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CHAPTER 2: DETERMINANTS

2.1 Determinants by Cofactor Expansion

2 M1 =13 3 6|= i 2 =6 Ci1 =DMy =My =6
01 4
Mo =3 3 6=P 6= DM = =
12 — 3 .'; 6 - 0 4 - 12 C12 - (_1) M12 - _M12 - _12
0 1 4
= - ‘: — 3 3 — — 1+3 — —
M13 =3 3 o= 0 1 =3 C13 = (_1) M13 = M13 =3
0 1 4
|I|. 1 2 1 2
M21 = :} 3 6 = 1 4 = 2 C21 = (—1)2+1M21 = —le = —2
01 4
|1 1 2 1 2
Mzz =406 = =4 sz = (_1)2+2M22 = Mzz =4
, 0 4
|0 1 4
D
I 4 TR T ML = M =
M23 =190 U= =1 C23 = (—1) M23 = —M23 =-1
01
|0 1 4
L1 2 1 2
M31 =3 3 6|= 3 6 =0 C31 = (_1)3+1M31 = M31 =0
1 1 2 1 2
M32 =3 3 6|= 3 6 =0 C32 = (_1)3+2M32 = _M32 =0
112
M33 = 3 3 () = 3 3 = 0 C33 = (_1)3+3M33 = M33 = 0
2 -1 1
4, (a) M3, =|-3 0 31=2 (1) i|—(—1) _g i|+1|_§ (1) <«—— cofactor expansion
3 1 4 along the first row

=2(=-3)+1(-21) + 1(-3) =-30

G = (_1)3+2M32 = —M;3, =30
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2 3 -1
(b) Myy =|1-3 2 0|=2 |_§ (1) -3 |_§ 2| + (=1 |_§ _§| <«—— cofactor expansion
3 =2 1 along the first row
=2(2)—3(-3)—1(0) =13
Cpp = (_1)4+4M44 = My =13
3 -1 1
(¢c) My; =] 2 0 3|/=3 |(1) 3| - (-1 |_§ 3| +1 |_§ (1) <—— cofactor expansion
-2 1 0 along the first row
=3(-3)+1(6)+1(2) =-1
€ = (—1)4+1M41 =My =1
2 3 -1
(d) My, =13 -2 1l=2 |:§ 1| -3 |§ 1| +(-1) |§ :3 <—— cofactor expansion
3 -2 1 along the first row

=2(0)-3(0)-1(0)=0

Cs = (—1)2+4M24 =My, =0

6. |g él = (4)(2) — (1)(8) = 0; The matrixis notinvertible.

-1 1
8. |\/§ V6 :(\/E)(\/g)_(\/g)(@=\/6—4\/6=—3\/6¢0. Inverse:L[\/§ _\/6]: 3f _31
4 V3 el V21| =
3V6 343
-2 7 6 2 7_6l=2 7
10. | 5 1 —2| =5 1 =21 5 1=[-8—-42+240]—[18+32+140]=0
3 8 4 38 4 3 8
-1 1 2 -1 1 2{-1 1
122/ 3 90 —5| ={ 3 0 =5] 2 0=[0-5+42]—-[0+35+6]=—4
1 7 2 17 21 7
c —4 3 ¢ —4 3| —4
¥ 12 1 =2 1t |2 1 =[2c-16c2+6(c—1D]—[12+ (c —1)c® - 16]
4 ¢—1 2 4-"¢c—1 214 ¢=1

=2c—16c2+6c—6—12—c*+c®+16 = —c* +c® —16¢% +8¢c—2
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16. Calculate the determinant by a cofactor expansion along the first row:

A-4 0 0 F
det@ =0 2 2z |=G-8[ ° |-0+0
0 3 A-1

=A-DAA-1D—-6]=A—-D[AP-21-6]=A—-4HA—-3)(1+2)
The determinantis zeroif A = =2, =3,0r 4 = 4.

18. Calculate the determinant by a cofactor expansion along the third row:

A-4 4 0
det)=|-1 1 0 [=0-0+G-5['"*
0 0 A-5

=A-5[A-D1+4]=A-5)[A2—41+4] = (A —-5)(A—2)2

The determinant is zeroif A = 2o0orA = 5.

20. (a) (—1) |g _g| 1 ﬁ _g| +2 |51) 2| = (=1)(35) — 1(11) + 2(21) = —4

(b) (—1)|3 _g|—3|% §|+1|(1) _§|=(—1)(35)—3(—12)+1(—5)=—4

-1

@ =32 Z+0-(5[]

2| =-3(-12) +0+5(-8) = —4
@aff Ero-r Z-caaeo—rcn-—s
@l 271 Zea ] feaeo-rnvacn =4
0 2] O|-o|7 J|+2[T5 ol =2en+sEa a3 =—4

22. Calculate the determinant by a cofactor expansion along the second row:

~1]_3 ro-a]) 3=-108)+0+4(-12) =66

24. Calculate the determinant by a cofactor expansion along the second column:
2 4 k+1 7 k+1 7
GVl S R CEE] (I B GRS O
=—(k—1DQk—20)+ (k—3)((k + Dk —35) — (k + D@k + 1) — 14)
= k% —8k? — 10k + 95



2.1 Determinants by Cofactor Expansion

26. Calculate the determinant by a cofactor expansion along the first row:

28. By Theorem 2.1.2, determinant of a diagonal matrix is the product of the entries on the main diagonal:

30. By Theorem 2.1.2, determinant of an upper triangular matrix is the product of the entries on the main

3 3 -1 0 3 330
.24 2 3] .t 2 43
det) =4[, 5 5|=0+0-1f5 o o [+0

2 4 2 3 2 2 4 3

Calculate each of the two determinants by a cofactor expansion along its first row:

Therefore det(4) = 4(0) — 0+ 0 —1(0) = 0.

det(4) = (2)(2)(2) = 8.

diagonal: det(4) = (1)(2)(3)(4) = 24.

32. By Theorem 2.1.2, determinant of a lower triangular matrix is the product of the entries on the main

N

Ea

diagonal: det(4) = (—3)(2)(—1)(3) = 18

2.2 Evaluating Determinants by Row Reduction
det(4) = det(4T) = 10

det(4) = det(4T) = 56

By Theorem 2.1.2, determinant of a lower triangular matrix is the product of the entries on the main

diagonal: (1)(1)(1) = 1.

By Theorem 2.1.2, determinant of a diagonal matrix is the product of the entries on the main diagonal:

WO = -3

3

32?? 4 2 3 2 2 3 2 4 3

=316 2 3[-314 2 3|/+(-D[4 6 31-0=3(0)-30)-1(0)—-0=0
46 23 4 2 3 2 2 3 2 4 3
2 4 2 3
igig 2 4 3 1 4 3 1 2 3

=314 6 3—3[9 6 3|/+3[9 4 3|-0=3(0)-3(-6)+3(-6)—0=0
9 4 6 3
2 2 4 3 2 4 3 2 4 3 2 2 3
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=B)ELEI(ED(@) =30

3 6 —9
10. 0 0 -2/=3

-2 1 sl -

=3

=3(-1)

=B)E=DEG)

=B)EDGI(=2)
1 -3 0

12. -2 4 1=
5 -2 2

1

=-2/0

0

1

- 210

0

1

=3P

0

-8

O O P, O O Fr OO0OKrRr OOK NOM

OOk U1 O -

2

N =

= N O Rk N ouUulbhh U1 O

o

Y =

I
1RO NNN[RO NP O NF- O

|,_.
NN

RPoaO N

-17

A common factor of 3 from the first row
was taken through the determinant sign.

2 times the first row was
added to the third row.

The second and third rows
were interchanged.

A common factor of 5 from the second row
was taken through the determinant sign.

A common factor of —2 from the last row
was taken through the determinant sign.

2 times the first row was
added to the second row.

—5 times the first row was
added to the third row.

A common factor of —2 from the second row
was taken through the determinant sign.

—13 times the second row was
added to the third row.

A common factor of 12—7 from the last row
was taken through the determinant sign.



14,

16.

1

2

OOk NOOKFR NP OR

©C O OoOr oo ocoRr o0 OR

1

-2

0 1
= (_3)(_13) 0 0

WlRrwiInN = O

WINWIRN|= =

O Wik R,k =

= (—3)(~13)(1) = 39

0

Wik, O O K

WINWlm R R WRPWwINO P WIRPRWwINO N

0

3 1
-9 -2
-6 —2

6 1

3 1
-9 -2
-3 -1

6 1

3 1
-9 -2
-3 -1

0 —1

3 1
-9 =2
-3 -1
108 23

3 1
-9 =2

1 1

3

108 23
3 1
-9 =2
1 1
3

0 -13

3 1
-9 =2

1 1

3

0 1

WINWIR P R WINWIRRPR N
O Wik kN S Wik =

|l NS

I
o
I

O winkEm o S = o (e SE

2.2 Evaluating Determinants by Row Reduction 63

<4+—— -5 times the first row was
added to the second row.

<4—— The first row was
added to the third row.

<4— —2 times the first row was
added to the fourth row.

<4+—— —12 times the second row was
added to the fourth row.

<4— A common factor of —3 from the third row
was taken through the determinant sign.

<4+—— —108 times the third row was
added to the fourth row.

<4— A common factor of —13 from the third row
was taken through the determinant sign.

<4—— The first and second rows
were interchanged.

<4—— A common factor of % from the first row
was taken through the determinant sign.

— - 2 times the first row was
added to the third row.
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1 1 2
[0 % 1

=-30 -3 -1

0 1 §

11 2

o1 %

=_EO 0 —5

0 1 §

11 2

o1 %

=_EO 0 —5

00 —:

11 2

NP (U S
=(=3) (=90 o 1
0 0 —§

11 2

NP (U
=(—z)(—;)0 0 1
0 0 0
11 2
01 1
=29 o o
0 00
=(-3) (=) (=)

18. Repeat Exercise 10:
3 6 -9

3

—2|=—(-2
2 ek
]

I
RPNlRrRP P ORrNIRRRP P O NRrRR R DN WwIRrRFR R DR WWIRF R DR WINE =

= —(-2)(15) = 30

§ times the first row was
added to the fourth row.

§ times the second row was
added to the third row.

—1 times the second row was
added to the fourth row.

A common factor of —2 from the third row
was taken through the determinant sign.

§ times the third row was
added to the fourth row.

A common factor of —% from the last row

was taken through the determinant sign.

Cofactor expansion along
the second row.

—6 times the second row was
added to the first row.
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Repeat Exercise 11:

0 3 1 0 3 1
1 1 2|=|1 1 2 <+—— —3 times the second row was
3 2 4 0O -1 -2 added to the last row.
_ | 3 1| .
=-1 <+— Cofactor expansion along
-1 - the fi
e first column.
=(=D(-5) =5
Repeat Exercise 12:
1 -3 0 1 -3 0
-2 4 1|1=1-2 4 1 <4——— -2 times the second row was
5 =2 2 9 —10 0 added to the last row.
_ |1 -3 .
=-1 9 —10 <4—— Cofactor expansion along
the third column.
(-1)@a7) =-17
Repeat Exercise 13:
3 —6 9 3 0 39 6 times the last row was added to the first;
-2 7 =2|=1-2 0 =37 <«—— —7 times the last row was added to the
0 1 5 0 1 5 second row.
=-1 | 3 39 <4—— Cofactor expansion along
—2 =37 the second column.
= (-1)(-33) =33
g h i a b c
20. The first and the third rows were interchanged, therefore |d e f|=—|d e f|=—(-6)=6.
a b ¢ g h i
a b ¢
22. The third row is proportional to the first row, therefore by Theorem 2.2.5 |d e f|=0.
2a 2b 2c
(This can also be shown by adding —2 times the first row to the third, then performing a cofactor expansion
a b ¢
of the resulting determinant |d e f| along the third row.)
0 0 O
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24,

26.

34,
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= (a+3b)(a —b)?

atd b+e c+f a b c
—d —e —fl=|-d —-e —f
g h [ g h [
a b ¢
=-1|d e f
g h i
=(-D(-6)=6
a b c a c
2d 2e 2f |=12d 2e 2f
g+3a h+3b i+3c g i
a b ¢
=2|d e f
g h i
= ()(-6) = -12
a b b b a b b b
b a b b _ b—a a-—-» 0 0
b b a b b—a 0 a—>b 0
b b b a b—a 0 0 a—>b
a+b b b b
_|b—a a-b»b 0 0
b—a 0 a-b» 0
0 0 0 a—»b
a+2b b b b
_ b—a a-—-b»b 0 0
0 0 a—>»b 0
0 0 0 a—>b
a+3b b b b
_ 0 a—>b 0 0
0 0 a—>»b 0
0 0 0 a—>b

The second row was
added to the first row.

A common factor of —1 from the second row
was taken through the determinant sign.

—3 times the first row was
added to the last row.

A common factor of 2 from the second row
was taken through the determinant sign.

<4— —1 times the first row was added

to each of the remaining rows.

<4— The last column was

added to the first column.

<4—— The third column was

added to the first column.

<4—— The second column was

added to the first column.
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12.

14,

16.

18.

20.

2.3 Properties of Determinants; Cramer’s Rule

2.3 Properties of Determinants; Cramer’s Rule
_| -8 -8|_ _
det(—44) = | 0 "] = (-8)(®) — (-8)(-20) = —224

(—2det) = 16]2 2| = 16((2)(-2) - ()(5)) = (16)(~14) = ~224

3 3 3 6 9
det@M) =0 6 9|=3]; _/|=3((6)(=6) - (9)(3) = (3)(~63) = 189
0 3 -6
11 1 ) 3
3%det(4) =270 2 3 =(27)(1)|1 _2|=27((2)(—2)—(3)(1))=(27)(—7)=—189
0 1 -2
6 15 26 5 8 -3
det(AB) =| 2 —4 —3|=-66; det(BA)=|-6 14 7|=-66
-2 10 12 5 —2 -5
1 7 =2
det(tA+B)=| 2 1 2[=-75; det(A) =2; det(B) = —33; det(4A + B) # det(4) + det (B)
-2 5 1

det(4) = —6 # 0 therefore A is invertible by Theorem 2.3.3
det(4) = 0 therefore A is not invertible by Theorem 2.3.3
det(A) = —124 # 0 therefore A isinvertible by Theorem 2.3.3
det(A4) = 0 therefore A is not invertible by Theorem 2.3.3

det(A) = k?* — 4 = (k—2)(k + 2). By Theorem 2.3.3, A isinvertible if k # 2 and k # —2.
det(4) = 1 — 4k. By Theorem 2.3.3, A isinvertible if k # i.

det(4) = —6is nonzero, therefore by Theorem 2.3.3, A is invertible.

The cofactors of A are:
Cll = _12 C12 = _4‘ C13 = 6
C21 = 0 sz = _2 C23 = 0
C31 = _9 C32 = _4‘ C33 = 6

The matrix of cofactors is

67
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wl N NIUT)

-12 -4 6
0 -2 0
-9 —4 6
and the adjoint matrix is
—12 0 -9
adj(A) =| -4 -2 -4].
6 0 6
From Theorem 2.3.6, we have
2 0
1 1 [—12 0 -9 ) 1
Al = adj(d)=—| -4 -2 —4|=| ¢ 1
L1 0 -1
22. det(4) = 12 is nonzero, therefore by Theorem 2.3.3, A is invertible.
The cofactors of A are:
Cll = 6 C12 = _4‘8 C13 = 29
C21 = 0 sz = 12 C23 = _6
C31:0 C32:0 C33:2
The matrix of cofactors is
6 —-48 29
0 12 -6
0 0 2
and the adjoint matrix is
6 0 0
adj(4) =|-48 12 0.
29 —6 2
From Theorem 2.3.6, we have
L 0 0
1 ([ 6 o0 o] |2
Al = adj(4) =—|-48 12 0|=|-4 1 o0}
det(4) 12 29 _g 2
29 1 1
12 2 6




7 -2 3 -2 _
24. A = 3 1]; A1 = [5 1]; AZ - [
1 —4 1 6 —4
26 A=|4 -1 21, A4,=1 -1 -1
| 2 2 -3 —20 2
_ det(4)) _ 144 _ det(4) _ 61
T det(4)  -55'  det(4) ~ -55’
-1 -4 2 1 —32
2z -1 7 9 14
28. 4= -1 1 3 1"41 11
1 -2 1 —4 —4
-1 -4 =32 1
|l 2 -1 14 o _
A3_—1 1 11 1"44_ -1
1 -2 —4 —4
_ det(Al) _ -2115 _ _ det(Az)
X1 = det(4) ~ -—423 ! X2 = det(4)
30.

The cofactors of A are:

2.3 Properties of Determinants; Cramer’s Rule
7 3. _ det(4y) _ 13 _ _ det(4p) _ 26 _
3 5]' 1 4@ 13 2T de 13 2
1 1 6 1 1 —4 6
2, 4, =14 -1 2], Az=1|4 -1 -—1};
-3 2 =20 -3 2 2 =20
_ det(43) _ -230 _ 46
T det(4) ~ -55  11°
-4 2 1 -1 =32 2 1
-1 7 9 A = 2 14 7 9
) 2 — ]
1 3 1 -1 11 3 1
-2 1 —4 1 -4 1 -4
-1 -4 2 =32
2 -1 7 141,
1 3 11/
1 -2 1 -4
_ -3384 _ det(43) _ -1269 _ 3 _ det(4,) _ 423
T Tz 9 M T g T Tezs % M T G Caz

Cll = cos @ C12 =sin@ C13 =0
C21 = —sin@ sz = cos @ C23 =0
C31:0 C32:0 C33:C0520+Sin20:1
The matrix of cofactors is
cos8 sinf 0
—sinf@ cosf 0
0 0 1
and the adjoint matrix is
cosf8 —sinf 0
adj(4) =|sin@ cos8 0
0 0 1
From Theorem 2.3.6, we have
1 1 cosf@ —sinf@ 0 cosf@ —sing 0
1=———adj(A) ==|sin@ cos® 0|=]|sind@ cos@ O
det(A) H 0 1 0 0 1

69

-1

det(4) = cos? @ + sin? @ = 1 is nonzero for all values of 8, therefore by Theorem 2.3.3, A is invertible.
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32. (a) A=

_det(4,) _ —424
T det(d) | —424

(b) The augmented matrix of the system

OO O

Chapter 2: Determinants

SO RO

_ ] W

SO, OO

_ W N e

_0 OO

_wW N e

11
-1 1
-5 8
1 2
11 4 6 1 1 41 6 1 41 1 6
1 _13 1 -1 1 37 11 137 -1 1
s gl 2|7 3 -5 87|73 3 g MT|7 3 5 —3
1 2 1 3 1 2 11 3 2 11 1 3
_det(ap) _ 0 _ _ det(A3) _ -848 _ _det(4)) 0 — 0
T dew@)  aza . PTG - aza 4 W T e T Taza
41 11 6
37 -11 1
7 3 _5 8§ —3 has the reduced row echelon form
11 12 3

OO

therefore the system has only one solution: x =1, y=10, z=2, and w = 0.

(c) The method in part (b) requires fewer computations.

36. (a) det(—4) = det((—1)A) = (—1)* det(4) = det(4) = —2 (using Formula (1) on p. 106)

(b) det(4A™1) =

det(d) -2

1 1

= —% (using Theorem 2.3.5)

(c) det(2AT) = 2* det(AT) = 16det(4) = —32 (using Formula (1) on p. 106 and Theorem 2.2.2)

(d) det(43) = det(444) = det(4) det(4) det(4) = (—2)2 = —8 (using Theorem 2.3.4)

Chapter 2 Supplementary Exercises

2. (a) Cofactor expansion along the first row: |_Z :é| =(7)(—=6)—(-1)(-2)=—-42 -2 =—-44

(b)

-2

—1|_ _ |—2
—6 7
--¢2l;

-6

1 <4— Thefirst and second rows were interchanged.

<4— A common factor of —2 from the first row
was taken through the determinant sign.

i
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Supplementary Exercises 71
=—(-2) |é _23 <+— —7 times the first row was added to the second row

=—(-2)(1)(-22) = —-44 <«———— Use Theorem 2.1.2.

(a) Cofactor expansion along the first row:

-1 -2 -3
_L7L _g _8 ! |—8 —9| : |—7 —9|+( 3)|—7 —8|

= (=DI[(=5)(=9) = (=0 (=8)] = (=D[(=D(=9) = (=6 (=] + (=D[(=D(=8) = (=5)(=7)]
= (=D(=3) - (=2D(=6) + (=3)(=3)

=3-124+9
=0
-1 -2 -3 1 2 3
(b) -4 -5 —6|=(-1)|-4 -5 —6| <«———— Acommon factor of —1 from the first row
-7 —8 =9 -7 —8 =9 was taken through the determinant sign.
1 2 3 4 times the first row was added to the second
=(-D|0 3 6 <+——row and 7 times the first row was added to the
0 6 12 third row
1 2 3 . .
—2 times the second row was added to the third
=(Djo 3 6 T row
0 0 0

=(—-1)(0) =0 <«——— Use Theorem 2.2.1.

(a) Cofactor expansion along the second row:

=5 1 4
3 0 2
1 -2 2

= =3[(D@) - B (=2)] = 2[(=5)(=2) - D (D)]
= (=3)(10) — 2(9)

=-30—-18

= —438

1
-2

=-3| 5 H+o-2|
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-5 1 4 1 -2 2
(b) 3 0 2|=-1| 3 0 2 <—— The first and third rows were interchanged.
1 -2 2 -5 1 4
1 -2 2 —3 times the first row was added to the second
=—10 6 —4 <+—— row and 5 times the first row was added to the
0 -9 14 third row
1 -2 2
=—6|0 1 —; <+— A common factor of 6 from the second row
0 -9 14 was taken through the determinant sign.
1 -2 2
2 9 times the second row was added to the third
=—6|0 1 —-= —
3 row.
0 0 8

=—-6(1)(1)(8) = —48 <«———— Use Theorem 2.1.2.

8. (a) We perform cofactor expansions along the first row in the 4x4 determinant, as well as in each of the 3x3

determinants:

-1 -2 -3 —4
4 3 2 1
1 2 3 4

-4 -3 -2 -1

3 2 1 4 2 1 4 3 1 4 3 2

=-1{ 2 3 4‘—(—2) 1 3 4+=3|1 2 4--»l1 2 3
-3 -2 -1 —4 -2 -1 —4 -3 -1 —4 -3 -2

=-103]; l-2l5 l+ils SD+e(ely -2y Sl 23D

-3(elg il Jtlealy EDe(elS -3l el 3D
=—((3)() - (2)10) +5) + (@ G) — 2(W () — (2)(15) + 10)

—3((®W(10) — 3)(15) +5) + 4((H(B) — 3)(10) + () (5))

=0+0+0+0

=0

-1 -2 -3 —4| |-1 -2 -3 -4

4 3 2 1_1 4 3 2 1 The first row was added to the third
(b) 1 2 3 47 |o 0o o o T row
-4 -3 -2 -1 -4 -3 -2 -1

=0 <«—— Use Theorem 2.2.1.



Supplementary Exercises
50 5 o |t PY__ s s
10. (a) e.g. 7 3 7 10 =-318 5 0 =—18|13 10|=(—18)(15)=—270 was easy to
13 0 10 O 13 10 0

12.

14.

73

calculate by cofactor expansions (first, we expanded along the second column, then along the third column),

but would be more difficult to calculate using elementary row operations.

-1 -2 -3 —4

4 3 2 1
B)eg,| 1 5 3 4

-4 -3 -2 -1

more difficult using cofactor expansion.

of Exercise 8 was easy to calculate using elementary row operations, but

3 0 -1
In Exercise 5: (1 1 1| = —10 # 0 therefore the matrix is invertible.
0 4 2
-5 1 4
In Exercise 6: | 3 0 2| = —48 # 0 therefore the matrix is invertible.
1 -2 2
3 6 0 1
\ -2 3 1 4| _ o .
In Exercise 7: 10 -1 117 329 # 0 therefore the matrix is invertible.
-9 2 -2 2
-1 -2 -3 -4
\ 4 3 2 1 . \ \
In Exercise 8: 1 ? 3 4 = 0 therefore the matrix is not invertible.
-4 -3 -2 -1
3 —4 qa 4a2 +3 0 84+a 4 times the second row was added to
a? 1 2| = a’ 1 2 <4—— thefirstrowand 1 — a times the
2 a—1 4 —a3+a?2+2 0 —-2a+6 second row was added to the last row.
2
=—0+1 | 4a” +3 8+a <4———  Cofactor expansion along

.3 2 _ -
a’°+a“+2 2a+6 the second column.

= (4a®> +3)(-2a+6) — B8+ a)(—a® +a*+2)

=qg*—-a®+16a%—-8a+2
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X -1 _ _ s a2 .
6.7 T |=x0-0- (DG = +x+3

Adding —2 times the first row to the second row, then performing cofactor expansion along the second

1 0 -3 1 0 -3
rowvields |2 x -6 |=[0 «x 0 =x|i x__35|=x(x—5+3)=x2—2x
1 3 x-5 1 3 x-=5

Solve the equation

—x?+x+3=x%-2x

—2x2+3x+3=0

-3+V9+24 _ 3—V33 or x = -3-V9+24 _ 3+V/33

From quadratic formula x =
-4 4 -4 4

18. |_Z :é| = —44 is nonzero, therefore by Theorem 2.3.3, the matrix A = [_Z :é] is invertible.
The cofactors are:
€11 =6 Ci2=2
C21 = 1 sz = 7
The matrix of cofactors is
73 3]
1 7
and the adjoint matrix is
, -6 1
adj(4) —[ 5 7].
From Theorem 2.3.6, we have
3 1
1 1 —6 1 22 44
Al = dj(4) = — = .
deta) A —44[ 2 7] 17
22 44
-1 -2 -3
20. |—-4 -5 —6| = 0 therefore by Theorem 2.3.3, the matrix is not invertible
-7 -8 -9




Supplementary Exercises

-5 1 4 -5 1 4
22. | 3 0 2| = —48is nonzero, therefore by Theorem 2.3.3, A= 3 0 2| isinvertible.
1 -2 2 1 -2 2
The cofactors of A are:
C11 = 4‘ C12 = _4‘ C13 = _6
C21 = _10 sz = _14‘ C23 = _9
C31 = 2 C32 = 22 C33 = _3
The matrix of cofactors is
4 -4 -6
—-10 -14 -9
2 22 -3
and the adjoint matrix is
4 -10 2
adj(4) = -4 -14 22|
-6 -9 -3
From Theorem 2.3.6, we have
1 5 1
12 24 24
4 -10 2
1 1 7 11
Al=——adjd) =—=|-4 -14 22|=| — — -]
detia) W =35 [_ e ] 12 24 24
6 9 3
1 3 1
L 8 16 16

24. = 0 therefore by Theorem 2.3.3, the matrix is not invertible

-4 -3 -2 -1

!

26.A=[C056 —sin @] A1_[x —sm@]' 2=[cosé’ x]

sinf  cos @l “ly cos@ sin@ y

; _ det(4q) _ xcos@+ysiné
" det(4) = cos?0+sin2 @

det(4;) _ ycos@—xsin®
det(4) = cos?9+sin2 @

=xcosf +ysing, y' = =ycosf —xsinf
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According to the arrow technique (see Example 7 in Section 2.1), the determinant of a 3 X 3 matrix can be
expressed as a sum of six terms:
11 Q12 O13

Q1 Uz Q23
Q31 dzz dz3

= (11022033 + 012023031 + A13021032 — Q13022031 — 11023032 — A12021033

If each entry of A is either 0 or 1, then each of the terms must be either 0 or +1. The largest value 3
would result from theterms 1 +1 4+ 1 —0 — 0 — 0, however, this is not possible since the first three terms

all equal 1 would require that all nine matrix entries be equal 1, making the determinant 0.

01 1

The largest value of determinant that is actually attainableis 2, e.g.,let A=1]1 0 1].
1 1 0

L 3 31 1
(b) 2 4 0 1| = —= isthe negative of the area of the triangle because it is being traced clockwise;
-2 -1 1
(reversing the order of the points would change the orientation to counterclockwise, and thereby result in
L -2 -1 1 1
the positivearea: 2| 4 0 1|==)
3 31




