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Chapter 1

1.5:

By (a) we have that both P (1) and P (2) are true. If now r ∈ {1, 2} and P (3k+r)
is true, then so is P (3(k + 1) + r) by (b). By induction we have that P (n) is
true for all n ≥ 1 that are not divisible by 3.

Since n is divisible by 3 if, and only if, n + 3 is divisible by 3, and neither 1
nor 2 are divisible by 3, then we cannot conclude from (a) and (b) alone that
P (3k) is true for any k.

If we have additionally that P (3) is true (which we do not have in this
problem) then by (b) we obtain that P (3k) is true for all k ≥ 1 and hence P (n)
is true for all n ∈ N.

1.6:

Since Q(1001) is true by (a), then so are Q(998), Q(995), . . . , Q(5), Q(2) by (b).
In fact, if Q(n) is true, then so is Q(n−3`) for any ` such that n−3` is positive.
By (c) we therefore have that Q(4) is true and so by (b) Q(1) is true.

We proceed by induction on m: Assume that Q(3k + 1) and Q(3k + 2) are
true. By (c) we have Q(6k + 2) and Q(6k + 4) are true, and hence by (b)
Q(3(k + 1) + 2)) = Q((6k + 2) − 3(k − 1)) is true and also Q(3(k + 1) + 1) =
Q((6k + 4) − 3k). By induction we have that Q(n) is true for any number that
is not divisible by 3.

However, 1001 is not divisible by 3. If n is not divisible by 3, then neither
is n− 3. Finally, if n is not divisible by 3, then neither is 2n. Hence, we cannot
conclude from (a), (b) and (c) alone that Q(n) is true for any n that is divisible
by 3.

1.9:

The graph in Figure 1.4 has 11 edges that we can label {e1, e2, . . . , e11} from left-
to-right along a horizontal line just above the Ai-vertices. So here G = (V, E, φ)
can be given by

V = {A1, A2, . . . , A7} ∪ {J1, J2, . . . , J5},
E = {e1, e2, . . . , e11},

1The book actually appeared in September of 2006.
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