30.91 -34.64 -12.73 -4.00 1.29	$\frac{1}{2.33}$ 2.33 8.50 16.26 21.65 25.11 28.00 31.88 30.31 24.04 14.50 6.21 0.00 -8.28 20.00 -12.73 -6.93 4.83	$\begin{array}{c} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ &$	= 2 4.50 14.72 23.00 21.65 13.00 -16.50 -30.31 -34.00 -25.11 -12.00 0.00 16.00 34.64 18.00 6.93 -2.50	t_{2} ϵ_{2} cos $6 \cdot 36$ 0.00 $-16 \cdot 26$ $-25 \cdot 00$ $-18 \cdot 38$ 0.00 $23 \cdot 33$ $35 \cdot 00$ $24 \cdot 04$ 0.00 $-16 \cdot 97$ $-26 \cdot 00$ $12 \cdot 73$ $8 \cdot 00$ $-3 \cdot 54$	$\begin{array}{c} \pi t; & \chi \cdot \sin \frac{6}{36} \\ \hline 6.36 \\ 17.00 \\ \hline 16.26 \\ 0.00 \\ \hline -18.38 \\ -28.00 \\ \hline -23.33 \\ 0.00 \\ \hline 24.04 \\ 29.00 \\ \hline 16.97 \\ 0.00 \\ \hline -22.63 \\ \hline -40.00 \\ \hline -12.73 \\ 0.00 \\ \hline -3.54 \end{array}$	0.6
$ \begin{array}{c} i = i \\ i = i \\ i \\ 1.117 \\ i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ \end{array} $	t: 0.025 0.050 0.050 0.075 0.100 0.125 0.150 0.150 0.200 0.225 0.250 0.325 0.325 0.350 0.325 0.400 0.425 0.450	<pre></pre>	$n = \frac{n}{x_{:}} \cos \frac{2\pi t_{:}}{\sigma \cdot c}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04 -25.11 -23.18 -26.00 -30.91 -34.64 -12.73 -4.00 1.29 0.00	$\frac{1}{2 \cdot 5^{5} \cdot \frac{2\pi t}{a \cdot c}}$ 2.33 8.50 16.26 21.65 25.11 28.00 31.88 30.31 24.04 14.50 6.21 0.00 -8.28 120.00 -12.73 -6.93 4.83 14.00	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	= 2 4.50 14.72 23.00 21.65 13.00 -16.50 -30.31 -34.00 -25.11 -12.00 0.00 16.00 34.64 18.00 6.93 -2.50 0.00	t_{2} , t_{2} , t_{3} , t_{4} , t_{5} , t	$\begin{array}{c} \pi t; & \chi \cdot \sin \frac{6}{36} \\ \hline 6.36 \\ 17.00 \\ \hline 16.26 \\ 0.00 \\ \hline -18.38 \\ -28.00 \\ \hline -23.33 \\ 0.00 \\ \hline 24.04 \\ 29.00 \\ \hline 16.97 \\ 0.00 \\ \hline -22.63 \\ \hline -40.00 \\ \hline -12.73 \\ 0.00 \\ \hline -3.54 \end{array}$	0.6
$ \begin{array}{c} i = i \\ i = i \\ 1.117 \\ i \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ \end{array} $	t: 0.025 0.050 0.050 0.100 0.125 0.150 0.175 0.205 0.250 0.250 0.325 0.325 0.325 0.325 0.375 0.400 0.425 0.450 0.475	<pre> 9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 29.00 24.00 26.00 32.00 40.00 18.00 8.00 -5.00 -14.00 -28.00</pre>	$n = \frac{n}{x_{:}} \cos \frac{2\pi t_{:}}{\sigma \cdot c}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04 -25.11 -23.18 -26.00 -30.91 -34.64 -12.73 -4.00 1.29 0.00 -7.25	$\begin{array}{c} \underline{1} \\ \underline{2}, \underline{2}, \underline{3}, \underline{3}, \underline{5}, \underline{5}, \underline{1}, \underline{2}, \underline{7}, \underline{1}, \underline{1}$	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	= 2 4.50 14.72 23.00 21.65 13.00 -16.50 -30.31 -34.00 -25.11 -12.00 0.00 16.00 34.64 18.00 6.93 -2.50	t_{2} , t_{2} , t_{3} , t_{4} , t_{5} , t	$\begin{array}{c} \pi t; & \chi \cdot \sin \frac{6}{36} \\ \hline 6.36 \\ 17.00 \\ \hline 16.26 \\ 0.00 \\ -18.38 \\ -28.00 \\ -23.33 \\ 0.00 \\ 24.04 \\ 29.00 \\ \hline 16.97 \\ 0.00 \\ -22.63 \\ -40.00 \\ -12.73 \\ 0.00 \\ -3.54 \\ =14.00 \\ -19.80 \\ 0.00 \end{array}$	0.6
$ \begin{array}{c} 1.117 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 $	t: 0.025 0.050 0.075 0.100 0.125 0.150 0.200 0.250 0.250 0.325 0.325 0.325 0.325 0.325 0.325 0.400 0.425 0.450 0.475 0.500	<pre> 9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 29.00 24.00 26.00 32.00 40.00 18.00 -5.00 -14.00 -28.00 -37.00</pre>	$n = \frac{n}{2} = \frac{2\pi t_{10}^{2}}{6\pi c}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04 -25.11 -23.18 -26.00 -30.91 -34.64 -12.73 -4.00 1.29 0.00 -7.25 -18.50	$\begin{array}{c} \underline{1} \\ \underline{2}, \underline{2}, \underline{3}, \underline{3}, \underline{5}, \underline{5}, \underline{1}, \underline{2}, \underline{7}, \underline{1}, \underline{1}$	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	= 2 $= 2$ 4.50 14.72 23.00 21.65 13.00 0.00 -16.50 -30.31 -34.00 -25.11 -12.00 0.00 16.00 34.64 18.00 6.93 -2.50 0.00 14.00	t_{2} , r_{2} cos 6.36 0.00 -16.26 -25.00 -18.38 0.00 23.33 35.00 24.04 0.00 -16.97 -26.00 -22.63 0.00 12.73 8.00 -3.54 0.00 19.80 37.00	$\begin{array}{c} \pi t; & \chi \cdot \sin \frac{6}{2} \\ \hline 6.36 \\ 17.00 \\ 16.26 \\ 0.00 \\ -18.38 \\ -28.00 \\ -23.33 \\ 0.00 \\ -23.33 \\ 0.00 \\ -23.33 \\ 0.00 \\ -22.63 \\ -40.00 \\ -12.73 \\ 0.00 \\ -12.73 \\ 0.00 \\ -3.54 \\ -14.00 \\ -19.80 \\ 0.00 \\ 23.34 \end{array}$	0.6
$ \begin{array}{c} i = i \\ i = i \\ i \\$	t: 0.025 0.050 0.050 0.125 0.150 0.175 0.200 0.250 0.250 0.325 0.350 0.325 0.350 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.425 0.525	<pre>9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 29.00 24.00 26.00 32.00 40.00 18.00 8.00 -5.00 -14.00 -37.00 -37.00 -33.00</pre>	$n = \frac{n}{x_{:}} cos \frac{2\pi t_{:}}{0.6}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04 -25.11 -23.18 -26.00 -30.91 -34.64 -12.73 -4.00 1.29 0.00 -7.25 -18.50 -23.33	$\begin{array}{c} \underline{1} \\ \underline{2}, \underline{2}, \underline{3}, \underline{3}, \underline{5}, \underline{5}, \underline{1}, \underline{2}, \underline{7}, \underline{1}, \underline{1}$	$\begin{array}{c} & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & \\$	= 2 $= 2$ 4.50 14.72 23.00 21.65 13.00 0.00 -16.50 -30.31 -34.00 -25.11 -12.00 0.00 16.00 34.64 18.00 6.93 -2.50 0.00 14.00 32.04	t_{2} , r_{2} cos 6.36 0.00 -16.26 -25.00 -18.38 0.00 23.33 35.00 24.04 0.00 -16.97 -26.00 -22.63 0.00 12.73 8.00 -3.54 0.00 19.80 37.00	$\begin{array}{c} \pi t; & \chi \cdot \sin \frac{6}{36} \\ \hline 6.36 \\ 17.00 \\ \hline 16.26 \\ 0.00 \\ -18.38 \\ -28.00 \\ -23.33 \\ 0.00 \\ 24.04 \\ 29.00 \\ \hline 16.97 \\ 0.00 \\ -22.63 \\ -40.00 \\ -12.73 \\ 0.00 \\ -3.54 \\ =14.00 \\ -19.80 \\ 0.00 \end{array}$	0.6
$ \begin{array}{c} 1.117 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 $	t: 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.250 0.250 0.325 0.325 0.325 0.325 0.325 0.375 0.400 0.425 0.450 0.475 0.500	<pre>9.00 17.00 23.00 25.00 26.00 28.00 33.00 35.00 34.00 29.00 24.00 26.00 32.00 40.00 18.00 8.00 -5.00 -14.00 -37.00 -37.00 -33.00</pre>	$n = \frac{n}{2} = \frac{2\pi t_{10}^{2}}{6\pi c}$ 8.69 14.72 16.26 12.50 6.73 0.00 -8.54 -17.50 -24.04 -25.11 -23.18 -26.00 -30.91 -34.64 -12.73 -4.00 1.29 0.00 -7.25 -18.50	$\begin{array}{c} \underline{1} \\ \underline{z}_{2} \sin \frac{2\pi t_{1}}{a \cdot \epsilon} \\ 2.33 \\ \underline{8.50} \\ 16.26 \\ 21.65 \\ 25.11 \\ 28.00 \\ 31.88 \\ \underline{30.31} \\ 24.04 \\ 14.50 \\ 6.21 \\ 0.00 \\ -\underline{8.28} \\ \underline{20.00} \\ 12.73 \\ -\underline{6.93} \\ 4.83 \\ \underline{14.00} \\ 27.05 \\ \underline{32.04} \\ 23.33 \end{array}$	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	= 2 $= 2$ 4.50 14.72 23.00 21.65 13.00 0.00 -16.50 -30.31 -34.00 -25.11 -12.00 0.00 16.00 34.64 18.00 6.93 -2.50 0.00 14.00 32.04 33.00	t_2 , ϵ_2 cos 6.36 0.00 -16.26 -25.00 -18.38 0.00 23.33 35.00 24.04 0.00 -16.97 -26.00 -22.63 0.00 12.73 8.00 -3.54 0.00 19.80 37.00 23.33	$\begin{array}{c} \pi t; & \chi \cdot \sin \frac{6}{36} \\ \hline 6.36 \\ 17.00 \\ \hline 16.26 \\ 0.00 \\ -18.38 \\ -28.00 \\ -23.33 \\ 0.00 \\ -23.33 \\ 0.00 \\ -23.33 \\ 0.00 \\ -22.63 \\ -40.00 \\ -12.73 \\ 0.00 \\ -12.73 \\ 0.00 \\ -3.54 \\ -14.00 \\ -19.80 \\ 0.00 \\ 23.34 \end{array}$	0.6

ŝ

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.


15.56 -15.56 5.69 -19.05 11.00 -22.00 i -21.25 23 0.575 0.00 0.00 0.00 0.00 0.00 0.00 0.00 24 10.600 24 E -4.88 45.26 39.72 147.18 282.30 -241.90 239.00) -0.413.77 3.31 12.26 23.53 12 19.92 -20.16 8 118 %Program1.m %Program for calling the subroutine FORIER ድ %Run "Program1.m" in MATLAB Command Window. Program1.m and forier.m should be %in the same file folder, and set the path to this folder %Following 6 lines contain problem-dependent data n=16; m=3; time=0.32; $x = [9 \ 13 \ 17 \ 29 \ 43 \ 59 \ 63 \ 57 \ 49 \ 35 \ 35 \ 41 \ 47 \ 41 \ 13 \ 7];$ t=0.02:0.02:0.32; %end of problem-dependent data %Following line calls subroutine forier.m [azero, a, b, xsin, xcos]=forier(n, m, time, x, t); %following outputs data fprintf('Fourier series expansion of the function $x(t) \ln'$; fprintf('Data:\n\n'); fprintf('Number of data points in one cycle = %3.0f \n',n); fprintf(' \n'); fprintf('Number of Fourier Coefficients required = %3.0f \n',m); fprintf(' \n'); fprintf('Time period = %8.6e \n\n',time); fprintf('Station i S. 1) fprintf('Time at station i: t(i) fprintf('x(i) at t(i)') for i=1:n . fprintf('\n %8d%25.6e%27.6e ',i,t(i),x(i)); end fprintf(' \n\n'); fprintf('Results of Fourier analysis:\n\n'); fprintf('azero=%8.6e \n\n',azero); $b(i) \langle n' \rangle;$ a(i) fprintf('values of i for i=1:m %8.6e%20.6e \n',i,a(i),b(i)); fprintf('%10.0g end

```
ዩ
%Subroutine forier.m
ዩ
function [azero,a,b,xsin,xcos]=forier(n,m,time,x,t)
pi=3.1416;
sumz=0.0;
for i=1:n
   sumz=sumz+x(i);
end
azero=2.0*sumz/n;
for ii=1:m
   sums=0.0;
   sumc=0.0;
   for i=1:n
       theta=2.0*pi*t(i)*ii/time;
       xcos(i)=x(i)*cos(theta);
       xsin(i) = x(i) * sin(theta);
       sums=sums+xsin(i);
       sumc=sumc+xcos(i);
   end
   a(ii)=2.0*sumc/n;
   b(ii)=2.0*sums/n;
end
>> program1
Fourier series expansion of the function x(t)
Data:
Number of data points in one cycle = 16
Number of Fourier Coefficients required =
                                     3
Time period = 3.200000e-001
             Time at station i: t(i)
Station i
                                        x(i) at t(i)
       1
                 2.000000e-002
                                        9.000000e+000
       2
                  4.000000e-002
                                        1.300000e+001
       3
                 6.000000e-002
                                        1.700000e+001
       4
                 8.00000e-002
                                        2.900000e+001
                 1.000000e-001
                                        4.300000e+001
       5
                 1.200000e-001
                                        5,900000e+001
       6
                 1.400000e-001
      7
                                        6.300000e+001
      8
                 1.600000e-001
                                        5.700000e+001
      9
                 1.800000e-001
                                        4.900000e+001
      10
                 2.000000e-001
                                        3.500000e+001
                 2.200000e-001
      11
                                        3.500000e+001
      12
                 2.400000e-001
                                        4.100000e+001
      13
                 2.600000e-001
                                        4.700000e+001
      14
                 2.800000e-001
                                        4.100000e+001
                 3.000000e-001
      15
                                        1.300000e+001
      1.6
                 3.200000e-001
                                        7.000000e+000
Results of Fourier analysis:
azero=6.975000e+001
values of i
              a(i)
                               b(i)
           -2.084870e+001
                           -3.915985e+000
       1
       2
           -1.456887e+000
                           -1.144979e+001
       3
           -5.402900e+000
                            3.353473e+000
```


(1.19)

$$\begin{array}{l} e \ Ext \ 119m \\ for \ i = 1: 101 \\ t(i) = 0.32*(i-1)/100; \\ x(i) = 34.875 - 0.3487*cos(19.635*t(i)) - 3.9160*sin(19.635*t(i))... \\ - 1.4569*cos(39.27*t(i)) - 11.4498*sin(39.27*t(i))... \\ - 5.4029*cos(58.505*t(i)) + 3.3535*sin(58.505*t(i)); \\ end \\ plot(t, x) \\ xlabel('x(t)'); \\ ylabel('x(t)'); \\ ylab$$

```
% Second case, h changes
for i = 1:101
    h(i) = 0.05 + (i-1)*0.05/100;
    c2(i) = (6*pi*u*1/(h(i)^3)) * ((a0 - h(i)/2)^2 - r0^2)...
         * ( (a0^2-r0^2)/(a0-h(i)/2) - h(i) );
enđ
% Third case, a changes
for i = 1:101
    a(i) = 2 + (i-1)*2/100;
    c3(i) = (6*pi*u*1/(h0^3)) * ((a(i) - h0/2)^2 - r0^2)...
         * ( (a(i)^2-r0^2)/(a(i)-h0/2) - h0 );
end
subplot(311);
plot(r,c1);
xlabel('r');
ylabel('c(r)');
subplot(312);
plot(h,c2);
xlabel('h');
ylabel('c(h)');
subplot(313);
plot(a,c3);
xlabel('a');
ylabel('c(a)');
     x 10<sup>5</sup>
    5
 ŝ
                                                    0.95
                                                           1
                                    0.8
                                         0.85
                                               0.9
                    0.65
                         0.7°
                               0.75
    0.5
x 10<sup>60.55</sup>
               0.6
 £ 2
   0
0.05
× 10
0.055
                                                          0.1
                                                    0.095
                              0.075
                                    0.08
                                         0.085 0.09
                         0.07
              0.06
                   0.065
    4
  ලි 2
    0
                                               3.6
                                                     3.8
                                                           4
                                3
                                    3.2
                                          3.4
                          2.8
                    2.6
     2
         2.2
               2.4
                                а
```


© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

(1.123)
$$z_{p} = r + l - r \cos \theta - l \cos \phi = r + l - r \cos \psi - l \sqrt{1 - \sin^{2} \phi^{2}}$$
 (E₁)
 $y_{ut} \quad l \sin \phi = r \sin \theta$, $\cos \phi = \left(1 - \frac{r^{2}}{l^{2}} \sin^{2} \omega t\right)^{\frac{1}{2}}$ (E₂)
Using (E₂) in (E₁), $z_{p} = r + l - r \cos \psi - l \left(1 - \frac{r^{2}}{l^{2}} \sin^{2} \omega t\right)^{\frac{1}{2}}$ (E₃)
Let $\frac{r}{I} = small \left(< \frac{1}{4} \right)$. Using $\sqrt{1 - e} \approx 1 - \frac{1}{2} \in ,$ (E₃) becomes
 $z_{p} \approx r \left(1 + \frac{r}{2l}\right) - r \left(\cos \omega t + \frac{r}{4l} \cos 2\omega t\right)$ (E4)
(a) E₀. (E4) gives $y_{p} = z_{p} - r \left(1 + \frac{r}{2l}\right) \approx -r \left(\cos \omega t + \frac{1}{4} \frac{r}{l} \cos 2\omega t\right)$
If $\frac{r}{l}$ is very small, $y_{p} \approx -r \cos \omega t \Rightarrow harmonic motion.$
(b) To have amplitude of second harmonic smaller than that
of first harmonic in E₀. (E₅), we need to have
 $\frac{1}{4} \frac{r}{I} \leq \frac{1}{25}$, i.e., $\frac{r}{l} \leq \frac{4}{25}$, i.e., $\frac{l}{27} \geq 6.25$
Once the amplitude of second harmonic is smaller by a
factor of 25, the amplitudes of higher harmonics arising
from the expansion of square-root-term in (E₃) are expected

^{© 2017} Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

Unbalanced force developed = P = 2 m ω^2 r cos ω t, range of force = 0 - 100 N, range of frequency = 25 - 50 Hz = 157.08 - 314.16 rad/sec. Parameters to be determined: m, r, ω . Let r = 0.1 m. To generate 100 N force at 25 Hz, set:

$$P_{max} = 100 = 2 \text{ m} (157.08)^2 (0.1)$$

which gives

m = $\frac{100}{2 (157.08)^2 (0.1)}$ = 0.0202641 kg = 20.2641 g

To generate 100 N force at 50 Hz, set:

$$P_{max} = 100 = 2 \text{ m} (314.16)^2 (0.1)$$

which yields

$$m = \frac{100}{2 (314.16)^2 (0.1)} = 0.0050660 \text{ kg} = 5.0660 \text{ g}$$

Goal: Weight to be maintained at 10 \pm 0.1 lb/min

Parameters to be determined: Angular velocity of crank (ω), lengths of crank and connecting rod, dimensions of the wedge, dimensions of the orifice in the hopper, dimensions of the actuating rod, and dimensions of the lever arrangement.

Given: Density of the material in the hopper.

Select ω based on available motor. Determine the dimensions of the orifice in the hopper which delivers approximately 10 lb/min (assuming continuous flow of material). For trial dimensions of the wedge, determine the increase/decrease in the size (diameter) of the orifice. Choose the final dimensions of the wedge such that the material flow rate delivered by the orifice lies within the specified range.

Force to be applied = 200 lb, frequency = 50 Hz = 314.16 rad/sec.

Procedure:

Select a motor that provides, either directly or through a gear system, the desired frequency. Assume that it is connected to the cam. 1.

Setermine the sizes and dimensions of the plate cam and the roller. 2. ^T

- Choose the dimensions of the follower. 3.
- 4. Select the weight as 200 lb. From the geometry, determine the range of displacement (vertical motion) of the weight.
- Determine the force exerted due to the falling weight. 5.

Considerations to be taken in the design of vibratory bowl feedders:

- 1. Suitable design of the electromagnet and its coil.
- 2. Radius of the bowl and the pitch of the spiral (helical) delivery track.
- 3. Tooling to be fixed along the spiral track to reject the defective or out-oftolerance or incorrectly oriented parts.
- 4. Design of elastic supports.
- 5. Size and location of the outlet.

Axial spring constant of each tube = $k = \frac{A E}{\ell}$. Let diameter of each tube be 0.01 m (1 cm) with thickness 0.001 m (1 mm). Then

A =
$$\frac{\pi}{4}$$
 (D² - d²) = $\frac{\pi}{4}$ (0.01² - 0.008²) = 28.27 (10⁻⁶) m²

This gives

k =
$$\frac{(28.27 \ (10^{-6})) \ (2.07 \ (10^{11}))}{2} = 29.26 \ (10^5) \ \text{N/m}$$

Since 76 tubes are in parallel, we have the total axial stiffness as:

$$k_{eq} = 76 \ k = (76) \ (29.26 \ (10^5)) = 222.38 \ (10^6) \ N/m$$

The polar area moment of inertia of each tube is

$$J = \frac{\pi}{32} (D^4 - d^4) = \frac{\pi}{32} (0.01^4 - 0.008^4) = 580 (10^{-8}) m^4$$

Torsional stiffness of each tube is given by

$$\frac{G J}{\ell} = \frac{(79.6154 (10^9)) (580 (10^{-8}))}{2} = 231 (10^3) \text{ N-m/rad}$$

For 76 tubes in parallel, equivalent torsional stiffness will be:

$$k_{t_{m}} = (76) (231 (10^3)) = 17.56 (10^6) N-m/rad$$