
 

  

SOLUTIONS MANUAL 
COMPUTER SECURITY 

THIRD EDITION 
 
 

CHAPTERS 1–12 
 

WILLIAM STALLINGS 
LAWRIE BROWN 

 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright 2014: William Stallings 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-2- 

 
 

 

© 2014 by William Stallings 
 

All rights reserved. No part 
of this document may be 
reproduced, in any form or 
by any means, or posted on 
the Internet, without 
permission in writing from 
the author. Selected 
solutions may be shared 
with students, provided 
that they are not available, 
unsecured, on the Web. 

 
 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-3- 

 
 

NOTICE 
 
 
 
 
 

 
 This manual contains solutions to the review 
questions and homework problems in Computer 
Security, Third Edition. If you spot an error in a 
solution or in the wording of a problem, I would 
greatly appreciate it if you would forward the 
information via email to wllmst@me.net. An 
errata sheet for this manual, if needed, is 
available at 
 http://www.box.net/shared/ds8lygu0tjljokf98k85 . File name 
is S-CompSec3e-mmyy. 

 
 
 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-4- 

 
 

Chapter 1  Overview ................................................................. 5	  
Chapter 2  Cryptographic Tools ................................................... 9	  
Chapter 3  User Authentication .................................................. 19	  
Chapter 4  Access Control ......................................................... 25	  
Chapter 5  Database and Cloud Security ..................................... 31	  
Chapter 6  Malicious Software ................................................... 37	  
Chapter 7  Denial-of-Service Attacks .......................................... 44	  
Chapter 8  Intrusion Detection .................................................. 49	  
Chapter 9  Firewalls and Intrusion Prevention Systems ................. 59	  
Chapter 10  Buffer Overflow ...................................................... 70	  
Chapter 11  Software Security ................................................... 77	  
Chapter 12  Operating System Security ...................................... 84	  

 
 

 
TABLE OF CONTENTS 

 
 
 
 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-5- 

 
 

CHAPTER 1  OVERVIEW 

 

ANSWERS TO QUESTIONS 
1.1 Computer security refers to protection afforded to an automated 

information system in order to attain the applicable objectives of 
preserving the integrity, availability and confidentiality of information 
system resources (includes hardware, software, firmware, 
information/data, and telecommunications). 

 
1.2 Passive threats have to do with eavesdropping on, or monitoring, 

transmissions. Electronic mail, file transfers, and client/server 
exchanges are examples of transmissions that can be monitored. Active 
threats include the modification of transmitted data and attempts to 
gain unauthorized access to computer systems. 

 
1.3 Passive attacks: release of message contents and traffic analysis. Active 

attacks: masquerade, replay, modification of messages, and denial of 
service. 

 
1.4 Authentication: The assurance that the communicating entity is the 

one that it claims to be.  
 Access control: The prevention of unauthorized use of a resource (i.e., 

this service controls who can have access to a resource, under what 
conditions access can occur, and what those accessing the resource are 
allowed to do).  

 Data confidentiality: The protection of data from unauthorized 
disclosure.  

 Data integrity: The assurance that data received are exactly as sent by 
an authorized entity (i.e., contain no modification, insertion, deletion, or 
replay).  

 Nonrepudiation: Provides protection against denial by one of the 
entities involved in a communication of having participated in all or part 
of the communication.  

 Availability service: The property of a system or a system resource 
being accessible and usable upon demand by an authorized system 
entity, according to performance specifications for the system (i.e., a 
system is available if it provides services according to the system design 
whenever users request them).  

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-6- 

 
1.5 An attack surface consists of the reachable and exploitable 

vulnerabilities in a system. An attack tree is a branching, hierarchical 
data structure that represents a set of potential techniques for 
exploiting security vulnerabilities. 

 

ANSWERS TO PROBLEMS 
1.1 The system must keep personal identification numbers confidential, both 

in the host system and during transmission for a transaction. It must 
protect the integrity of account records and of individual transactions. 
Availability of the host system is important to the economic well being 
of the bank, but not to its fiduciary responsibility. The availability of 
individual teller machines is of less concern. Example from [NRC91]. 

 
1.2 The system does not have high requirements for integrity on individual 

transactions, as lasting damage will not be incurred by occasionally 
losing a call or billing record. The integrity of control programs and 
configuration records, however, is critical. Without these, the switching 
function would be defeated and the most important attribute of all - 
availability - would be compromised. A telephone switching system must 
also preserve the confidentiality of individual calls, preventing one caller 
from overhearing another. Example from [NRC91]. 

 
1.3 a. The system will have to assure confidentiality if it is being used to 

publish corporate proprietary material. 
 b. The system will have to assure integrity if it is being used to laws or 

regulations. 
 c. The system will have to assure availability if it is being used to 

publish a daily paper. Example from [NRC91]. 
 
1.4 a. An organization managing public information on its web server 

determines that there is no potential impact from a loss of 
confidentiality (i.e., confidentiality requirements are not applicable), 
a moderate potential impact from a loss of integrity, and a moderate 
potential impact from a loss of availability. 

 b. A law enforcement organization managing extremely sensitive 
investigative information determines that the potential impact from a 
loss of confidentiality is high, the potential impact from a loss of 
integrity is moderate, and the potential impact from a loss of 
availability is moderate. 

 c. A financial organization managing routine administrative information 
(not privacy-related information) determines that the potential 
impact from a loss of confidentiality is low, the potential impact from 
a loss of integrity is low, and the potential impact from a loss of 
availability is low. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-7- 

 
 d. The management within the contracting organization determines 

that: (i) for the sensitive contract information, the potential impact 
from a loss of confidentiality is moderate, the potential impact from a 
loss of integrity is moderate, and the potential impact from a loss of 
availability is low; and (ii) for the routine administrative information 
(non-privacy-related information), the potential impact from a loss of 
confidentiality is low, the potential impact from a loss of integrity is 
low, and the potential impact from a loss of availability is low. 

 e. The management at the power plant determines that: (i) for the 
sensor data being acquired by the SCADA system, there is no 
potential impact from a loss of confidentiality, a high potential impact 
from a loss of integrity, and a high potential impact from a loss of 
availability; and (ii) for the administrative information being 
processed by the system, there is a low potential impact from a loss 
of confidentiality, a low potential impact from a loss of integrity, and 
a low potential impact from a loss of availability. Examples from FIPS 
199. 

 
1.5 a. At first glance, this code looks fine, but what happens if 

IsAccessAllowed fails? For example, what happens if the system runs 
out of memory, or object handles, when this function is called? The 
user can execute the privileged task because the function might 
return an error such as ERROR NOT ENOUGH MEMORY. 

 b. x 
  DWORD dwRet = IsAccessAllowed(...); 
  if (dwRet == NO_ERROR) { 
   // Secure check OK. 
   // Perform task. 
  } else { 
   // Security check failed. 
   // Inform user that access is denied. 
  } 
 
  In this case, if the call to IsAccessAllowed fails for any reason, the 

user is denied access to the privileged operation. 
 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-8- 

 
1.6  

Open Safe

Pick Lock

Threaten Blackmail Eavesdrop Bribe

Learn
Combination

Find Writ-
ten Combo

Get Combo
from  Target

Listen to
Conversation

Get Target to
State Combo

Cut Open
Safe

Install
Improperly

 
 
1.7 We present the tree in text form; call the company X: 
 Survivability Compromise: Disclosure of X proprietary secrets 
 OR 1. Physically scavenge discarded items from X 
   OR 1. Inspect dumpster content on-site 
    2. Inspect refuse after removal from site 
  2. Monitor emanations from X machines 
   AND 1. Survey physical perimeter to determine optimal monitoring position 
    2. Acquire necessary monitoring equipment 
    3. Setup monitoring site 
    4. Monitor emanations from site 
  3. Recruit help of trusted X insider 
   OR 1. Plant spy as trusted insider 
    2. Use existing trusted insider 
  4. Physically access X networks or machines 
   OR 1. Get physical, on-site access to Intranet 
    2. Get physical access to external machines 
  5. Attack X intranet using its connections with Internet 
   OR 1. Monitor communications over Internet for leakage 
    2. Get trusted process to send sensitive information to attacker over Internet 
    3. Gain privileged access to Web server 
  6. Attack X intranet using its connections with public telephone network (PTN) 
   OR 1. Monitor communications over PTN for leakage of sensitive information 
    2. Gain privileged access to machines on intranet connected via Internet 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-9- 

 
 

CHAPTER 2  CRYPTOGRAPHIC TOOLS 

 

ANSWERS TO QUESTIONS 
2.1 Plaintext, encryption algorithm, secret key, ciphertext, decryption 

algorithm. 
 
2.2 One secret key. 
 
2.3 (1) a strong encryption algorithm; (2) Sender and receiver must have 

obtained copies of the secret key in a secure fashion and must keep the 
key secure. 

 
2.4 Message encryption, message authentication code, hash function. 
 
2.5 An authenticator that is a cryptographic function of both the data to be 

authenticated and a secret key. 
 
2.6 (a) A hash code is computed from the source message, encrypted using 

symmetric encryption and a secret key, and appended to the message. 
At the receiver, the same hash code is computed. The incoming code is 
decrypted using the same key and compared with the computed hash 
code. (b) This is the same procedure as in (a) except that public-key 
encryption is used; the sender encrypts the hash code with the sender's 
private key, and the receiver decrypts the hash code with the sender's 
public key. (c) A secret value is appended to a message and then a 
hash code is calculated using the message plus secret value as input. 
Then the message (without the secret value) and the hash code are 
transmitted. The receiver appends the same secret value to the 
message and computes the hash value over the message plus secret 
value. This is then compared to the received hash code. 

 
2.7 1. H can be applied to a block of data of any size. 
 2. H produces a fixed-length output. 
 3. H(x) is relatively easy to compute for any given x, making both 

hardware and software implementations practical. 
 4. For any given value h, it is computationally infeasible to find x such 

that H(x) = h. 
 5. For any given block x, it is computationally infeasible to find y ≠ x 

with H(y) = H(x). 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-10- 

 
 6. It is computationally infeasible to find any pair (x, y) such that H(x) 

= H(y). 
 
2.8 Plaintext: This is the readable message or data that is fed into the 

algorithm as input. Encryption algorithm: The encryption algorithm 
performs various transformations on the plaintext. Public and private 
keys: This is a pair of keys that have been selected so that if one is 
used for encryption, the other is used for decryption. The exact 
transformations performed by the encryption algorithm depend on the 
public or private key that is provided as input. Ciphertext: This is the 
scrambled message produced as output. It depends on the plaintext and 
the key. For a given message, two different keys will produce two 
different ciphertexts. Decryption algorithm: This algorithm accepts 
the ciphertext and the matching key and produces the original plaintext. 

 
2.9 Encryption/decryption: The sender encrypts a message with the 

recipient's public key. Digital signature: The sender "signs" a message 
with its private key. Signing is achieved by a cryptographic algorithm 
applied to the message or to a small block of data that is a function of 
the message. Key exchange: Two sides cooperate to exchange a 
session key. Several different approaches are possible, involving the 
private key(s) of one or both parties. 

 
2.10 The key used in conventional encryption is typically referred to as a 

secret key. The two keys used for public-key encryption are referred 
to as the public key and the private key. 

 
2.11 A digital signature is an authentication mechanism that enables the 

creator of a message to attach a code that acts as a signature. The 
signature is formed by taking the hash of the message and encrypting 
the message with the creator's private key. The signature guarantees 
the source and integrity of the message. 

 
2.12 A pubic-key certificate consists of a public key plus a User ID of the 

key owner, with the whole block signed by a trusted third party. 
Typically, the third party is a certificate authority (CA) that is trusted 
by the user community, such as a government agency or a financial 
institution. 

 
2.13 Several different approaches are possible, involving the private key(s) 

of one or both parties. One approach is Diffie-Hellman key exchange. 
Another approach is for the sender to encrypt a secret key with the 
recipient's public key. 

 

ANSWERS TO PROBLEMS 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-11- 

 
2.1 Yes. The eavesdropper is left with two strings, one sent in each 

direction, and their XOR is the secret key. 
 
2.2 a.  

2 8 10 7 9 6 3 1 4 5 
C R Y P T O G A H I 
B E A T T H E T H I 
R D P I L L A R F R 
O M T H E L E F T O 
U T S I D E T H E L 
Y C E U M T H E A T 
R E T O N I G H T A 
T S E V E N I F Y O 
U A R E D I S T R U 
S T F U L B R I N G 
T W O F R I E N D S 

 
 

4 2 8 10 5 6 3 7 1 9 
N E T W O R K S C U 
T R F H E H F T I N 
B R O U Y R T U S T 
E A E T H G I S R E 
H F T E A T Y R N D 
I R O L T A O U G S 
H L L E T I N I B I 
T I H I U O V E U F 
E D M T C E S A T W 
T L E D M N E D L R 
A P T S E T E R F O 

 
  ISRNG  BUTLF  RRAFR  LIDLP  FTIYO  NVSEE  TBEHI  HTETA 
  EYHAT  TUCME  HRGTA  IOENT  TUSRU  IEADR  FOETO  LHMET 
  NTEDS  IFWRO  HUTEL  EITDS 
 
 b. The two matrices are used in reverse order. First, the ciphertext is 

laid out in columns in the second matrix, taking into account the 
order dictated by the second memory word. Then, the contents of 
the second matrix are read left to right, top to bottom and laid out in 
columns in the first matrix, taking into account the order dictated by 
the first memory word. The plaintext is then read left to right, top to 
bottom. 

 c. Although this is a weak method, it may have use with time-sensitive 
information and an adversary without immediate access to good 
cryptanalysis t(e.g., tactical use). Plus it doesn't require anything 
more than paper and pencil, and can be easily remembered. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-12- 

 
 
2.3 a. Let -X be the additive inverse of X. That is -X 

� 

+  X = 0. Then: 
P = (C 

� 

+  –K1) ⊕ K0 
 b. First, calculate –C'. Then –C' = (P' ⊕ K0) 

� 

+  (– K1). We then have: 
  C 

� 

+  –C' = (P ⊕ K0) 

� 

+  (P' ⊕ K0) 
  However, the operations 

� 

+  and ⊕ are not associative or distributive 
with one another, so it is not possible to solve this equation for K0. 

 
2.4 a. The constants ensure that encryption/decryption in each round is 

different. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-13- 

 
 b. First two rounds: 

Delta1

K0

L0

L1

L2 R2

R0

R1

K1

< < 4

> > 5

Delta2

K2

K3

< < 4

> > 5

 
 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-14- 

 
 c. First, let's define the encryption process: 
  L2 = L0 

� 

+  [(R0 << 4) 

� 

+  K0] ⊕ [R0 

� 

+  δ1] ⊕ [(R0 >> 5) 

� 

+  K1] 
  R2 = R0 

� 

+  [(L2 << 4) 

� 

+  K2] ⊕ [L2 

� 

+  δ2] ⊕ [(L2 >> 5) 

� 

+  K3] 
 
  Now the decryption process. The input is the ciphertext (L2, R2), and 

the output is the plaintext (L0, R0). Decryption is essentially the same 
as encryption, with the subkeys and delta values applied in reverse 
order. Also note that it is not necessary to use subtraction because 
there is an even number of additions in each equation. 

 
  R0 = R2 

� 

+  [(L2 << 4) 

� 

+  K2] ⊕ [L2 

� 

+  δ2] ⊕ [(L2 >> 5) 

� 

+  K3] 
 
  L0 = L2 

� 

+  [(R0 << 4) 

� 

+  K0] ⊕ [R0 

� 

+  δ1] ⊕ [(R0 >> 5) 

� 

+  K1] 
 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-15- 

 
 d. 

Delta1

K0

L0

L1

L2 R2

R0

R1

K1

< < 4

> > 5

Delta2

K2

K3

< < 4

> > 5

 
 

2.5 a. Will be detected with both (i) DS and (ii) MAC. 
 b. Won’t be detected by either (Remark: use timestamps). 
 c. (i) DS: Bob simply has to verify the message with the public key 

from both. Obviously, only Alice’s public key results in a successful 
verification.  

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-16- 

 
  (ii) MAC: Bob has to challenge both, Oscar and Bob, to reveal their 

secret key to him (which he knows anyway). Only Bob can do that. 
 d. (i) DS: Alice has to force Bob to prove his claim by sending her a 

copy of the message in question with the signature. Then Alice can 
show that message and signature can be verified with Bob’s public 
key ) Bob must have generated the message. 

  (ii) MAC: No, Bob can claim that Alice generated this message. 
 
2.6 The statement is false. Such a function cannot be one-to-one because 

the number of inputs to the function is of arbitrary, but the number of 
unique outputs is 2n. Thus, there are multiple inputs that map into the 
same output. 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-17- 

 
2.7 a. Overall structure: 

N × 16  letters

M1 M2 MN

FIV =
0000

H1
F

• • •

• • •

Message

H2

16

HN =
hash
code

16

F

16

16 letters 16 letters 16 letters

Padding

4

 
  Compression function F: 

Hi–1Mi

Column-wise mod 26 addition

Column-wise mod 26 addition

row-wise
rotations

Hi  
 b. BFQG 
 c. Simple algebra is all you need to generate a result: 
  AYHGDAAAAAAAAAAAAAAAAAAA 
  AAAAAAAAAAAAAAAAAAAAAAAA 
 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-18- 

 
2.8  

 a. M3=

5 2 1 4 5
1 4 3 2 2
3 1 2 5 3
4 3 4 1 4
2 5 5 3 1

 

 b. Assume a plaintext message p is to be encrypted by Alice and sent to 
Bob. Bob makes use of M1 and M3, and Alice makes use of M2. Bob 
chooses a random number, k, as his private key, and maps k by M1 
to get x, which he sends as his public key to Alice. Alice uses x to 
encrypt p with M2 to get z, the ciphertext, which she sends to Bob. 
Bob uses k to decrypt z by means of M3, yielding the plaintext 
message p. 

 c. If the numbers are large enough, and M1 and M2 are sufficiently 
random to make it impractical to work backwards, p cannot be found 
without knowing k. 

 
2.9 We show the creation of a digital envelope: 
 

Random
symmetric
key

Receiver's
public
key

Sender's
private
key

Encrypted
symmetric
key

Encrypted
message

Hash code Digital
signature

Digital
envelope

E

E

Message

EH

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-19- 

 
 

CHAPTER 3  USER AUTHENTICATION 

 

ANSWERS TO QUESTIONS 
3.1 Something the individual knows: Examples includes a password, a 

personal identification number (PIN), or answers to a prearranged set of 
questions. 

 Something the individual possesses: Examples include electronic 
keycards, smart cards, and physical keys. This type of authenticator is 
referred to as a token. 

 Something the individual is (static biometrics): Examples include 
recognition by fingerprint, retina, and face. 

 Something the individual does (dynamic biometrics): Examples 
include recognition by voice pattern, handwriting characteristics, and 
typing rhythm. 

 
3.2 We can identify the following attack strategies and countermeasures: 
 Offline dictionary attack: Typically, strong access controls are used to 

protect the system's password file. However, experience shows that 
determined hackers can frequently bypass such controls and gain access 
to the file. The attacker obtains the system password file and compares 
the password hashes against hashes of commonly used passwords. If a 
match is found, the attacker can gain access by that ID/password 
combination. 

 Specific account attack: The attacker targets a specific account and 
submits password guesses until the correct password is discovered. 

 Popular password attack: A variation of the preceding attack is to use 
a popular password and try it against a wide range of user IDs. A user's 
tendency is to choose a password that is easily remembered; this 
unfortunately makes the password easy to guess. 

 Password guessing against single user: The attacker attempts to 
gain knowledge about the account holder and system password policies 
and uses that knowledge to guess the password. 

 Workstation hijacking: The attacker waits until a logged-in 
workstation is unattended. 

 Exploiting user mistakes: If the system assigns a password, then the 
user is more likely to write it down because it is difficult to remember. 
This situation creates the potential for an adversary to read the written 
password. A user may intentionally share a password, to enable a 
colleague to share files, for example. Also, attackers are frequently 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-20- 

 
successful in obtaining passwords by using social engineering tactics 
that trick the user or an account manager into revealing a password. 
Many computer systems are shipped with preconfigured passwords for 
system administrators. Unless these preconfigured passwords are 
changed, they are easily guessed. 

 Exploiting multiple password use. Attacks can also become much 
more effective or damaging if different network devices share the same 
or a similar password for a given user. 

 Electronic monitoring: If a password is communicated across a 
network to log on to a remote system, it is vulnerable to eavesdropping. 
Simple encryption will not fix this problem, because the encrypted 
password is, in effect, the password and can be observed and reused by 
an adversary. 

 
3.3 One technique is to restrict access to the password file using standard 

access control measures. Another technique is to force users to select 
passwords that are difficult to guess. 

 
3.4 User education: Users can be told the importance of using hard-to-

guess passwords and can be provided with guidelines for selecting 
strong passwords. 

 Computer-generated passwords: the system selects a password for 
the user. 

 Reactive password checking: the system periodically runs its own 
password cracker to find guessable passwords. 

 Proactive password checking: a user is allowed to select his or her own 
password. However, at the time of selection, the system checks to see if 
the password is allowable and, if not, rejects it. 

 
3.5 Memory cards can store but not process data. Smart cards have a 

microprocessor. 
 
3.6 Facial characteristics: Facial characteristics are the most common 

means of human-to-human identification; thus it is natural to consider 
them for identification by computer. The most common approach is to 
define characteristics based on relative location and shape of key facial 
features, such as eyes, eyebrows, nose, lips, and chin shape. An 
alternative approach is to use an infrared camera to produce a face 
thermogram that correlates with the underlying vascular system in the 
human face. 

 Fingerprints: Fingerprints have been used as a means of identification 
for centuries, and the process has been systematized and automated 
particularly for law enforcement purposes. A fingerprint is the pattern of 
ridges and furrows on the surface of the fingertip. Fingerprints are 
believed to be unique across the entire human population. In practice, 
automated fingerprint recognition and matching system extract a 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-21- 

 
number of features from the fingerprint for storage as a numerical 
surrogate for the full fingerprint pattern. 

 Hand geometry: Hand geometry systems identify features of the hand, 
including shape, and lengths and widths of fingers. 

 Retinal pattern: The pattern formed by veins beneath the retinal 
surface is unique and therefore suitable for identification. A retinal 
biometric system obtains a digital image of the retinal pattern by 
projecting a low-intensity beam of visual or infrared light into the eye. 

 Iris: Another unique physical characteristic is the detailed structure of 
the iris. 

 Signature: Each individual has a unique style of handwriting and this is 
reflected especially in the signature, which is typically a frequently 
written sequence. However, multiple signature samples from a single 
individual will not be identical. This complicates the task of developing a 
computer representation of the signature that can be matched to future 
samples. 

 Voice: Whereas the signature style of an individual reflects not only the 
unique physical attributes of the writer but also the writing habit that 
has developed, voice patterns are more closely tied to the physical and 
anatomical characteristics of the speaker. Nevertheless, there is still a 
variation from sample to sample over time from the same speaker, 
complicating the biometric recognition task. 

 
3.7 Enrollment is analogous to assigning a password to a user. For a 

biometric system, the user presents a name and, typically, some type of 
password or PIN to the system. At the same time the system senses 
some biometric characteristic of this user (e.g., fingerprint of right index 
finger). The system digitizes the input and then extracts a set of 
features that can be stored as a number or set of numbers representing 
this unique biometric characteristic; this set of numbers is referred to as 
the user's template. The user is now enrolled in the system, which 
maintains for the user a name (ID), perhaps a PIN or password, and the 
biometric value. Verification is analogous to a user logging on to a 
system by using a memory card or smart card coupled with a password 
or PIN. For biometric verification, the user enters a PIN and also uses a 
biometric sensor. The system extracts the corresponding feature and 
compares that to the template stored for this user. If there is a match, 
then the system authenticates this user. 

 For an identification system, the individual uses the biometric sensor 
but presents no additional information. The system then compares the 
presented template with the set of stored templates. If there is a match, 
then this user is identified. Otherwise, the user is rejected 

 
3.8 A false match occurs when an imposter's biometric data is declared by 

the system to be matched with the stored biometric data for a user. A 
false mismatch occurs when the system declares that the biometric data 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-22- 

 
of a genuine user does not match the stored biometric data for that 
user. The rate refers to the probability of a false match or false 
mismatch. 

 
3.9 In general terms, a challenge-response protocol functions as follows. A 

user attempts to logon to a server. The server issues some sort of 
challenge that the user must respond to in order to be authenticated. 

 

ANSWERS TO PROBLEMS 
3.1 a. If this is a license plate number, that is easily guessable. 
 b. suitable 
 c. easily guessable 
 d. easily guessable 
 e. easily guessable 
 f. suitable 
 g. very unsuitable 
 h. This is bigbird in reverse; not suitable. 
 
3.2 The number of possible character strings of length 8 using a 36-

character alphabet is 368 ≈ 241. However, only 215 of them need be 
looked at, because that is the number of possible outputs of the random 
number generator. This scheme is discussed in [MORR79]. 

3.3 a. T  =  26
4

2
  seconds  =  63.5 hours 

 b. Expect 13 tries for each digit. T  =  13 × 4 = 52 seconds. 
 
3.4 a. p = rk 

 b. p = rk − r p

rk+p
 

 c. p = rp 
 
3.5 a. T = (21 × 5 × 21)2 = 4,862,025 
 b. p = 1/T ≈  2 × 10–7 
 
3.6 There are 9510 ≈ 6 × 1019 possible passwords. The time required is: 
 

6 ×1019 passwords
6.4 ×106passwords/second

= 9.4 ×1012 seconds

=300,000 years
 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-23- 

 
3.7 a. Since PUa and PRa are inverses, the value PRa can be checked to 

validate that Pa was correctly supplied: Simply take some arbitrary 
block X and verify that X = D(PRa, E[PUa, X]). 

 b. Since the file /etc/publickey is publicly readable, an attacker can 
guess P (say P') and compute PRa' = D(P', E[P, PRa]). now he can 
choose an arbitrary block Y and check to see if Y = D(PRa, E[PUa, Y]). 
If so, it is highly probable that P' = P. Additional blocks can be used 
to verify the equality. 

 
3.8 Without the salt, the attacker can guess a password and encrypt it. If 

ANY of the users on a system use that password, then there will be a 
match. With the salt, the attacker must guess a password and then 
encrypt it once for each user, using the particular salt for each user. 

 
3.9 It depends on the size of the user population, not the size of the salt, 

since the attacker presumably has access to the salt for each user. The 
benefit of larger salts is that the larger the salt, the less likely it is that 
two users will have the same salt. If multiple users have the same salt, 
then the attacker can do one encryption per password guess to test all 
of those users. 

 
3.10 a. If there is only one hash function (k = 1), which produces one of N 

possible hash values, and there is only one word in the dictionary, 
then the probability that an arbitrary bit bi is set to 1 is just 1/N. If 
there are k hash functions, let us assume for simplicity that they 
produce k distinct hash functions for a given word. This assumption 
only introduces a small margin of error. Then, the probability that 
an arbitrary bit bi is set to 1 is k/N. Therefore, the probability that 
bi is equal to 0 is 1 – k/N. The probability that a bit is left unset 
after D dictionary words are processed is just the probability that 
each of the D transformations set other bits: 

 

Pr bi = 0[ ] = 1− k
N

⎛
⎝⎜

⎞
⎠⎟
D

 

 
  This can also be interpreted as the expected fraction of bits that are 

equal to 0. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-24- 

 
 b. A word not in the dictionary will be falsely accepted if all k bits 

tested are equal to 1. Now, from part (a), we can say that the 
expected fraction of bits in the hash table that are equal to one is 1 
– φ. The probability that a random word will be mapped by a single 
hash function onto a bit that is already set is the probability that 
the bit generated by the hash function is in the set of bits equal to 
one, which is just 1 – φ. Therefore, the probability that the k hash 
functions applied to the word will produce k bits all of which are in 
the set of bits equal to one is (1 – φ)k. 

 c. We use the approximation (1 – x) ≈ e-x. 
 
3.11 For a static biometric device, the user's biometric is matched to a 

template at the client, thus the client biometric device must be 
authenticate. For a dynamic biometric device, the host or server 
generates a random sequence of numbers, characters, or words. The 
user then generates a response (handwriting, voice) and the result is 
analyzed at the host. In this case, the client biometric device need not 
be authenticated. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-25- 

 
 

CHAPTER 4  ACCESS CONTROL 

 

ANSWERS TO QUESTIONS 
4.1 Discretionary access control (DAC) controls access based on the 

identity of the requestor and on access rules (authorizations) stating 
what requestors are (or are not) allowed to do. This policy is termed 
discretionary because an entity might have access rights that permit the 
entity, by its own volition, to enable another entity to access some 
resource. Mandatory access control (MAC) controls access based on 
comparing security labels (which indicate how sensitive or critical 
system resources are) with security clearances (which indicate system 
entities are eligible to access certain resources). This policy is termed 
mandatory because an entity that has clearance to access a resource 
may not, just by its own volition, enable another entity to access that 
resource. 

 
4.2 Role-based access control (RBAC) controls access based on the roles 

that users have within the system and on rules stating what accesses 
are allowed to users in given roles. RBAC may have a discretionary or 
mandatory mechanism. 

 
4.3 Owner: This may be the creator of a resource, such as a file. For 

system resources, ownership may belong to a system administrator. For 
project resources, a project administrator or leader may be assigned 
ownership. 

 Group: In addition to the privileges assigned to an owner, a named 
group of users may also be granted access rights, such that 
membership in the group is sufficient to exercise these access rights. In 
most schemes, a user may belong to multiple groups. 

 World: The least amount of access is granted to users who are able to 
access the system but are not included in the categories owner and 
group for this resource. 

 
4.4 A subject is an entity capable of accessing objects. Generally, the 

concept of subject equates with that of process. Any user or application 
actually gains access to an object by means of a process that represents 
that user or application. An object is anything to which access is 
controlled. Examples include files, portions of files, programs, and 
segments of memory. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-26- 

 
 
4.5 An access right describes the way in which a subject may access an 

object. 
 
4.6 For each object, an access control list lists users and their permitted 

access rights. A capability ticket specifies authorized objects and 
operations for a user. 

 
4.7 A protection domain is a set of objects together with access rights to 

those objects. 
 
4.8 RBAC0 contains the minimum functionality for an RBAC system. RBAC1 

includes the RBAC0 functionality and adds role hierarchies, which enable 
one role to inherit permissions from another role. RBAC2 includes RBAC0 
and adds constraints, which restrict the ways in which the components 
of a RBAC system may be configured. RBAC3 contains the functionality 
of RBAC0, RBAC1, and RBAC2. 

 
4.9 User: An individual that has access to this computer system. Each 

individual has an associated user ID. 
 Role: A named job function within the organization that controls this 

computer system. Typically, associated with each role is a description of 
the authority and responsibility conferred on this role, and on any user 
who assumes this role.  

 Permission: An approval of a particular mode of access to one or more 
objects. Equivalent terms are access right, privilege, and authorization. 

 Session: A mapping between a user and an activated subset of the set 
of roles to which the user is assigned. 

 
4.10 Mutually exclusive roles are roles such that a user can be assigned 

to only one role in the set. Cardinality refers to setting a maximum 
number with respect to roles. A system might be able to specify a 
prerequisite, which dictates that a user can only be assigned to a 
particular role if it is already assigned to some other specified role. 

 
4.11 SSD enables the definition of a set of mutually exclusive roles, such 

that if a user is assigned to one role in the set, the user may not be 
assigned to any other role in the set. DSD specifications limit the 
availability of the permissions by placing constraints on the roles that 
can be activated within or across a user’s sessions. 

 
 

ANSWERS TO PROBLEMS 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-27- 

 
4.1 a. 

A B C

F1 F2

F3 F4

Own
Read
Write

Own
Read
Write

Own
Read
Write

Own
Read
Write

Read
Write

Read

Read

Read

Write

 
 
 b. For simplicity and clarity, the labels are omitted. Also, there should 

be arrowed lines from each subject node to itself. 

S1

S2

S3

F1

F2

D1

D2

P1 P1
 

 
 c. A given access matrix generates only one directed graph, and a given 

directed graph yields only one access matrix, so the correspondence 
is one-to-one. 

 
4.2 a. We could implement "subject" objects that are not associated with 

any user. The subject would be a protection domain and would have 
all the privileges that subject has in the access control lists. An 
operation on the subject object would be to allow the process to 
'become" that subject. Being that subject would be equivalent to 
being in that protection domain. 

 b. It is only necessary to change the system so that sets of capabilities 
can exist independent of a process, and a process can run in a 
protection domain. There would be a capability to enter each 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-28- 

 
protection domain, and only processes holding that capability would 
be allowed to enter. You could have some capabilities associated with 
the process and some with the protection domain it is running in. 

 
4.3 a. The advantage of four modes is that there is more flexibility to 

control access to memory, allowing finer tuning of memory 
protection. The disadvantage is complexity and processing overhead. 
For example, procedures running at each of the access modes 
require separate stacks with appropriate accessibility. 

 b. In principle, the more modes, the more flexibility, but it seems 
difficult to justify going beyond four. 

 
4.4 a. With j < i, a process running in Di is prevented from accessing 

objects in Dj. Thus, if Dj contains information that is more privileged 
or is to be kept more secure than information in Di, this restriction is 
appropriate. However, this security policy can be circumvented in the 
following way. A process running in Dj could read data in Dj and then 
copy that data into Di. Subsequently, a process running in Di could 
access the information. 

 b. An approach to dealing with this problem, known as a trusted 
system, is discussed in Chapter 10. 

 
4.5 Suppose that the directory d and the file f have the same owner and 

group and that f contains the text something. Disregarding the 
superuser, no one besides the owner of f can change its contents can 
change its contents, because only the owner has write permission. 
However, anyone in the owner's group has write permission for d, so 
that any such person can remove f from d and install a different 
version, which for most purposes is the equivalent of being able to 
modify f. This example is from Grampp, F., and Morris, R. "UNIX 
Operating System Security." AT&T Bell Laboratories Technical Journal, 
October 1984. 

 
4.6 A default UNIX file access of full access for the owner combined 

with no access for group and other means that newly created files 
and directories will only be accessible by their owner. Any access 
for other groups or users must be explicitly granted. This is the 
most common default, widely used by government and business 
where the assumption is that a person’s work is assumed private 
and confidential.  

 A default of full access for the owner combined with read/execute 
access for group and none for other means newly created files and 
directories are accessible by all members of the owner’s group. 
This is suitable when there is a team of people working together 
on a server, and in general most work is shared with the group. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-29- 

 
However there are also other groups on the server for which this 
does not apply. An organization with cooperating teams may 
choose this. 

 A default of full access for the owner combined with read/execute 
access for both group and other means newly created files and 
directories are accessible by all users on the server. This is 
appropriate for organization’s where users trust each other in 
general, and assume that their work is a shared resource. This 
used to be the default for University staff, and in some research 
labs. It is also often the default for small businesses where people 
need to rely on and trust each other. 

 
4.7 In order to provide the Web server access to a user’s ‘public_html’ 

directory, then search (execute) access must be provided to the user’s 
home directory (and hence to all directories in the path to it), 
read/execute access to the actual Web directory, and read access to any 
Web pages in it, for others (since access cannot easily be granted just 
to the user that runs the web server). However this access also means 
that any user on the system (not just the web server) has this same 
access. Since the contents of the user’s web directory are being 
published on the web, local public access is not unreasonable (since 
they can always access the files via the web server anyway). However in 
order to maintain these required permissions, if the system default is 
one of the more restrictive (and more common) options, then the user 
must set suitable permissions every time a new directory or file is 
created in the user’s web area. Failure to do this means such directories 
and files are not accessible by the server, and hence cannot be access 
over the web. This is a common error. As well the fact that at least 
search access is granted to the user’s home directory means that some 
information can be gained on its contents by other user’s, even if it is 
not readable, by attempting to access specific names. It also means that 
if the user accidentally grants too much access to a file, it may then be 
accessible to other users on the system. If the user’s files are 
sufficiently sensitive, then the risk of accidental leakage due to 
inappropriate permissions being set may be too serious to allow such a 
user to have their own web pages. 

 

4.8 a. 

� 

Ui ×Pi( )
i=1

N

∑  

 b. 

� 

Ui + Pi( )
i=1

N

∑  

 
4.9 For a limited role hierarchy, a role is limited to a single immediate 

descendent. Enough links must be removed from the diagram to satisfy 
this requirement. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-30- 

 
 
4.10 a. r1   

� 

 r2  ⇒ authorized_permissions(r2) ⊆ 
authorized_permissions(r1) ∧ authorized_users(r2) ⊆ 
authorized_users(r1) 

 b. r   

� 

 r1 ∧ r   

� 

 r2  ⇒ r1 = r2 
 
4.11 a. Role(x) > Role(y) ⇔ Role(x).Position > Role(y).Position ∧ 
  Role(x).Function = Role(y).Function 
 b. Role(x) > Role(y) ⇔ Role(x).Position > Role(x).Function = 

Role(y).Function 
 
4.12 RBAC Roles: 
   Adult premium user role 
   Adult regular user role 
   Juvenile premium user role 
   Juvenile regular user role 
   Child premium user role 
   Child regular user role 
  RBAC Permissions 
   Can view R rated new release 
   Can view R rated old release 
   Can view PG-13 rated new release 
   Can view PG-13 rated old release 
   Can view G rated new release 
   Can view G rated old release 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-31- 

 
 

CHAPTER 5  DATABASE AND CLOUD 

SECURITY 

 

ANSWERS TO QUESTIONS 
5.1 A database is a structured collection of data stored for use by one or 

more applications. In addition to data, a database contains the 
relationships between data items and groups of data items. A 
database management system (DBMS), which is a suite of 
programs for constructing and maintaining the database and for 
offering ad hoc query facilities to multiple users and applications. A 
query language provides a uniform interface to the database for users 
and applications. 

 
5.2 A relational database is a collection of tables (also called relations). 

Individual values in a table can be used to link one table to another. 
 
5.3 Whereas the value of a primary key must be unique for each tuple 

(row) of its table, a foreign key value can appear multiple times in a 
table. 

 
5.4 Centralized administration: A small number of privileged users may 

grant and revoke access rights. 
 Ownership-based administration: The owner (creator) of a table 

may grant and revoke access rights to the table. 
 Decentralized administration: In addition to granting and revoking 

access rights to a table, the owner of the table may grant and revoke 
authorization to other users, allowing them to grant and revoke access 
rights to the table. 

 
5.5 The grant option enables an access right to cascade through a number 

of users. If a user has an access right with grant option, the user may 
pass the right to another user. 

 
5.6 The inference problem arises when the combination of a number of 

data items is more sensitive than the individual items, or when a 
combination of data items can be used to infer data of a higher 
sensitivity. 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-32- 

 
5.7 Key management: Authorized users must have access to the 

decryption key for the data for which they have access. Because a 
database is typically accessible to a wide range of users and a number 
of applications, providing secure keys to selected parts of the database 
to authorized users and applications is a complex task. 

 Inflexibility: When part or all of the database is encrypted, it becomes 
more difficult to perform record searching. 

 
5.8 Software as a service (SaaS): Provides service to customers in the 

form of software, specifically application software, running on and 
accessible in the cloud. 

 Platform as a service (PaaS): Provides service to customers in the 
form of a platform on which the customer's applications can run. 

 Infrastructure as a service (IaaS): Provides the customer access to 
the underlying cloud infrastructure. 

 
5.9 The NIST cloud computing reference architecture focuses on the 

requirements of “what” cloud services provide, not a “how to” design 
solution and implementation. The reference architecture is intended to 
facilitate the understanding of the operational intricacies in cloud 
computing. It does not represent the system architecture of a specific 
cloud computing system; instead it is a tool for describing, discussing, 
and developing a system-specific architecture using a common 
framework of reference. 

 
5.10 Abuse and nefarious use of cloud computing: For many CPs, it is 

relatively easy to register and begin using cloud services, some even 
offering free limited trial periods. This enables attackers to get inside 
the cloud to conduct various attacks, such as spamming, malicious 
code attacks, and denial of service. 

 Insecure interfaces and APIs: CPs expose a set of software 
interfaces or APIs that customers use to manage and interact with 
cloud services. The security and availability of general cloud services is 
dependent upon the security of these basic APIs. From authentication 
and access control to encryption and activity monitoring, these 
interfaces must be designed to protect against both accidental and 
malicious attempts to circumvent policy. 

 Malicious insiders: Under the cloud computing paradigm, an 
organization relinquishes direct control over many aspects of security 
and, in doing so, confers an unprecedented level of trust onto the CP. 
One grave concern is the risk of malicious insider activity. Cloud 
architectures necessitate certain roles that are extremely high-risk.  

 Shared technology issues: IaaS vendors deliver their services in a 
scalable way by sharing infrastructure. Often, the underlying 
components that make up this infrastructure (CPU caches, GPUs, etc.) 
were not designed to offer strong isolation properties for a multi-

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-33- 

 
tenant architecture. CPs typically approach this risk by the use of 
isolated virtual machines for individual clients. This approach is still 
vulnerable to attack, by both insiders and outsiders, and so can only 
be a part of an overall security strategy. 

 Data loss or leakage: For many clients, the most devastating impact 
from a security breach is the loss or leakage of data. We address this 
issue in the next section. 

 Account or service hijacking: Account and service hijacking, usually 
with stolen credentials, remains a top threat. With stolen credentials, 
attackers can often access critical areas of deployed cloud computing 
services, allowing them to compromise the confidentiality, integrity, 
and availability of those services. 

 Unknown risk profile: In using cloud infrastructures, the client 
necessarily cedes control to the cloud provider on a number of issues 
that may affect security. Thus the client must pay attention to and 
clearly define the roles and responsibilities involved for managing 
risks. For example, employees may deploy applications and data 
resources at the CP without observing the normal policies and 
procedures for privacy, security, and oversight. 

 

ANSWERS TO PROBLEMS 
5.1 Course 

Name 
Course 
Number Day Time Room 

Number 
Max 

Enrollment 
       
       
 
 Faculty 

Name 
Course 

1 
Course 

2 
Course 

3 
     
     
 
 Student 

Name 
Course 

1 
Course 

2 
Course 

3 
     
     
 
5.2 It is clear that Climber-ID is the primary key of the table. The first row 

cannot be added. If violates the uniqueness property of the key because 
there is a Climber-ID 214 already in the table. The second row cannot 
be added. It violates the integrity constraint of the key because there is 
no value for the primary key. The third row can be added. 

 
5.3 a. (1) Updating an owner’s name or other data must be done in 

(potentially) many rows 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-34- 

 
  (2) Possibly incorrect, inconsistent owner data across rows (change 

in one row, but not in another) 
  (3) Entering correct data inconsistently 
  (4) No place to store owner (your customer) data unless they have a 

pet 
 b. 

PET PetID Pet 
Name Type Breed DOB Owner 

Phone 
       
       
  
OWNER Owner 

Name 
Owner 
Phone 

Owner 
Email 

    
    
 
5.4 CREATE TABLE student ( 
   sid INTEGER PRIMARY KEY,  
  sname VARCHAR (25),  
   sphone CHAR(10)    ) 
 
5.5 a. This statement retrieves the 'id', 'forename' and 'surname' columns 

from the 'authors' table, returning all rows in the table that match 
forename = 'john' and surname = 'smith'. 

 b. The 'query string' becomes this: 
 
  SELECT id, forename, surname FROM authors WHERE forename = 

'jo'hn' AND surname = 'smith' 
 
  When the database attempts to run this query, it is likely to return 

an error. The reason is that the insertion of the 'single quote' 
character 'breaks out' of the single-quote delimited data. The 
database then tried to execute 'hn' and fails. 

 c. The authors table will be deleted. 
 
5.6 a. SELECT accounts FROM users WHERE login=’doe’ AND pass=’secret’ 

AND pin=123 
 b. SELECT accounts FROM users WHERE login=’’ or 1=1 -- AND pass=’’ 

AND pin= 
  The code injected in the conditional (OR 1=1) transforms the entire 

WHERE clause into a tautology. The database uses the conditional as 
the basis for evaluating each row and deciding which ones to return 
to the application. Because the conditional is a tautology, the query 
evaluates to true for each row in the table and returns all of them. 
The returned set evaluates to a nonnull value, which causes the 
application to conclude that the user authentication was successful. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-35- 

 
Therefore, the application would invoke method displayAccounts() 
and show all of the accounts in the set returned by the database. 

 
5.7 This produces the following query: 
  SELECT accounts FROM users WHERE login=’’ UNION 
  SELECT cardNo from CreditCards where acctNo=10032 -- AND pass=’’ 

 AND pin= 
 Assuming that there is no login equal to “”, the original first query 

returns the null set, whereas the second query returns data from the 
“CreditCards” table. In this case, the database would return column 
“cardNo” for account “10032.” The database takes the results of these 
two queries, unions them, and returns them to the application. In many 
applications, the effect of this operation is that the value for “cardNo” is 
displayed along with the account information. 

 
5.8 The grant of the DELETE privilege by X at time t = 25 must be revoked 

because X's earliest remaining DELETE privilege was received at time t 
= 30. But X’s grants of READ and INSERT are allowed to remain 
because they are still supported by incoming grants that occurred earlier 
in time. 

 
5.9  

A C

B

t = 40
 

 
5.10 a. Consider the the concept of a noncascading revocation, defined as 

follows. Whenever user A revokes a privilege from user B, 
authorizations granted by B are not revoked; instead they are 
respecified as if they had been granted by S, the user issuing 
revocation. The semantics of the revocation without cascade is to 
produce the authorization state that would have resulted if the 
revoker (A) had granted the authorizations that were granted by 
the revokee (B). 

 b. The disadvantage of the cascading revocation is that it can be 
disruptive. In many organizations the authorizations a user 
possesses are related to his or her particular task or function within 
the organization. If a user changes task or function (e.g., is 
promoted), it is desirable to remove only the authorizations of this 
user, without triggering recursive revocation of all authorizations 
granted by this user. The disadvantage of the noncascading 
revocation would be if there are instances when we would like to 
revoke a user's authorization and simultaneously undo any 
authorizations by that user. This could occur if the user comes 
under suspicion. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-36- 

 
 
5.11 User Permission level 

 Accounts payable 
clerk 

Should be able to access and change all data. 

 Installation 
foreman 

Needs to access but not change parts 
information. Probably does not need to have 
access to any vendor information except perhaps 
name. 

 Receiving clerk Needs to be able to access and change parts 
information, such as number in stock. Should be 
able to access but not change vendor 
information. 

 
 
5.12 We assume that there is a unique constraint on flight ID and cargo 

hold (to prevent scheduling two shipments for the same hold). When a 
user in role 2 sees that nothing is scheduled for hold C on flight 1254, 
the user might attempt to insert a new record to transport some 
vegetables on that flight. However, when he or she attempts to insert 
the record, the insert will fail due to the unique constraint. At this 
point, the user has all the data needed to infer that there is a secret 
shipment on flight 1254. The user could then cross-reference the flight 
information table to find out the source and destination of the secret 
shipment and various other information. 

 
5.13 GRANT select ON inventory TO hulkhogan, undertaker; 
 GRANT select ON item TO hulkhogan, undertaker; 
 
5.14 Another way is to create a separate (unclassified) relation HIRE-DATES 

(EMP#, START-DATE). Note that EMP # rather than S# must be used 
as the key for the new relation, otherwise the inference is not 
removed. 

 
5.15 If the first two queries are answered, then the max query is denied 

whenever its value is exactly equal to the ratio of the sum and the 
count values (which happens when all the selected rows have the 
same salary value). Hence the attacker learns the salary values of all 
the selected rows when denial occurs. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-37- 

 
 

CHAPTER 6  MALICIOUS SOFTWARE 

 

ANSWERS TO QUESTIONS 
6.1 The three broad mechanisms malware can use to propagate are: 

• infection of existing executable or interpreted content by viruses that 
is subsequently spread to other systems;  

• exploit of software vulnerabilities either locally or over a network by 
worms or drive-by-downloads to allow the malware to replicate; and 

• social engineering attacks that convince users to bypass security 
mechanisms to install trojans, or to respond to phishing attacks. 

 
6.2 Four broad categories of payloads that malware may carry are: 

• corruption of system or data files;  
• theft of service in order to make the system a zombie agent of attack 

as part of a botnet;  
• theft of information from the system, especially of logins, passwords or 

other personal details by keylogging or spyware programs; and  
• stealthing where the malware hides it presence on the system from 

attempts to detect and block it. 
 
6.3 The characteristics of an advanced persistent threat giving its name are: 

• Advanced: Use of a wide variety of intrusion technologies and 
malware, including the development of custom malware if required. 

• Persistent: application of attacks over an extended period against the 
chosen target in order to maximize the chance of success. 

• Threats: a result of the organized, capable, and well-funded attackers 
intent to compromise the specifically chosen targets.  

 
6.4 The typical phases of operation of a virus or worm are: 

• a dormant phase (when the virus is idle),  
• a propagation phase (where it makes copies of itself elsewhere),  
• a triggering phase (when activated), and  
• an execution phase (to perform some target function). 

 
6.5 Some mechanisms a virus can use to conceal itself include: encryption, 

stealth, polymorphism, metamorphism. 
 
6.6 Machine executable viruses infect executable program files to carry out 

their work in a manner that is specific to a particular operating system 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-38- 

 
and, in some cases, specific to a particular hardware platform. Macro 
viruses infect files with macro or scripting code that is used to support 
active content in a variety of user document types, and is interpreted by 
an application. 

 
6.7 A worm may access remote systems to propagate using: an electronic 

mail or instant messenger facility, file sharing, remote execution 
capability, remote file access or transfer capability, or a remote login 
capability. 

 
6.8 A “drive-by-download” exploits browser vulnerabilities so that when 

the user views a web page controlled by the attacker, it contains code 
that exploits some browser bug to download and install malware on the 
system without the user’s knowledge or consent. It differs from a worm 
since it does not actively propagate as a worm does, but rather waits for 
unsuspecting users to visit the malicious web page in order to spread to 
their systems. 

 
6.9 A trojan is an (apparently) useful program or utility containing hidden 

code that, when invoked, performs some unwanted or harmful function. 
A Trojan enables malware to propagate as it executes with the 
privileges of the person running it. Trojans are very common on both 
computer systems, and increasingly on mobile platforms, though much 
more on Android than on iOS devices. 

 
6.10 A logic bomb is code embedded in the malware that is set to 

"explode" when certain conditions are met, such as the presence or 
absence of certain files or devices on the system, a particular day of 
the week or date, a particular version or configuration of some 
software, or a particular user running the application. When triggered, 
the bomb executes some payload carried by the malware. 

 
6.11 A backdoor is a secret entry point into a program or system that 

allows someone who is aware of the backdoor to gain access without 
going through the usual security access procedures. 

 A bot subverts the computational and network resources of the 
infected system for use by the attacker.  

 A keylogger captures keystrokes on the infected machine, to allow an 
attacker to monitor sensitive information including login and password 
credentials.  

 Spyware subverts the compromised machine to allow monitoring of a 
wide range of activity on the system, including monitoring the history 
and content of browsing activity, redirecting certain web page requests 
to fake sites controlled by the attacker, dynamically modifying data 
exchanged between the browser and certain web sites of interest; 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-39- 

 
which can result in significant compromise of the user’s personal 
information.  

 A rootkit is a set of programs installed on a system to maintain covert 
access to that system with administrator (or root) privileges, whilst 
hiding evidence of its presence to the greatest extent possible. 

 These can all be present in the same malware. 
 
6.12 A phishing attack uses a spam e-mail to exploit social engineering to 

leverage user’s trust by masquerading as communications from a 
trusted source, that may direct a user to a fake Web site, or to 
complete some enclosed form and return in an e-mail accessible to the 
attacker. A more dangerous variant of this is the spear-phishing 
attack. This again is an e-mail claiming to be from a trusted source. 
However, the recipients are carefully researched by the attacker, and 
each e-mail is carefully crafted to suit its recipient specifically, often 
quoting a range of information to convince them of its authenticity. 
This greatly increases the likelihood of the recipient responding as 
desired by the attacker. 

 
6.13 A rootkit may be placed in: user mode where it can intercept calls to 

APIs and modify results; in kernel mode where it can intercept kernel 
API calls and hide it presence in kernel tables; in a virtual machine 
hypervisor where it can then transparently intercept and modify states 
and events occurring in the virtualized system; or in some other 
external mode such as BIOS or in BIOS or system management mode, 
where it can directly access hardware. 

 
6.14 Malware countermeasure elements include: 

• prevention in not allowing malware to get into the system in the 
first place, or blocking its ability to modify the system, via policy, 
awareness, vulnerability mitigation and threat mitigation; 

• detection to determine that it has occurred and locate the 
malware; 

• identification to identify the specific malware that has infected the 
system; and 

• removal to remove all traces of malware virus from all infected 
systems so that it cannot spread further. 

 
6.15 Three places malware mitigation mechanisms may be located, are: 

• on the infected system, where some host-based “anti-virus” 
program is running, monitoring data imported into the system, and 
the execution and behavior of programs running on the system; 

• as part of the perimeter security mechanisms used in an 
organizations firewall and intrusion detection systems; 

• or it may use distributed mechanisms that gather data from both 
host-based and perimeter sensors, potentially over a large number 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-40- 

 
of networks and organizations, in order to obtain the largest scale 
view of the movement of malware. 

 
6.16 The four generations of anti-virus software are: 

• First generation: simple scanners that require a malware 
signature to identify it 

• Second generation: heuristic scanners use heuristic rules to 
search for probable malware instances, or uses integrity checking to 
identify changed files  

• Third generation: activity traps that identify malware by its 
actions rather than its structure in an infected program 

• Fourth generation: full-featured protection uses packages of a 
variety of anti-virus techniques used in conjunction, including 
scanning and activity trap components. 

 

ANSWERS TO PROBLEMS 
6.1 The program will loop indefinitely once all of the executable files in the 

system are infected. 
 
6.2 D is supposed to examine a program P and return TRUE if P is a 

computer virus and FALSE if it is not. But CV calls D. If D says that CV is 
a virus, then CV will not infect an executable. But if D says that CV is 
not a virus, it infects an executable. D always returns the wrong answer.  

 
6.3 The original code has been altered to disrupt the signature without 

affecting the semantics of the code. The ineffective instructions in the 
metamorphic code are the second, third, fifth, sixth, and eighth. 

 
6.4 a. The following is from Spafford, E. " The Internet Worm Program: An 

Analysis." Purdue Technical Report CSD-TR-823. 
Common choices for passwords usually include fantasy characters, but 
this list contains none of the likely choices (e.g.,  “hobbit”, “dwarf”, 
“gandalf”, “skywalker”, “conan”).  Names of relatives and friends are 
often used, and we see women's names like “jessica”, “caroline”, and 
“edwina”, but no instance of the common names “jennifer” or “kathy”. 
Further, there are almost no men's names such as “thomas” or either of  
“stephen” or “steven” (or “eugene”!). Additionally, none of these have 
the initial letters capitalized, although that is often how they are used in 
passwords. Also of interest, there are no obscene words in this 
dictionary, yet many reports of concerted password cracking 
experiments have revealed that there are a significant number of users 
who use such words (or  phrases) as passwords. The list contains at 
least one incorrect spelling: “commrades” instead of “comrades”; I also 
believe that “markus” is a misspelling of “marcus”. Some of the words 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-41- 

 
do not appear in standard dictionaries and are non-English names:  
“jixian”, “vasant”, “puneet”, etc. There are also some unusual words in 
this list that I would not expect to be  considered common: 
“anthropogenic”, “imbroglio”, “umesh”,  “rochester”, “fungible”, 
“cerulean”, etc.  
b. Again, from Spafford:  
I imagine that this list was derived from some data gathering with a 
limited set  of passwords, probably in some known (to the author) 
computing environment. That is, some dictionary-based or brute-force 
attack was used to crack a selection of a few hundred passwords taken 
from a small set of machines. Other approaches to gathering passwords 
could also have been used: Ethernet monitors, Trojan Horse login 
programs, etc. However they may have been cracked, the ones that 
were broken would then have been added to this dictionary. 
Interestingly enough, many of these words are not in the standard on-
line dictionary (in /usr/dict/words). As such, these words are useful as a 
supplement to the main dictionary-based attack the worm used as 
strategy #4, but I would suspect them to be of limited use before that 
time.  

 
6.5 Logic bomb.  
 
6.6 Backdoor.  
 
6.7 The found USB memory stick may pose a range of threats to the 

confidentiality, integrity and availability of the work system. Each of the 
malware propagation mechanisms we discuss could use such a memory 
stick for transport. It may carry a program infected with an executable 
virus, or document infected with a macro virus, which if run or opened 
can allow the virus to run and spread. It could carry a malicious worm 
that may be run automatically using the autorun capability, or by 
exploiting some vulnerability when the USB stick is viewed. Or it could 
contain a trojan horse program or file that would threaten the system if 
installed or allowed to run. You can mitigate these threats, and try to 
safely determine the contents of the memory stick, by scanning the 
memory stick with suitable, up-to-date anti-virus software for any signs 
of malware – though this will not detect unknown, zero-day exploits. 
You could examine the memory stick in a controlled environment, such 
as a live-boot linux or other system, or in some emulation environment, 
which cannot be changed even if the malware does manage to run. 

 
6.8 Observations of your home PC is responding very slowly, with high 

levels of network activity, may indicate the presence of malware, likely 
including bot code, on the system. The slow response and net traffic 
could be caused by it participating in a botnet, perhaps distributing 
spam emails, performing DDoS attacks, or other malicious activities. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-42- 

 
This malware could have gained access to the system as a result of 
installing some trojan program perhaps advertised in spam email or on 
a compromised website, from a drive-by-download, or from exploit of 
some vulnerability on the system by a worm. Possible steps to check 
whether this has occurred include examining the process/task list for 
unknown programs executing, looking at logs of network traffic kept by 
a host firewall program to see which programs are generating traffic, or 
scanning the system with suitable, up-to-date anti-virus software for 
any signs of malware – though this will not detect unknown, zero-day 
exploits.  If you do identify malware on your PC, you may be able to 
restore it to safe operation using suitable, up-to-date anti-virus 
software, provided the malware is known. Otherwise you may have to 
erase all storage and rebuild the system from scratch. 

 
6.9 If a user installs some custom codec claimed needed to view some 

videos, they may actually be installing trojan horse code. It may indeed 
allow viewing of the video, or may just be an excuse to compromise the 
system. Such code may pose a range of threats to the confidentiality, 
integrity and availability of the system. It may include backdoor, bot, 
keylogger, spyware, rootkit or indeed any other malware payloads. 

 
6.10  If when you download and start to install some game app, you are 

asked to approve the access permissions “Send SMS messages” and to 
“Access your address-book”, you should indeed be suspicious that a 
game wants these types of permissions, as it would not seem needed 
just for a game. Rather it could be malware that wants to collect 
details of all your contacts, and either return them to the attacker via 
SMS, or allow the code to send SMS messages to your contacts, 
perhaps enticing them to also download and install this malware. Such 
code is a trojan horse, since it contains covert functions as well as the 
advertised functionality. 

 
6.11  If you should open the PDF attachment, then it could contain 

malicious scripting code that could run should you indeed select the 
‘Open’ button. This may be either worm (specifically exploiting a 
client-side vulnerability), or trojan horse code. You could you check 
your suspicions without threatening your system by using the scroll 
bar to examine all the code about to be executed should you select the 
‘Open’ button, and see if it looks suspicious. You could also scan the 
PDF document with suitable, up-to-date anti-virus software for any 
signs of malware – though this will not detect unknown, zero-day 
exploits. This type of message is associated with a spear-phishing 
attack, given that the email was clearly crafted to suit the recipient. 
That particular e-mail would only have been sent to one or a few 
people for whom the details would seem plausible. 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-43- 

 
6.12 This email is attempting a general phishing attack, being sent to very 

large numbers of people, in the hope that a sufficient number both use 
the named bank, and are fooled into divulging their sensitive login 
credentials to the attacker. The most likely mechanism used to 
distribute this e-mail is via a botnet using large numbers of 
compromised systems to generate the necessary high volumes of 
spam emails. You should never ever follow such a link in an email and 
supply the requested details. You should only ever access sensitive 
sites by directly entering their known URL into your browser. It may be 
appropriate to forward a copy of such emails to a relevant contact at 
the bank if they ask for this. Otherwise it should just be deleted. 

 
6.13 Such a letter strongly suggests that an attacker has collected sufficient 

personal details about you in order to satisfy the finance company that 
they are you for the purpose of establishing such a loan. Having taken 
the money, they have then left you responsible for the repayments. 
This was most likely done using either a phishing attack, perhaps 
persuading you to complete and return some form with the needed 
personal details; or by using spyware installed on your personal 
computer system by a worm or trojan horse malware, that then 
collected the necessary details from files on the system, or by 
monitoring your access to sensitive sites, such as banking sites.  

 
6.14  A (host-based) personal firewall monitors and controls network traffic 

flowing between the host and the net, and can help protect against 
exploit of remotely accessible network server vulnerabilities by 
blocking access to all but required services. Anti-virus software helps 
protect against the import and use of malware however it enters the 
system. Anti-virus software helps block the spread of macro viruses 
spread using email attachments. A (host-based) personal firewall could 
block the use of backdoors on the system. 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-44- 

 
 

CHAPTER 7  DENIAL-OF-SERVICE 

ATTACKS 

 

ANSWERS TO QUESTIONS 
7.1 A denial of service (DoS) attack is an action that prevents or impairs 

the authorized use of networks, systems, or applications by exhausting 
resources such as central processing units (CPU), memory, bandwidth, 
and disk space. 

 
7.2 Resources that could be attacked include any limited resources such as: 

network bandwidth, system resources, or application resources. 
 
7.3 The goal of a flooding attack is generally to overload the network 

capacity on some link to a server, or alternatively to overload the 
server’s ability to handle and respond to this traffic. 

 
7.4 Virtually any type of network packet can be used in a flooding attack, 

though common flooding attacks use ICMP, UDP or TCP SYN packet 
types. 

 
7.5 Many DoS attacks use packets with spoofed source addresses so any 

responses packets that result are no longer be reflected back to the 
original source system, but rather are scattered across the Internet to 
all the various forged source addresses. Some of these addresses might 
correspond to real systems, others may not be used, or not reachable. 
Any response packets returned as a result only add to the flood of traffic 
directed at the target system. 

 
7.6  “backscatter traffic” are packets generated in response to a DoS 

attack packet with a forged random source address, e.g. the ICMP echo 
response from an ICMP echo request being used to flood a link. 
Monitoring these packets, which are randomly distributed over the 
Internet, gives valuable information on the type and scale of attacks. 
This backscatter traffic provides information on any DoS attacks that 
use a forged random source address with the destination address being 
the target, including various single and distributed flooding attacks, and 
syn spoofing attacks. It does not provide information on attacks that do 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-45- 

 
not use randomly forged source addresses, or reflection or amplification 
attacks where the forged source address is that of the desired target. 

 
7.7 A distributed denial of service (DDoS) attack uses multiple attacking 

systems, often using compromised user workstations or PC’s. Large 
collections of such systems under the control of one attacker can be 
created, collectively forming a “botnet”. By using multiple systems, the 
attacker can significantly scale up the volume of traffic that can be 
generated. Also by directing the attack through intermediaries, the 
attacker is further distanced from the target, and significantly harder to 
locate and identify. 

 
7.8 Distributed denial of service (DDoS) attack botnets typically use a 

control hierarchy, where a small number of systems act as handlers 
controlling a much larger number of agent systems, as shown in Figure 
7.4. These have are a number of advantages, as the attacker can send 
a single command to a handler, which then automatically forwards it to 
all the agents under its control. Automated infection tools can also be 
used to scan for and compromise suitable zombie systems. 

 
7.9 In a reflection attack, the attacker sends a network packet with a 

spoofed source address to a service running on some network server, 
that responds to the spoofed source address that belongs to the actual 
attack target. If the attacker sends a number of such spoofed requests 
to a number of servers, the resulting flood of responses can overwhelm 
the target’s network link. The fact that normal server systems are being 
used as intermediaries, and that their handling of the packets is entirely 
conventional, means these attacks can be easier to deploy, and harder 
to trace back to the actual attacker. 

 
7.10 An amplification attack involves sending packets to intermediaries with 

a spoofed source address for the target system. They differ in 
generating multiple response packets for each original packet sent, 
typically by directing the original request to the broadcast address for 
some network. Alternatively they use a service, often DNS, that can 
generate a much larger response packet than the original request. 

 
7.11 The primary defense against many DoS attacks is to prevent source 

address spoofing. This must be implemented close to the source of any 
packet, when the real address (or at least network) is known. Typically 
this is the ISP providing the network connection for an organization or 
home user. It knows which addresses are allocated to all its 
customers, and hence is best placed to ensure that valid source 
addresses are used in all packets from its customers. 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-46- 

 
7.12 Non-spoofed flooding attacks are best defended against by the 

provision of significant excess network bandwidth and replicated 
distributed servers, particularly when the overload is anticipated. This 
does have a significant implementation cost though. Rate limits of 
various types on traffic can also be imposed. However such attacks 
cannot be entirely prevented, and may occur “accidentally” as a result 
of very high legitimate traffic loads. 

 
7.13 It is possible to specifically defend against the SYN spoofing attack by 

using a modified version of the TCP connection handling code, which 
instead of saving the connection details on the server, encodes critical 
information in a “cookie” sent as the server’s initial sequence number. 
When a legitimate client responds with an ACK packet, the server is 
able to reconstruct this information. Typically this technique is only 
used when the table overflows, as it does take computation resources 
on the server, and also blocks the use of certain TCP extensions. 

 
7.14 Like all the reflection-based attacks, the basic defense against DNS 

amplification attacks is to prevent the use of spoofed source 
addresses. This filtering needs to be done as close to the source as 
possible, by routers or gateways knowing the valid address ranges of 
incoming packets. Typically this is the ISP providing the network 
connection for an organization or home user. Otherwise, appropriate 
configuration of DNS servers, in particular limiting recursive responses 
to internal client systems only, as described in RFC 5358, can restrict 
some variants of DNS amplification attacks. 

 
7.15 To prevent an organization’s systems being used as intermediaries in a 

broadcast amplification attack, the best defense is to block the use of 
IP directed broadcasts. This can be done either by the ISP, or by any 
organization whose systems could potentially be used as an 
intermediary. 

 
7.16 The terms slashdotted or flash crowd refer to very large volumes of 

legitimate traffic, as result of high publicity about a specific site, often 
as a result of a posting to the well-known Slashdot or other similar 
news aggregation site. There is very little that can be done to prevent 
this type of either accidental or deliberate overload, without also 
compromising network performance. The provision of significant 
excess network bandwidth and replicated distributed servers is the 
usual response as noted in question 7.12. 

 
7.17 In order to successfully respond to a denial of service attack, a good 

incident response plan is needed to provide guidance. When a denial of 
service attack is detected, the first step is to identify the type of attack 
and hence the best approach to defend against it. From this analysis 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-47- 

 
the type of attack is identified, and suitable filters designed to block 
the flow of attack packets. These have to be installed by the ISP on 
their routers. If the attack targets a bug on a system or application, 
rather than high traffic volumes, then this must be identified, and 
steps taken to correct it to prevent future attacks. In the case of an 
extended, concerted, flooding attack from a large number of 
distributed or reflected systems, it may not be possible to successfully 
filter enough of the attack packets to restore network connectivity. In 
such cases the organization needs a contingency strategy to switch to 
alternate backup servers, or to rapidly commission new servers at a 
new site with new addresses, in order to restore service. 

 
7.18 The organization may wish to trace the source of various types of 

packets used in a DoS attack. If non-spoofed addresses are used, this 
is easy. However if spoofed sources addresses are used, this can be 
difficult and time-consuming, as their ISP will need to trace the flow of 
packets back in an attempt to identify their source. This is generally 
neither easy nor automated, and requires cooperation from the 
network providers these packets traverse. 

 

ANSWERS TO PROBLEMS 
7.1 In a DoS attack using ICMP Echo Request (ping) packets 500 bytes in 

size, to flood a target organization using a 0.5 Megabit per second 
(Mbps) link the attacker needs 500000 / (500 × 8) = 125 packets per 
second. On a 2-Mbps link its 2000000 / (500 × 8) = 500 packets per 
second. On a 10-Mbps link its 10000000 / (500 × 8) = 2500 packets per 
second. 

 
7.2 For a TCP SYN spoofing attack, on a system with a table for 256 

connection requests, that will retry 5 times at 30 second intervals, 
before purging the request from its table, each connection request 
occupies a table entry for 6 × 30 secs (initial + 5 repeats) = 3 min. In 
order to ensure that the table remains full, the attacker must continue 
to send 256/ 3 or about 86 TCP connection requests per minute? 
Assuming the TCP SYN packet is 40 bytes in size, this consumes about 
86 × 40 × 8 / 60, which is about 459 bits per second, a negligible 
amount. 

 
7.3 In the distributed variant of the attack from Problem 7.1, a single 

zombie PC can send 128000 / (500 × 8) = 32 packets per second. About 
4 such zombie systems are needed to flood a target organization using a 
0.5 Megabit per second (Mbps) link, looking either at 500kbps / 128 
kbps, or 125 / 32 packets per sec.  For a 2Mbps link about 16 are 
needed (500/32 pps), for a 10-Mbps link about 79 are needed (2500/32 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-48- 

 
pps). Given reports of botnets composed of many thousands of zombie 
systems, clearly multiple such simultaneously DDoS attacks are 
possible. As is an attack on a major organization with multiple, much 
larger network links (e.g. 1000 zombies with 128-kbps links can flood 
128 Mbps of network link capacity). 

 
7.4 The answers for the DNS amplification attack are the same as in 

Problem 7.1. On a 0.5-Mbps link, 125 packets, each of 500 bytes, are 
needed per second. 500 pps are needed to flood a 2-Mbps link, and 
2500 pps to flood a 10-Mbps link. Assuming a 60-byte DNS request 
packet then 125 × 60 × 8 = 60 kbps is needed to trigger the flood on a 
0.5-Mbps link, 240 kbps to flood the 2-Mbps link, and 1.2 Mbps to flood 
the 10-Mbps link. In all cases the amplification is 500 / 60 = 8.3 times. 

 
7.5 The answer to this question depends on the operating system (and 

version) chosen, however SYN Cookies are now supported on many 
systems.  

 
7.6 The answer to this question also depends on the type of router 

investigated, but again these features are common on enterprise grade 
devices.  

 
7.7 In this future idealized more secure network, administrators of server 

systems still do need to be concerned about, and take further counter-
measures against, DoS attacks. Attacks using real addresses from real 
systems with high bandwidth network connections are still possible, as 
are “flash-crowd” overloads as a result of, possible fraudulent, publicity. 
To reduce the impact of such attacks, measures are needed to manage 
intermittent high traffic volumes, as mentioned in review questions 7.11 
and 7.13. 

 
7.8 The results of practical lab experiments such as these depend on the 

facilities and equipment available. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-49- 

 
 

CHAPTER 8  INTRUSION DETECTION 

 

ANSWERS TO QUESTIONS 
8.1 Four classes of intruders we discuss are: 

• Cyber criminals are either individuals or members of an organized 
crime group with a goal of financial reward; 

• Activists: are either individuals, usually working as insiders, or 
members of a larger group of outsider attackers, who are motivated 
by social or political causes; 

• State-sponsored organizations: are groups of hackers 
sponsored by governments to conduct espionage or sabotage 
activities. They are also known as Advanced Persistent Threats 
(APTs), due to the covert nature and persistence over extended 
periods involved with many attacks in this class; and 

• Others: are hackers with motivations other than those listed 
above, including classic hackers or crackers who are motivated by 
technical challenge or by peer-group esteem and reputation. 

 
8.2 The steps typically used by intruders when attacking a system are: 

• Target Acquisition and Information Gathering: where the 
attacker identifies and characterizes the target systems using 
publicly available information, both technical and non-technical, and 
the use network exploration tools to map target resources; 

• Initial Access: typically by exploiting a remote network 
vulnerability, by guessing weak authentication credentials used in a 
remote service, or via the installation of malware on the system 
using some form of social engineering or drive-by-download attack; 

• Privilege Escalation: are actions taken on the system, typically 
via a local access vulnerability to increase the privileges available to 
the attacker to enable their desired goals on the target system; 

• Information Gathering or System Exploit: are actions by the 
attacker to access or modify information or resources on the 
system, or to navigate to another target system; 

• Maintaining Access: are actions such as the installation of 
backdoors or other malicious software, or the addition of covert 
authentication credentials or other configuration changes to the 
system, to enable continued access by the attacker after the initial 
attack. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-50- 

 
• Covering Tracks: where the attacker disables or edits audit logs to 

remove evidence of attack activity, and uses rootkits and other 
measures to hide covertly installed files or code 

 
8.3 Table 8.1 lists examples of activities associated with each of the attack 

steps that may be used by an intruder. Pick any item from each part. 
 
8.4 Sensors: Sensors are responsible for collecting data. The input for a 

sensor may be any part of a system that could contain evidence of an 
intrusion. Types of input to a sensor include network packets, log files, 
and system call traces. Sensors collect and forward this information to 
the analyzer. 

 Analyzers: Analyzers receive input from one or more sensors or from 
other analyzers. The analyzer is responsible for determining if an 
intrusion has occurred. The output of this component is an indication 
that an intrusion has occurred. The output may include evidence 
supporting the conclusion that an intrusion occurred. The analyzer may 
provide guidance about what actions to take as a result of the intrusion. 

 User interface: The user interface to an IDS enables a user to view 
output from the system or control the behavior of the system. In some 
systems, the user interface may equate to a manager, director, or 
console component. 

 
8.5 Host-based IDS: Monitors the characteristics of a single host and the 

events occurring within that host for suspicious activity 
 Network-based IDS: Monitors network traffic for particular network 

segments or devices and analyzes network, transport, and application 
protocols to identify suspicious activity 
Distributed or hybrid IDS: Combines information from a number of 
sensors, often both host and network-based, in a central analyzer that 
is able to better identify and respond to intrusion activity. 

8.6 1. If an intrusion is detected quickly enough, the intruder can be 
identified and ejected from the system before any damage is done or 
any data are compromised. Even if the detection is not sufficiently 
timely to preempt the intruder, the sooner that the intrusion is detected, 
the less the amount of damage and the more quickly that recovery can 
be achieved.  
2. An effective intrusion detection system can serve as a deterrent, so 
acting to prevent intrusions.  
3. Intrusion detection enables the collection of information about 
intrusion techniques that can be used to strengthen the intrusion 
prevention facility. 

 
8.7 A false positive, or false alarm, is where authorized users are 

identified as intruders by an IDS. A false negative is when intruders 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-51- 

 
are not identified as intruders by an IDS, as a result of a tighter 
interpretation of intruder behavior in an attempt to limit false positives. 

 
8.8 The base-rate fallacy occurs when there is an attempt to detect a 

phenomenon that occurs rarely. The frequency of occurrence is referred 
to as the base rate. When the base rate is very low, it is difficult to 
achieve low levels of both false positives and false negatives. 

 
8.9 •Run continually with minimal human supervision. 
 •Be fault tolerant in the sense that it must be able to recover from 

system crashes and reinitializations. 
 •Resist subversion. The IDS must be able to monitor itself and detect if 

it has been modified by an attacker. 
 •Impose a minimal overhead on the system where it is running. 
 •Be able to be configured according to the security policies of the 

system that is being monitored. 
 •Be able to adapt to changes in system and user behavior over time. 
 •Be able to scale to monitor a large number of hosts. 
 •Provide graceful degradation of service in the sense that if some 

components of the IDS stop working for any reason, the rest of them 
should be affected as little as possible. 

 •Allow dynamic reconfiguration; that is, the ability to reconfigure the 
IDS without having to restart it.  

 
8.10 Anomaly detection involves the collection of data relating to the 

behavior of legitimate users over a period of time. Then statistical 
tests are applied to observed behavior to determine with a high level 
of confidence whether that behavior is not legitimate user behavior. 
Signature or Heuristic detection uses a set of known malicious data 
patterns (signatures) or attack rules (heuristics) that are compared 
with current behavior to decide if is that of an intruder. It is also 
known as misuse detection. This approach can only identify known 
attacks for which it has patterns or rules. 

 
8.11 The three broad categories of classification approaches used by 

anomaly detection systems are: 
• Statistical: Analysis of the observed behavior using univariate, 

multivariate, or time-series models of observed metrics. 
• Knowledge based: Approaches use an expert system that 

classifies observed behavior according to a set of rules that model 
legitimate behavior. 

• Machine-learning: Approaches automatically determine a suitable 
classification model from the training data using data mining 
techniques. 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-52- 

 
8.12 A number of machine-learning approaches used in anomaly detection 

systems include: 
• Bayesian networks: Encode probabilistic relationships among 

observed metrics. 
• Markov models: Develop a model with sets of states, some 

possibly hidden, interconnected by transition probabilities. 
• Neural networks: Simulate human brain operation with neurons 

and synapse between them, that classify observed data. 
• Fuzzy logic: Uses fuzzy set theory where reasoning is 

approximate, and can accommodate uncertainty. 
• Genetic algorithms: Uses techniques inspired by evolutionary 

biology, including inheritance, mutation, selection and 
recombination, to develop classification rules. 

• Clustering and outlier detection: Group the observed data into 
clusters based on some similarity or distance measure, and then 
identify subsequent data as either belonging to a cluster or as an 
outlier. 

 
8.13 Signature approaches match a large collection of known patterns of 

malicious data against data stored on a system or in transit over a 
network. Rule-based heuristic identification involves the use of 
rules for identifying known penetrations or penetrations that would 
exploit known weaknesses. Rules can also be defined that identify 
suspicious behavior, even when the behavior is within the bounds of 
established patterns of usage. 

 
8.14 Some data sources used in a HIDS are: 

• System call traces: A record of the sequence of systems calls by 
processes on a system; 

• Audit (log file) records: Most modern operating systems include 
accounting software that collects information on user activity; 

• File integrity checksums: Periodically scan critical files for 
changes from the desired baseline by comparing a current 
cryptographic checksums for these files, with a record of known 
good values; 

• Registry access: An approach used on Windows systems is to 
monitor access to the registry, given the amount of information and 
access to it used by pro- grams on these systems. 

 
8.15 Signature and heuristic HIDS are currently more commonly deployed, 

particularly on Windows systems, due to the difficulty in gathering 
suitable data to use in anomaly HIDS, and because of the load placed 
on the system to gather and classify this data. Signature or heuristic 
based HIDS are widely used, particularly as seen in anti-virus (A/V), 
more correctly viewed as anti-malware, products. These are very 
commonly used on Windows systems, and also incorporated into mail 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-53- 

 
and web application proxies on firewalls and in network based IDSs. 
These products are quite efficient at detecting known malware, 
however they are not capable of detecting zero-day attacks that do not 
correspond to the known signatures or heuristic rules. 

 
8.16 A Distributed HIDS provide a more effective defense by coordination 

and cooperation among HIDSs across the network.  
 
8.17 An inline sensor is inserted into a network segment so that the traffic 

that it is monitoring must pass through the sensor. A passive sensor 
monitors a copy of network traffic; the actual traffic does not pass 
through the device. 

 
8.18 Possible locations for NIDs sensors are: 

• just inside the external firewall; 
• between the external firewall and the Internet or WAN; 
• at the entrance to major backbone networks; 
• on workstation LANs. 

 
8.19 As with host-based intrusion detection, network-based intrusion 

detection makes use of signature detection and anomaly detection. 
Unlike the case with HIDS, a number of commercial anomaly NIDS 
products are available, as well as more traditional signature detection 
systems. 

 
8.20 A distributed or hybrid IDS combines in a central IDS, the 

complementary information sources used by HIDS with host-based 
process and data details, and NIDS with network events and data, to 
manage and coordinate intrusion detection and response in an 
organization’s IT infrastructure. 

 
8.21 Honeypots are decoy systems that are designed to lure a potential 

attacker away from critical systems. 
 
8.22 Honeypots are typically classified as being either a: 

• Low interaction honeypot: a software package that emulates 
particular IT services or systems well enough to provide a realistic 
initial interaction, but does not execute a full version of those 
services or systems. 

• High interaction honeypot: a real system, with a full operating 
system, services and applications, which are instrumented and 
deployed where they can be accessed by attackers. 

 

ANSWERS TO PROBLEMS 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-54- 

 
8.1 Types of publicly available information that could be used by an attacker 

include: information required by law such as business registration and 
contact details or share registration details; contact information in 
phone books, DNS entries, network registration and WHOIS details; 
publicity and contact details provided by an organization on their 
website, or in publications handed out to the public. This suggests that 
from a security perspective, the content and detail of such information 
should be minimized. But this may well conflict with the organization’s 
business and legal requirements to make this information available? It 
can be very difficult to reconcile these conflicting demands, though the 
appropriate balance may be suggested by the results of a risk 
assessment of the organization which may identify which types of 
information may be particularly dangerous. It may be possible to 
remove details of individual’s names and positions, which would be of 
use in a spear-phishing attack, and use generic position details instead. 

 
8.2 This is a typical example: 

 
 
8.3 The following is an extract from [SCAR12]: 

Choosing sensor locations for a wireless IDP deployment is a 
fundamentally different problem than choosing locations for any other 
type of IDP sensor. If the organization uses WLANs, wireless sensors 
should be deployed so that they monitor the RF range of the 
organization’s WLANs (both APs and STAs), which often includes mobile 
components such as laptops and PDAs. Many organizations also want to 
deploy sensors to monitor physical regions of their facilities where there 
should be no WLAN activity, as well as channels and bands that the 
organization’s WLANs should not use, as a way of detecting rogue APs 
and ad hoc WLANs. Other considerations for selecting wireless sensor 
locations include the following: 

 Physical Security. Sensors are often deployed into open locations 
(e.g., hallway ceilings, conference rooms) because their range is much 
greater there than in closed locations (e.g., wiring closets). Sensors are 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-55- 

 
sometimes deployed outdoors as well.28 Generally, sensors in open 
interior locations and external locations are more susceptible to physical 
threats than other sensors. If the physical threats are significant, 
organizations might need to select sensors with anti-tamper features or 
deploy sensors where they are less likely to be physically accessed 
(e.g., within view of a security camera). 

 Sensor Range. The actual range of a sensor varies based on the 
surrounding facilities (e.g., walls, doors). Some wireless IDP vendors 
offer modeling software that can analyze building floor plans and the 
attenuation characteristics of walls, doors, and other facility components 
to determine effective locations for sensors. Sensor range can also vary 
based on the location of people within the facility and other changing 
characteristics, so sensors should be deployed so that their ranges have 
some overlap (e.g., at least 20%). 

 Wired Network Connections. The sensors typically need to be 
connected to the wired network. If there is a need to deploy sensors in 
an area where there is no wired network, then it might be necessary to 
extend the wired network into that area. This is generally a concern only 
if the organization wants to monitor portions of their facilities that are 
outside the range of the WLAN. 

 Cost. Ideally, an organization could deploy sensors throughout its 
facilities to perform full wireless monitoring. However, the number of 
sensors needed to do so can be quite large, especially in wide-open 
campus environments. Organizations should compare WLAN threats to 
the cost of sensor purchases, deployment, and maintenance, and 
develop a solution that creates an acceptable level of risk. For example, 
an organization might decide to deploy fixed sensors throughout the 
range of the organization’s WLANs, and to do periodic checks of other 
areas using mobile sensors. 

 AP and Wireless Switch Locations. If a bundled solution (e.g., 
wireless IDP software on an AP) would meet the organization’s other 
requirements, then the locations of APs and wireless switches are 
particularly important because the wireless IDP software could 
potentially be deployed onto those devices. 

 
8.4 a. This rule wants to catch attempts to create a new database instance. 

Line 1, the rule header, states that interesting packets are flowing 
from external IP addresses for database servers responding on 
Oracle ports. Line 2 is the text alert to be reported. Line 3 defines 
two additional matching conditions: first, packets must be directed to 
a server and must be part of an already established TCP connection, 
and second, the case-independent string "create database" must be 
contained in the packet payload. 

 b. Typically, a system administrator would configure a system to forbid 
database creation from across the Internet. Such attempts would be 
blocked by the firewall. The external NIDS would simply be a way of 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-56- 

 
segregating out such attacks and alerting on them. If the NIDS is 
inside the firewall, it would be able to catch a serious deficiency in 
firewall behavior. 

 
8.5 a. The graph below doesn't look like a correct probability distribution 

and is instead labeled as event distribution.  The point here is that 
even if you have nice, mostly non-overlapping probability 
distributions for distinguishing intruders and authorized users like 
Figure 8.1, the problem is for most systems we hope the actual 
numbers of intruders is dwarfed by the number of authorized users.  
This means that the long tail of the authorized users distribution that 
overlaps with the intruders distribution would generate lots of false 
positives (relative to the number of real intruders detected) even if it 
is only a few percent of the authorized users. 

overlap in observed
or expected behavior

profile of
intruder behavior

profile of
authorized user

behavior

Measurable behavior
parameter

Event
distribution

 
 b. A randomly selected event that in the overlap region is (roughly) 

95% likely to be an authorized user, even though the region covers 
50% of the intruders probability distribution. 

 
8.6 A file integrity checking tool such as tripwire can be very useful in 

identifying changed files or directories on a system, particularly when 
those change should not have occurred. However most computer 
systems are not static, and significant numbers of files do change 
constantly. Hence it is necessary to configure tripwire with a list of files 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-57- 

 
and directories to monitor, since otherwise reports to the administrator 
would be filled with lists of files that are changing as a matter of normal 
operation of the system. It is not too difficult to monitor a small list of 
critical system programs, daemons and configuration files. Doing this 
means attempts to alter these files will likely be detected. However the 
large areas of the system not being monitored means an attacker 
changing or adding files in these areas will not be detected. The more of 
the system that is to be monitored, the more care is needed to identify 
only files not expected to change. Even then, it is likely that user’s 
home areas, and other shared document areas, cannot be monitored, 
since they are likely to be creating and changing files in there regularly. 
As well, there needs to be a process to manage the update of monitored 
files (as a result of installing patches, upgrades, new services, 
configuration changes etc). This process has to verify that the changed 
files are correct, and then update the cryptographic checksums of these 
files. Lastly the database of cryptographic checksums must be protected 
from any attempt by an attacker to corrupt it, ideally by locating on 
read-only media (except when controlled updates are occurring). 

 
8.7 This is a conditional probability problem. Total possible combinations for 

threat level Medium are: (P3, P4), (P4, P3) out of a total number of 
combinations = 16 – [Number of Events with neither of the two nodes 
generating a P3 signature] = 16 – 9 = 7 All Possibilities: 

 
 (P1, P1)(P1, P2), (P1, P3)(P1, P4)(P2, P1)(P2, P2)(P2, P3)(P2, P4)(P3, 

P1)(P3, P2)(P3, P3)(P3, P4)(P4, P1)(P4, P2)(P4, P3) (P4, P4) 
 
 Therefore, the Probability is = 2/7 
 
 Or Let A = {1 P3 and 1 P4}, B = {at least one is P3} 
 Pr[A|B] = Pr[AB]/ P[B] 
 Pr[AB] is the probability that one outcome is P3 and one outcome is P4 

AND that at least one outcome is P3, is 2/16, and the probability of 
getting at least one P3 is 7/16, therefore, the 

 
 Pr[A|B] = [2/16]/[7/16] = 2/7 
 
8.8 Let WB equal the event {witness reports Blue cab}. Then: 
 

  

Pr Blue WB[ ] = Pr WB Blue[ ]Pr Blue[ ]
Pr WB Blue[ ]Pr Blue[ ] + Pr WB Green[ ]Pr Green[ ]

=
0.8( ) 0.15( )

0.8( ) 0.15( ) + 0.2( ) 0.85( )
= 0. 41

 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-58- 

 
 This example, or something similar, is referred to as "the juror's 

fallacy." 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-59- 

 
 

CHAPTER 9  FIREWALLS AND INTRUSION 

PREVENTION SYSTEMS 

 

ANSWERS TO QUESTIONS 
9.1 1. All traffic from inside to outside, and vice versa, must pass through 

the firewall. This is achieved by physically blocking all access to the local 
network except via the firewall. Various configurations are possible, as 
explained later in this section. 
2. Only authorized traffic, as defined by the local security policy, will be 
allowed to pass. Various types of firewalls are used, which implement 
various types of security policies, as explained later in this section. 
3. The firewall itself is immune to penetration. This implies that use of a 
trusted system with a secure operating system. 

 
9.2 IP Address and Protocol Values: Controls access based on the 

source or destination addresses and port numbers, direction of flow 
being inbound or outbound, and other network and transport layer 
characteristics. 
Application Protocol: Controls access on the basis of authorized 
application protocol data. 
User Identity: Controls access based on the users identity, typically for 
inside users who identify themselves using some form of secure 
authentication technology, such as IPSec.  
Network Activity: Controls access based on considerations such as the 
time or request, or other activity patterns. 

 
9.3 Source IP address: The IP address of the system that originated the 

IP packet. 
Destination IP address: The IP address of the system the IP packet is 
trying to reach. 
Source and destination transport-level address: The transport level 
(e.g., TCP or UDP) port number, which defines applications such as 
SNMP or TELNET. 
IP protocol field: Defines the transport protocol. 
Interface: For a router with three or more ports, which interface of the 
router the  packet came from or which interface of the router the packet 
is destined for. 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-60- 

 
9.4 1. Because packet filter firewalls do not examine upper-layer data, they 

cannot prevent attacks that employ application-specific vulnerabilities or 
functions. For example, a packet filter firewall cannot block specific 
application commands; if a packet filter firewall allows a given 
application, all functions available within that application will be 
permitted. 
2. Because of the limited information available to the firewall, the 
logging functionality present in packet filter firewalls is limited. Packet 
filter logs normally contain the same information used to make access 
control decisions (source address, destination address, and traffic type).  
3. Most packet filter firewalls do not support advanced user 
authentication schemes. Once again, this limitation is mostly due to the 
lack of upper-layer functionality by the firewall. 
4. They are generally vulnerable to attacks and exploits that take 
advantage of problems within the TCP/IP specification and protocol 
stack, such as network layer address spoofing. Many packet filter 
firewalls cannot detect a network packet in which the OSI Layer 3 
addressing information has been altered. Spoofing attacks are generally 
employed by intruders to bypass the security controls implemented in a 
firewall platform. 
5. Finally, due to the small number of variables used in access control 
decisions, packet filter firewalls are susceptible to security breaches 
caused by improper configurations. In other words, it is easy to 
accidentally configure a packet filter firewall to allow traffic types, 
sources, and destinations that should be denied based on an 
organization's information security policy.   

 
9.5 A traditional packet filter makes filtering decisions on an individual 

packet basis and does not take into consideration any higher layer 
context. A stateful inspection packet filter tightens up the rules for 
TCP traffic by creating a directory of outbound TCP connections, as 
shown in Table 9.2. There is an entry for each currently established 
connection. The packet filter will now allow incoming traffic to high-
numbered ports only for those packets that fit the profile of one of the 
entries in this directory 

 
9.6 An application-level gateway, also called a proxy server, acts as a relay 

of application-level traffic. 
 
9.7 A circuit-level gateway does not permit an end-to-end TCP connection; 

rather, the gateway sets up two TCP connections, one between itself 
and a TCP user on an inner host and one between itself and a TCP user 
on an outside host. Once the two connections are established, the 
gateway typically relays TCP segments from one connection to the other 
without examining the contents. The security function consists of 
determining which connections will be allowed. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-61- 

 
 
9.8 Packet filtering firewall: Applies a set of rules to each incoming and 

outgoing IP packet and then forwards or discards the packet. 
 Stateful inspection firewall: Tightens up the rules for TCP traffic by 

creating a directory of outbound TCP connections, as shown in Table 
9.2. There is an entry for each currently established connection. The 
packet filter will now allow incoming traffic to high-numbered ports only 
for those packets that fit the profile of one of the entries in this 
directory. 

 Application proxy firewall: Acts as a relay of application-level traffic 
(Figure 9.1d). The user contacts the gateway using a TCP/IP application, 
such as Telnet or FTP, and the gateway asks the user for the name of 
the remote host to be accessed. When the user responds and provides a 
valid user ID and authentication information, the gateway contacts the 
application on the remote host and relays TCP segments containing the 
application data between the two endpoints. If the gateway does not 
implement the proxy code for a specific application, the service is not 
supported and cannot be forwarded across the firewall. Further, the 
gateway can be configured to support only specific features of an 
application that the network administrator considers acceptable while 
denying all other features 

 Circuit-level proxy firewall: As with an application gateway, a circuit-
level gateway does not permit an end-to-end TCP connection; rather, 
the gateway sets up two TCP connections, one between itself and a TCP 
user on an inner host and one between itself and a TCP user on an 
outside host. Once the two connections are established, the gateway 
typically relays TCP segments from one connection to the other without 
examining the contents. The security function consists of determining 
which connections will be allowed. 

 
9.9 • The bastion host hardware platform executes a secure version of its 

operating system, making it a hardened system. 
 • Only the services that the network administrator considers essential 

are installed on the bastion host. These could include proxy applications 
for DNS, FTP, HTTP, and SMTP. 

 • The bastion host may require additional authentication before a user is 
allowed access to the proxy services. In addition, each proxy service 
may require its own authentication before granting user access. 

 • Each proxy is configured to support only a subset of the standard 
application’s command set.  

 • Each proxy is configured to allow access only to specific host systems. 
This means that the limited command/feature set may be applied only 
to a subset of systems on the protected network. 

 • Each proxy maintains detailed audit information by logging all traffic, 
each connection, and the duration of each connection. The audit log is 
an essential tool for discovering and terminating intruder attacks. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-62- 

 
 • Each proxy module is a very small software package specifically 

designed for network security. Because of its relative simplicity, it is 
easier to check such modules for security flaws. For example, a typical 
UNIX mail application may contain over 20,000 lines of code, while a 
mail proxy may contain fewer than 1000. 

 • Each proxy is independent of other proxies on the bastion host. If 
there is a problem with the operation of any proxy, or if a future 
vulnerability is discovered, it can be uninstalled without affecting the 
operation of the other proxy applications. Also, if the user population 
requires support for a new service, the network administrator can easily 
install the required proxy on the bastion host. 

 • A proxy generally performs no disk access other than to read its initial 
configuration file. Hence, the portions of the file system containing 
executable code can be made read only. This makes it difficult for an 
intruder to install Trojan horse sniffers or other dangerous files on the 
bastion host. 

 • Each proxy runs as a nonprivileged user in a private and secured 
directory on the bastion host. 

 
9.10 • Filtering rules can be tailored to the host environment. Specific 

corporate security policies for servers can be implemented, with 
different filters for servers used for different application. 

 • Protection is provided independent of topology. Thus both internal 
and external attacks must pass through the firewall. 

 • Used in conjunction with stand-alone firewalls, the host-based 
firewall provides an additional layer of protection. A new type of server 
can be added to the network, with its own firewall, without the 
necessity of altering the network firewall configuration. 

 
9.11 Between internal and external firewalls are one or more networked 

devices in a region referred to as a DMZ (demilitarized zone) network. 
Systems that are externally accessible but need some protections are 
usually located on DMZ networks. Typically, the systems in the DMZ 
require or foster external connectivity, such as a corporate Web site, 
an e-mail server, or a DNS (domain name system) server. 

 
9.12 An external firewall is placed at the edge of a local or enterprise 

network, just inside the boundary router that connects to the Internet 
or some wide area network (WAN). One or more internal firewalls 
protect the bulk of the enterprise network. 

 
9.13 An IPS blocks traffic, as a firewall does, but makes use of the types of 

algorithms developed for IDSs. 
 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-63- 

 
9.14 Like an IDS, an IPS can be host-based, network-based, or 

distributed/hybrid combining information from a range of host and 
network based sensors. 

 
9.15 Once an IDS has detected malicious activity, it can respond by 

modifying or blocking network packets across a perimeter or into a 
host, or by modifying or blocking system calls by programs running on 
a host.  

 
9.14 A UTM performs network firewalling, network intrusion detection and 

prevention and gateway anti-virus. 
 

ANSWERS TO PROBLEMS 
9.1 It will be impossible for the destination host to complete reassembly of 

the packet if the first fragment is missing, and therefore the entire 
packet will be discarded by the destination after a time-out. 

 
9.2 When a TCP packet is fragmented so as to force interesting header 

fields out of the zero-offset fragment, there must exist a fragment with 
FO equal to 1. If a packet with FO = 1 is seen, conversely, it could 
indicate the presence, in the fragment set, of a zero-offset fragment 
with a transport header length of eight octets Discarding this one-offset 
fragment will block reassembly at the receiving host and be as effective 
as the direct method described above. 

 
9.3 If the router's filtering module enforces a minimum fragment offset for 

fragments that have non-zero offsets, it can prevent overlaps in filter 
parameter regions of the transport headers. 

 
9.4 1. Allow return TCP Connections to internal subnet. 
 2. Prevent Firewall system itself from directly connecting to anything. 
 3. Prevent External users from directly accessing the Firewall system. 
 4. Internal Users can access External servers, 
 5. Allow External Users to send email in. 
 6. Allow External Users to access WWW server. 
 7. Everything not previously allowed is explicitly denied. 
 
9.5 a. Rules A and B allow inbound SMTP connections (incoming email) 
  Rules C and D allow outbound SMTP connections (outgoing email) 
  Rule E is the default rule that applies if the other rules do not apply. 
 b. Packet 1: Permit (A); Packet 2: Permit (B): Packet 3: Permit (C) 
  Packet 4: Permit (D) 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-64- 

 
 c. The attack could succeed because in the original filter set, rules B 

and D allow all connections where both ends are using ports above 
1023. 

 
9.6 a. A source port is added to the rule set. 
 b. Packet 1: Permit (A); Packet 2: Permit (B): Packet 3: Permit (C) 
  Packet 4: Permit (D); Packet 5: Deny (E); Packet 6: Deny (E) 
 
9.7 a. Packet 7 is admitted under rule D. Packet 8 is admitted under rule C. 
 b. Add a column called ACK Set, with the following values for each rule: 

A = Yes; 
  B = Yes; C = Any; D = Yes; E = Any 
 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-65- 

 
 
9.8  Pros Cons 
 Pattern 

matching 
•Identifies known attacks 
•Provides specific 
information for analysis and 
response 

•May trigger false positives 
•Requires frequent updates 
of signature tables 
•Attacks can be modified to 
avoid detection 

 Stateful 
matching 

•Identifies known attacks 
•Detects signatures spread 
across multiple packets 
•Provides specific 
information for analysis and 
response 

•May trigger false positives 
• Requires frequent updates 
of signature tables 
•Attacks can be modified to 
avoid detection 

 Protocol 
anomaly 

•Can identify attacks 
without a signature 
•Reduces false positives 
with well-understood 
protocols 

•May lead to false positives 
and false negatives with 
poorly understood or 
complex protocols 
•Protocol analysis modules 
take longer to deploy to 
customers than signatures 

 Traffic 
anomaly 

•Can identify unknown 
attacks and DoS floods 

•Can be difficult to tune 
properly 
•Must have clear 
understanding of normal 
traffic environment 

 Statistical 
anomaly 

•Can identify unknown 
attacks and DoS floods 

•Can be difficult to tune 
properly 
•Must have clear 
understanding of normal 
traffic environment 

  
9.9 A requirement like "all external Web traffic must flow via the 

organization's Web proxy." is easier stated than implemented. This is 
because identifying what actually constitutes “web traffic” is highly 
problematical. Although the standard port for HTTP web servers is port 
80, servers are found on a large number of other ports (including 
servers belonging to large, well-known and widely used organizations). 
This means it is very difficult to block direct access to all possible web 
servers just using port filters. Whilst it is easy enough to configure web 
browser programs to always use a proxy, this will not stop direct access 
by other programs. It also means that the proxy server must have 
access to a very large number of external ports, since otherwise access 
to some servers would be limited. As well as HTTP access, other 
protocols are used on the web. All of these should also be directed via 
the proxy in order to implement the desired policy. But this may impact 
the operation of other programs using these protocols. In particular, the 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-66- 

 
HTTPS protocol is used for secure web access that encrypts all traffic 
flowing between the client and the server. Since the traffic is encrypted, 
it means the proxy cannot inspect its contents in order to apply 
malware, SPAM or other desired filtering. Whilst there are some 
mechanisms for terminating the encrypted connections at the proxy, 
they have limitations and require the use of suitable browsers and proxy 
servers.  

 
9.10 A possible requirement to manage information leakage requires all 

external e-mail to be given a sensitivity tag (or classification) in its 
subject and for external e-mail to have the lowest sensitivity tag. At 
its simplest a policy can just require user’s to always include such a 
tag in email messages. Alternatively with suitable email agent 
programs it may be possible to enforce the prompting for and 
inclusion of such a tag on message creation. Then, when external 
email is being relayed through the firewall, the mail relay server must 
check that the correct tag value is present in the Subject header, and 
refuse to forward the email outside the organization if not, and notify 
the user of its rejection. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-67- 

 
 
9.11 Suitable packet filter rulesets FOR the "External Firewall" and the 

"Internal Firewall" respectively, to satisfy the stated "informal firewall 
policy", could be: 

 
action src port dest port flags comment  
permit DMZ mail 

gateway 
any any SMTP 

(25) 
 header sanitize 

permit any any DMZ mail 
gateway 

SMTP 
(25) 

 content filtered 

permit any any DMZ mail 
gateway 

POP3S 
(995) 

 user auth 

permit DMZ web 
proxy 

any any HTTP/S 
(80,443) 

 content filtered, 
user auth 

permit DMZ DNS 
server 

DNS 
(53) 

any DNS 
(53) 

 TCP & UDP 

permit any DNS 
(53) 

DMZ DNS 
server 

DNS 
(53) 

 TCP & UDP 

permit any any any DMZ 
server 

any estab 
lished 

return traffic 
flow 

deny any any any any  block all else 
 

action src port dest port flags comment  
permit any internal any DMZ mail 

gateway 
SMTP 
(25) 

  

permit any internal any DMZ mail 
gateway 

POP3/S 
(110,995) 

 user auth 

permit any internal any DMZ web 
proxy 

HTTP/S 
(80,443) 

 content filtered, 
user auth 

permit any internal DNS 
(53) 

DMZ DNS 
server 

DNS 
(53) 

 UDP lookup 

permit DMZ DNS 
server 

DNS 
(53) 

any internal DNS 
(53) 

 UDP lookup 

permit any internal any any DMZ 
server 

SSH (22)  user auth on 
server 

permit mgmt user 
hosts 

any any DMZ 
server 

SNMP 
(161) 

  

permit any DMZ 
server 

any mgmt user 
hosts 

SNMP 
TRAP 
(162) 

  

permit any DMZ 
server 

any any internal any estab 
lished 

return traffic 
flow 

deny any any any any  block all else 
 
9.12 Yes. A rule set such as the following will do the trick: 

drop tcp *:* -> 5.6.7.8:* 
 The following might be a little better, because it does not restrict 

outbound connections initiated by our internal server: 
drop tcp *:* -> 5.6.7.8:* (if SYN flag set) 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-68- 

 
 
9.13 a. Here are the strengths.  
  (1) It mediates all incoming traffic from external hosts and can 

protect against many attacks by outsiders; 
  (2) It is easier to manage and to update policies, because of single 

central location;  
  (3) It protects against some kinds of DoS attacks launched from the 

outside. 
 
  Here are the weaknesses.  
  (1) It has no protection against malicious insiders;  
  (2) It has no protection for mobile laptops while they are connected 

to other networks; 
  (3) It has no protection if laptops get infected while travelling and 

then spread infection when they re-connect to our internal network 
 b. Here are the strengths.  
  (1) It protects against malicious insiders and infected internal 

machines as well as outside attackers;  
  (2) It protects laptops even while they are travelling and connected 

to other networks; 
  (3) It may be easier to customize firewall protection on a per-

machine basis. 
 
  Here are the weaknesses.  
  (1) It is potentially more difficult to manage policies, due to the 

number of machines whose rulesets must be configured and 
updated; 

  (2) Uncooperative users may be able to modify settings or disable 
firewalls on their own machines, and viruses/worms may be able to 
do the same to machines they infect;  

  (3) It is potentially less resistant to DDoS, since DoS attacks can still 
flood internal network links; 

  (4) Depending upon firewall configuration, it may block legitimate 
internal traffic and/or make some internal services harder to use. 

 c. Here are the strengths.  
  (1) Layered defense provides redundancy in case one firewall fails;  
  (2) It can easily update policy against external attacks if a new threat 

develops, which gives some time to update the rulesets on internal 
hosts.  

  (3) Strengths (a)(1) and (b)(1)–(3) also apply. 
 
  Here are the weaknesses.  
  (1) Potential for overblocking of legitimate traffic, since traffic flows 

only if permitted by both firewalls.  
  (2) Weaknesses (b)(1), (b)(4) also apply 
 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-69- 

 
9.14 Modify the rule action from Alert to Drop to block these packets 

entering the home network, and to log the attempt: 
 

 Drop tcp $EXTERNAL_NET any -> $HOME_NET any\ 
(msg: “SCAN SYN FIN” flags: SF, 12;\ 
reference: arachnids, 198; classtype: attempted-recon;) 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-70- 

 
 

CHAPTER 10  BUFFER OVERFLOW 

 

ANSWERS TO QUESTIONS 
10.1 A “buffer overflow” results from adding more information to a 

program’s buffer than it was designed to hold.  
 
10.2 Buffer overflow attacks typically target buffers located in one of the 

stack, the heap, or the data section of a process. 
 
10.3 The consequences of a buffer overflow include corruption of data used 

by the program, unexpected transfer of control in the program, 
possibly memory access violations, and very likely eventual program 
termination. When done deliberately as part of an attack on a system, 
the transfer of control could be to code of the attacker’s choosing, 
resulting in the ability to execute arbitrary code with the privileges of 
the attacked process. 

 
10.4 To exploit any type of buffer overflow, the attacker needs to identify 

both a buffer overflow vulnerability in some program that can be 
triggered using externally sourced data under the attackers control, 
and to understand how that buffer will be stored in the processes 
memory, and hence the potential for corrupting adjacent memory 
locations and potentially altering the flow of execution of the program. 

 
10.5 The programming languages vulnerable to buffer overflows are those 

without a very strong notion of the type of variables, and what 
constitutes permissible operations on them. They include assembly 
language, and C and similar languages. Strongly typed languages such 
as Java, ADA, Python, and many others are not vulnerable to these 
attacks. 

 
10.6 A “stack buffer overflow” occurs when the targeted buffer is located on 

the stack, usually as a local variable in a function’s stack frame. If the 
function code that copies externally sourced data into such a buffer 
fails to correctly limit the amount of data written, then the values of 
adjacent variables, and even control fields such as the saved frame 
pointer and return address, can be overwritten. This can result in the 
program crashing, or in execution being transferred to (shell) code the 
attacker provides. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-71- 

 
 
10.7 “shellcode” is code supplied by the attacker, and often saved in the 

buffer being overflowed. It is called “shellcode” because traditionally 
its function was to transfer control to a user command-line interpreter, 
or shell, which gave access to any program available on the system 
with the privileges of the attacked program. 

 
10.8 There are several generic restrictions on the content of shellcode. 

Firstly it has to be “position-independent”. That means it cannot 
contain any absolute address referring to itself, because the attacker 
generally cannot determine in advance exactly where the targeted 
buffer will be located in the stack frame of the function in which it is 
defined. Instead the code is written to determine its location when 
actually run. Another restriction is that it cannot contain any NULL 
values. This is a consequence of the common use of C string routines 
to copy this data into the buffer. To overcome this, any NULL values 
must be written in when the code actually runs. 

 
10.9 A “NOP sled” is a run of NOP (no operation, do nothing) instructions, 

which are included before the desired shellcode to help overcome the 
lack of knowledge by the attacker of its precise location. In a buffer 
overflow attack, the attacker arranges for the transfer of control (via 
overwritten return address) to occur somewhere in the NOP Sled 
(guessing around the middle of the most likely location). Then when 
control transfers, no matter where in this run it occurs, the CPU 
executes NOPs until it reaches the actual desired shellcode. 

 
10.10 Apart from just spawning a command-line shell, the attacker may 

wish to create shellcode to perform somewhat more complex 
operations. The Packet Storm website includes a large collection of 
packaged shellcode, including code that can: set up a listening 
service to launch a remote shell when connected to; create a reverse 
shell that connects back to the hacker; local exploits that establish a 
shell or execve a process; flush firewall rules (such as IPTables and 
IPChains) that currently block other attacks; break out of a chrooted 
(restricted execution) environment, giving full access to the system. 

 
10.11 Two broad categories of defenses against buffer overflows are: 

compile-time defenses which aim to harden programs to resist 
attacks in new programs; and run-time defenses which aim to detect 
and abort attacks in existing programs. 

 
10.12 Compile-time defenses include: writing programs using a modern 

high-level programming language that is not vulnerable to buffer 
overflow attacks; using safe coding techniques to validate buffer use; 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-72- 

 
using language safety extensions and/or safe library 
implementations; or using stack protection mechanisms. 

 
10.13 Run-time defenses that provide some protection for existing 

vulnerable programs include: using “Executable Address Space 
Protection” that blocks execution of code on the stack, heap, or in 
global data; using “Address Space Randomization” to manipulate the 
location of key data structures such as the stack and heap in the 
processes address space; or by placing guard pages between 
critical regions of memory in a processes address space. 

 
10.14 In a “return to system call” attack, typically a stack overflow is used, 

but the return address is changed to jump to existing code on the 
system, typically in standard libraries. This avoids triggering run-time 
defenses that block executable code on the stack or heap. They can 
be prevented using stack protection mechanisms. 

 
10.15 In a “heap buffer overflow” attack, the targeted buffer is located on 

the heap rather than stack. These generally target either function 
pointers located adjacent to such buffers, or heap management 
pointers. These attacks avoid defenses that focus on stack based 
attacks. Defenses include making the heap non-executable, or 
randomizing addresses of structures on the heap. 

 
10.16 In a “global data area overflow” attack, the targeted buffer is located 

in the global data area. The attack is similar to heap overflows, as 
are the defenses. 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-73- 

 

ANSWERS TO PROBLEMS 
10.1 Safer variants of the unsafe standard C library functions shown in 

Table 10.2 are: 
 

Original Unsafe Function Safer Alternative 

gets(char *str) fgets(char *str, int size, FILE * fil) 

sprintf(char *str, char *fmt, ...) snprintf(char *str, int size, char * 
fmt, ...) 

strcat(char *dest, char *src) strncat(char *dest, char *src, int 
count) 

strlcat(char *dest, char *src, int 
size) 

strcpy(char *dest, char *src) strncpy(char *dest, char *src, int 
count) 

strlcpy(char *dest, char *src, int 
size) 

vsprintf(char *str, char *fmt, va_list 
ap) 

vsnprintf(char *str, int size, char 
*fmt, va_list ap) 

nb. the strlXXX routines are regarded as safer than the strnXXX routines, but 
may not be available on all systems. 

 
10.2 Corrected version of the program shown in Figure 10.1a (see bold 

lines): 
 

int main(int argc, char *argv[]) { 
    int valid = FALSE; 
    char str1[8]; 
    char str2[8]; 
     
    next_tag(str1); 
    fgets(str2, sizeof(str2), stdin); 
    if (strncmp(str1, str2, sizeof(str2)) == 0) 
        valid = TRUE;  
    printf("buffer1: str1(%s), str2(%s), valid(%d)\n", str1, str2, valid); 
} 

 
10.3 Corrected version of the program shown in Figure 10.5a (see bold 

lines): 
 

void hello(char *tag) 
{ 
    char inp[16]; 
 
    printf("Enter value for %s: ", tag); 
    fgets(inp, sizeof(inp), stdin); 
    printf("Hello your %s is %s\n", tag, inp); 
} 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-74- 

 
10.4 Corrected version of (part of) the program shown in Figure 10.7a (see 

bold lines): 
 

void display(char *val) 
{ 
    char tmp[16]; 
    snprintf(tmp, sizeof(tmp), "read val: %s\n", val); 
    puts(tmp); 
} 

 
10.5 The extended shellcode from Figure 10.8b including a call to exit(0) 

is (see bold lines): 
 

        jmp    find             // jump to end of code 
cont:   pop    %esi             // pop address of sh off stack into %esi 
        xor    %eax,%eax        // zero contents of EAX 
        mov    %al,0x7(%esi)    // copy zero byte to end of string sh (%esi) 
        lea    (%esi),%ebx      // load address of sh (%esi) into %ebx 
        mov    %ebx,0x8(%esi)   // save address of sh in args[0] (%esi+8) 
        mov    %eax,0xc(%esi)   // copy zero to args[1] (%esi+c) 
        mov    $0xb,%al         // copy execve syscall number (11) to AL 
        mov    %esi,%ebx        // copy address of sh (%esi) t0 %ebx 
        lea    0x8(%esi),%ecx   // copy address of args (%esi+8) to %ecx 
        lea    0xc(%esi),%edx   // copy address of args[1] (%esi+c) to %edx 
        int    $0x80            // software interrupt to execute syscall 
        mov    $0x1,%al         // copy exit syscall number (1) to AL 
        xor    %ebx,%ebx        // zero contents of EBX 
        int    $0x80            // software interrupt to execute syscall 
find:   call   cont             // call cont which saves next address on 
stack 
sh:     .string "/bin/sh "      // string constant  
args:   .long 0                 // space used for args array 
        .long 0                 // args[1] and also NULL for env array 

 
 Note that the syscall numbers are listed in the architecture specific 

“unistd.h” include file. This code can be tested by changing the encoded 
shell name to one that does not exist (e.g.. “/bin/xx”). 

 
10.6 The details and results from running this experiment depend on the 

specific UNIX O/S variant and example vulnerable program used. The 
book's Web site includes a zipfile with the example programs used in 
this chapter, as run on a Knoppix CD-bootable system. Note that you 
may well need to use an older O/S release, since recent versions have 
defenses such as non-executable stack enabled by default. 

 
10.7 The Packet Storm (http://www.packetstormsecurity.org/) site 

(shellcode area) includes several examples of PPC code to exec a shell 
under MacOSX 
(http://www.packetstormsecurity.org/shellcode/execMacOSX.txt, 
http://www.packetstormsecurity.org/shellcode/osx72bytes.txt) and 
Linux/PPC 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-75- 

 
  (http://www.packetstormsecurity.org/shellcode/execve-core.c). It also 

includes a comprehensive paper on this topic 
  http://www.packetstormsecurity.org/shellcode/PPC_OSX_Shellcode_Assembly.pdf. 
 
10.8 The details depend on which safe library alternative is examined. Note 

the Wikipedia page on “Buffer_overflow” provides links to the websites 
for many of the alternative safe library implementations. 

 
10.9 No detailed answer available yet, however the Wikipedia page on 

“Return-to-libc_attack” provides some brief information and links to 
other resources. 

 
10.10 Corrected version of the functions shown in Figure 10.10 (see bold 

lines). Note that the function “signatures” have to change, since 
information on the size of the buffer is needed (as seen in the safer 
variants of the string copy/cat functions). 

 
int safe_copy_buf(char *to, int size, int pos, char *from, int len) 
{ 
    int i; 
 
    if (len <= 0)   /* invalid negative or zero len */ 
        return pos; 
    if ((pos+len)>size))  /* len exceeds available space in buffer */ 
        len = size – pos; 
    for (i=0; i<len; i++) { 
        to[pos] = from[i]; 
        pos++; 
    } 
    return pos; 
} 

 
short safe_read_chunk(FILE fil, int size, char *to) 
{ 
    short len; 
    fread(&len, 2, 1, fil); /* read length of binary data */ 
    if (len <= 0)    /* invalid negative or zero len */ 
        return 0; 
    if (len > size))   /* len exceeds space in buffer */ 
        len = size; 
    fread(to, 1, len, fil); /* read len bytes of binary data 
    return len; 
} 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-76- 

 
10.11 Corrected version of the program shown in Figure 10.11a (see bold 

lines): 
 

#define INP_SIZE 64 
/* record type to allocate on heap */ 
typedef struct chunk { 
    char inp[INP_SIZE];  /* input buffer */ 
    void (*process)(char *); /* pointer to function to process inp */ 
} chunk_t; 
 
void showlen(char *buf) 
{ 
    int len; 
    len = strlen(buf); 
    printf("buffer5 read %d chars\n", len); 
} 
 
int main(int argc, char *argv[]) 
{ 
    chunk_t *next; 
 
    setbuf(stdin, NULL); 
    next = malloc(sizeof(chunk_t)); 
    next->process = showlen; 
    printf("Enter value: "); 
    fgets(next->inp, INP_SIZE, stdin); 
    next->process(next->inp); 
    printf("buffer5 done\n"); 
} 

 
10.12 The details depend on the current vulnerability status. 
 
10.13 No detailed answer available yet, however [LHEE03] includes details 

on the “format string overflow” attack. 
 
10.14 No detailed answer available yet, however the Wikipedia page on 

“Integer overflow”  includes some information on the “integer string 
overflow” attack. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-77- 

 
 

CHAPTER 11  SOFTWARE SECURITY 

 

ANSWERS TO QUESTIONS 
11.1 Software quality and reliability is concerned with the accidental failure 

of a program as a result of some theoretically random, unanticipated 
input, system interaction, or use of incorrect code. These failures are 
expected to follow some form of probability distribution. Software 
security differs in that the attacker chooses the probability distribution, 
targeting specific bugs that result in a failure that can be exploited by 
the attacker. These bugs may often be triggered by inputs that differ 
dramatically from what is usually expected, and hence are unlikely to 
be identified by common testing approaches. 

 
11.2 Defensive programming is a form of defensive design intended to 

ensure the continuing function of a piece of software in spite of 
unforeseeable usage of said software. The idea can be viewed as 
reducing or eliminating the prospect of Murphy's Law having effect. 
Defensive programming techniques come into their own when a piece 
of software could be misused mischievously or inadvertently to 
catastrophic effect. 

 
11.3 Program input refers to any source of data that originates outside the 

program, and whose value is not explicitly known by the programmer 
when the code was written. It includes data read into the program 
from user keyboard or mouse entry, files, or network connections. It 
also includes data supplied to the program in the execution 
environment, the values of any configuration or other data read from 
files by the program, and values supplied by the operating system to 
the program. 

 
11.4 An injection attack refers to a wide variety of program flaws related 

to invalid handling of input data, particularly when such input data can 
accidentally or deliberately influence the flow of execution of the 
program. Examples of injection attacks include: command injection, 
SQL injection, code injection, and remote code injection. There are a 
wide variety of mechanisms that can result in injection attacks. These 
include when input data is passed as a parameter to another helper 
program (command) or to a database system (SQL), whose output is 
then processed and used by the original program. Or when the input 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-78- 

 
includes either machine or script code that is then 
executed/interpreted by the attacked system (code). 

 
11.5 In a command injection attack, the unchecked input is used in the 

construction of a command that is subsequently executed by the 
system with the privileges of the attacked program. In an SQL 
injection attack, the user-supplied input is used to construct a SQL 
request to retrieve information from a database. In both cases the 
unchecked input allows the execution of arbitrary programs/SQL 
queries rather than the program/query specified by the program 
designer. They differ in the syntax of the respective shell/SQL meta-
characters used that allow this to occur. 

 
11.6 A cross-site scripting attack occurs when concerns input provided to a 

program by one user, is subsequently output to another user. They are 
most commonly seen in scripted web applications, where the 
vulnerability involves the inclusion of script code in the HTML content 
of a web page displayed by a user’s browser. An example of such an 
attack concerns an unsafe guestbook application where a comment 
saved by one user includes javascript code, such as that shown in 
Figure 11.5a, that executes when the comment is viewed by other 
users. 

 
11.7 The main technique used by a defensive programmer to validate 

assumptions about program input is to compare it against a regular 
expressions, which is a pattern that describes either what is wanted or 
what is known to be dangerous. The result of the comparison is used 
to either accept wanted, or reject dangerous, input. 

 
11.8 When using the Unicode character set a further issue concerns 

multiple, alternative, redundant encodings of the input data which 
Unicode allows. Given the possibility of multiple encodings, the input 
data must first be transformed (canonicalized) into a single, standard, 
minimal representation. This involves replacing alternate, equivalent 
encodings by one common value. Then the input data can be 
compared to a single representation of acceptable input values. 

 
11.9 “Input fuzzing” is a software testing technique that uses very large 

amounts of randomly generated data as inputs to a program, to 
determine whether the program or function correctly handles all such 
abnormal inputs, or whether it crashes or otherwise fails to respond 
appropriately. The major advantage of fuzzing is its simplicity, low 
cost, and its freedom from assumptions about the “expected” input to 
any program, service or function. It ought to be deployed as a 
component of any reasonably comprehensive testing strategy, 
especially in relation to commonly deployed software. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-79- 

 
 
11.10 Key software security concerns associated writing safe program code 

include whether the implemented algorithm correctly solves the 
specified problem, whether the machine instructions executed 
correctly represent the high-level algorithm specification, and 
whether the manipulation of data values in variables, as stored in 
machine registers or memory, is valid and meaningful. 

 
11.11 A race condition can occur when several processes, or threads within 

a process, simultaneously access the same shared memory without 
suitable synchronization. The result can be that the shared memory 
values may be corrupted, or changes lost, due to overlapping access, 
use and replacement of the shared values.  

 
11.12 Environment variables are a collection of string values inherited by 

each process from its parent, that can affect the way a running 
process behaves. The operating system includes these in the 
processes memory when it is constructed. Well known environment 
variables include the variable PATH which specifies the set of 
directories to search for any given command, IFS which specifies the 
word boundaries in a shell script, and LD_LIBRARY_PATH which 
specifies the list of directories to search for dynamically loadable 
libraries. All of these have been used to attack programs, and 
especially privileged shell scripts. The attacker changes the values of 
one or more of these, then calls a script running with other (higher) 
privileges, which is then “tricked” into running a program or loading a 
library of the attackers choice as a result. 

 
11.13 The principle of least privilege states that programs should execute 

with the least amount of privileges needed to complete their function. 
 
11.14 There are several issues associated with the correct creation and use 

of a lockfile. Firstly it is purely advisory, since all programs using this 
form of synchronization must cooperate. A more serious flaw can 
occur in its implementation, if it fails to atomically both check that 
the lockfile does not exist, and also then create it. 

 
11.15 There are several issues associated with the correct creation and use 

of a temporary file in a shared directory, as they must be both 
unique, and not accessed by other processes. An attacker may 
attempt to guess the temporary filename a privileged program will 
use, and then attempt to create their own version in the interval 
between the program checking the file does not exist, and 
subsequently creating it. Secure temporary file creation and use 
requires the use of a random temporary filename, and its checking 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-80- 

 
and creation using an atomic system primitive, similar to the creation 
of a lockfile. 

 
11.16 Problems that may result from a program sending unvalidated input 

from one user to another user if the output does not conform to the 
expected form and interpretation by the recipient. A program may 
accept input from one user, save it, and subsequently display it to 
another user. If this input contains content that alters the behavior of 
the program or device displaying this data, and it is not adequately 
sanitized by the program, then an attack on the user is possible. 
Examples include embedding terminal (e.g.. VT100) “escape 
sequences”, or Javascript script code in an XSS attack. 

 

ANSWERS TO PROBLEMS 
11.1 Information on writing regular expressions or patterns may be found in 

just about any good text on using UNIX systems. The Wikipedia page 
on “Regular_expression” provides a reasonable amount of detail, and 
pointers to other references. Texts on languages with regular 
expression support, such as perl, php or python, should be consulted 
for the variants they accept. 

 
11.2 Meta-characters used by the Linux/UNIX Bourne shell include: 
 

; & | ( ) { } < > * ? [ ] ~ ! “ ‘ \ ` 

 
 In particular the ‘; && || |’ characters are variously used to separate 

commands, and would most likely be seen in any attack. Other common 
shells such as BASH or CSH have the same interpretation of these 
characters, although they treat others differently. Hence input validation 
checks to prevent command injection attacks for all of these shells must 
typically reject the same characters (although as noted in the text, it is 
much better to write patterns to accept known good input values, which 
typically are alphanumeric plus limited punctuation). 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-81- 

 
11.3 Rewritten, extended version of perl script shown in Figure 11.2 (see 

bold lines): 
 

#!/usr/bin/perl 
# finger.cgi - finger CGI script using Perl5 CGI module 
 
use CGI; 
use CGI::Carp qw(fatalsToBrowser); 
$q = new CGI; 
 
# display HTML header 
print $q->header, 
      $q->start_html('Finger User'), 
      $q->h1('Finger User'); 
 
# get and validate the name of user 
$user = $q->param("user"); 
showError("The specified user '$user' contains illegal characters!") 
    unless (("$user" =~ /^\w[-+%\w\t ]*\w$/) || ("$user" =~ /^\w$/)); 
 
# obtain desired finger information (including error messages) 
print "<pre>"; 
print `/usr/bin/finger -sh "$user" 2>&1`; 
 
# display HTML footer 
print "</pre>"; 
print $q->end_html; 
exit(0); 
 
# ------------------------------------------------------------ 
# subroutine showError(reason) - build HTML error response 
sub showError 
{ 
    local ($msg) = $_[0];       # description of error 
    print "<h1>Error</h1>\n"; 
    print "$msg"; 
    print "<p>Unable to safely obtain finger information.\n"; 
    print "<p>Please go back and correct the input supplied.\n"; 
    print $q->end_html; 
    exit(0); 
} 

 
11.4 There are a number of deficiencies in the script shown in Figure 

11.10a. Despite an attempt to quote the values of the supplied form 
fields subject, from, body, if any of these include a “ character, the 
shell will assume it’s the end of the quoted string, and interpret any 
shell meta-characters in the remainder. This can allow the execution of 
arbitrary commands, with out being displayed in the response web 
form. For example, including a value for “Your Email Address” like: 

 
user@some.domain”; whoami; ls –al; echo “ 

 
 will result in the response including the output from the commands: 
 whoami; ls –al 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-82- 

 
A better version of this script, shown in Figure 11.2, with more stringent 
input checking (though the email address checking is simplified, and the 
body cannot contain “ characters) is:  
 
#!/usr/bin/perl 
# comment.cgi - send comment to webmaster 
# specify recipient of comment email 
$to = "webmaster"; 
 
use CGI; 
use CGI::Carp qw(fatalsToBrowser); 
$q = new CGI;       # create query object 
 
# display HTML header 
print $q->header, 
$q->start_html('Comment Sent'), 
$q->h1('Comment Sent'); 
 
# retrieve form field values and send comment to webmaster 
$subject = $q->param("subject"); 
$from = $q->param("from"); 
$body = $q->param("body"); 
 
# validate the input information 
# subject MUST NOT contain " or multiple lines 
showError("The subject '$subject' contains illegal characters!") 
    if ("$subject" =~ m:["\r\n]:); 
# from MUST only contain characters valid in an email address 
showError("The from address '$from' contains illegal characters!") 
    unless ("$from" =~ m:^[-_.=/\w][- _.=%!/@\w]*[-_.=%\w]$:); 
# body MUST NOT contain " 
showError("The body '$body' contains illegal characters!") 
    if ("$body" =~ m:":); 
 
# generate and send comment email 
system("export REPLYTO=\"$from\"; echo \"$body\" | mail -s \"$subject\" 
$to"); 
 
# indicate to user that email was sent 
print "Thankyou for your comment on $subject."; 
print "This has been sent to $to."; 
 
# display HTML footer 
print $q->end_html; 
exit(0); 
 
# ------------------------------------------------------------ 
# subroutine showError(reason) - build HTML error response due to reason 
sub showError 
{ 
    local ($msg) = $_[0];       # description of error 
    print "<h1>Error</h1>\n"; 
    print "$msg"; 
    print "<p>Unable to safely send comment.\n"; 
    print "<p>Please go back and correct the input supplied.\n"; 
    print $q->end_html; 
    exit(0); 
} 

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-83- 

 
 To remove the limitation on the contents of the mail body, the script 

would need to be further rewritten to open a pipeline to the mail 
program, and explicitly write the body contents into this pipeline, so 
they are not interpreted by the shell. 

 
11.5 No short answer is available, as it depends on the scripting language 

chosen.  
 
11.6 No short answer is available, as it depends on the scripting language 

chosen. 
 
11.7 No short answer is available, as it requires research to determine the 

current state of this field. Information on some fuzzing tools is 
available from the Fuzz Testing of Application Reliability 

 (http://www.cs.wisc.edu/~bart/fuzz/) site. 
 
11.8 No short answer is available, as it requires research to determine the 

current state of this field. 
 
11.9 No detailed answer is available, as it depends on the system and shell 

used. The value of all environment variables can be displayed using 
the “env” command. A variable can be changed temporarily by 
changing the value of the corresponding shell variable, and then 
exporting it (details vary depending on the shell used). To change a 
value permanently for all subsequent logins on the system, the 
relevant shell startup file, either system-wide, or for a specific user, 
must be changed. Again the name and location of these files varies 
depending on the shell and system used. 

 
11.10 No short answer is available, as this question requires 

experimentation with the supplied scripts. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-84- 

 
 

CHAPTER 12  OPERATING SYSTEM 

SECURITY 

 

ANSWERS TO QUESTIONS 
12.1 The basic steps needed in the process of securing a system (from 

[SCAR08]) are: 
 •assess risks and plan the system deployment 

 •secure the underlying operating system and then the key applications 
 •ensure any critical content is secured 
 •ensure appropriate network protection mechanisms are used 
 •ensure appropriate processes are used to maintain security 

 
12.2 The aim of the specific system installation planning process is to 

maximize security whilst minimizing costs, which is best done before 
implementation. It needs to determine the security requirements for 
the system, its applications and data, and of its users. 

 
12.3 The basic steps needed to secure the base operating system (from 

[SCAR08]) are: 
 •install and patch the operating system 
 •harden and configure the operating system to adequately address the 

identified security needs of the system by: 
  removing unnecessary services, applications, and protocols 
  configuring users, groups and permissions 
  configuring resource controls 
 •install and configure additional security controls, such as anti-virus, 

•host-based firewalls and IDS, if needed 
 •test the security of the basic operating system to ensure that the 

•steps taken adequately address its security needs 
 
12.4 Keeping all software as up to date as possible so important due to the 

continuing discovery of software and other vulnerabilities for 
commonly used operating systems and applications. 

 
12.5 Automated patching: 
 Pros: minimizes window of opportunity for attackers when new 

vulnerabilities are found; is convenient, especially if automated. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-85- 

 
 Cons: patches sometimes introduce instability, especially on change 

controlled systems. 
 
12.6 The point of removing unnecessary services, applications and protocols 

is to minimize the amount of software that can run, since if less 
software is available to run, then the risk that it may contain 
vulnerabilities is reduced. 

 
12.7 Additional security controls that may be used to secure the base 

operating system include: anti-virus software, host-based firewalls, 
IDS or IPS software, and to white-list applications. 

 
12.8 Additional steps are used to secure key applications are: 
 •to install and patch each application to the most recent supported 

secure version  
 •to perform application specific configuration 
 •enable encryption and generate keys and certificates if required 
 
12.9 The steps are used to maintain system security (from [SCAR08]) are: 
 •monitoring and analyzing logging information 
 •performing regular backups 
 •recovering from security compromises 
 •regularly testing system security 
 •using appropriate software maintenance processes to patch and 

•update all critical software, and to monitor and revise configuration as 
needed 

 
12.10 Configuration of applications and services on Unix and Linux systems 

is most commonly implemented using separate text files for each 
application and service. System wide configuration details are 
generally located in either the /etc directory, or in the installation 
tree for a specific application. Where appropriate, individual user 
configuration that can override the system defaults, are located in 
hidden “dot” files in each user’s home directory. 

 
12.11 Unix and Linux systems implement discretionary access control 

(DAC) to all file system resources, including not only files and 
directories, but devices, processes, memory and indeed most system 
resources.  

 
12.12 Access is specified as granting read, write, and execute permissions 

to each of owner, group and others, for each resource, as shown in 
figure 4.6. 

 
12.13 These extended access rights on Unix and Linux systems are typically 

set and displayed using the getfacl and setfacl commands. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-86- 

 
 
12.14 Programs that set user (setuid) to some user (even root, the 

superuser), or set group (setgid) to some group on Unix and Linux 
systems execute with the specified user’s rights, or with access to 
resources belonging to the group, no matter which user executes 
them. 

 
12.15 Linux systems primarily now use the iptables program to configure 

the netfilter kernel module. This provides comprehensive, though 
complex, stateful packet filtering, monitoring and modification 
capabilities. 

 
12.16 Logging can generate significant volumes of information. A suitable 

automatic log rotation and archive system can be configured to assist 
in managing the overall size of the logging information. 

 
12.17 Unix and Linux systems provide a mechanism to run services in a 

chroot jail, which restricts the servers view of the file system to just 
a specified portion, and helps contain the effects of a given service 
being compromised or hijacked. 

 
12.18 Users and groups in Windows systems may be stored and used 

locally, on a single system, in the Security Account Manager (SAM). 
It may also be centrally managed for a group of systems belonging to 
a domain, with the information supplied by a central Active Directory 
(AD) system using the LDAP protocol. Most organizations with 
multiple systems will manage them using domains. 

 
12.19 There are major differences between the implementations of the 

discretionary access control models on Unix and Linux systems 
verses Windows systems. Unix and Linux systems use a small 
number of access rights for subjects being owner/group/other across 
nearly all resources/objects – this means it is a simple model, but 
because the same rights are used everywhere, their meaning can 
differ for different objects, and sometimes it is hard or impossible to 
specify some desired complex requirements. Windows systems use a 
much larger set of access rights, which differ for different types of 
objects – a more complex model, which can be harder to master, but 
which may allow better specification of some desired complex 
requirements. 

 
12.20 The mandatory integrity controls used for in Windows systems label 

all objects, such as processes and files, and all users, as being of low, 
medium, high or system integrity level. Then whenever data is 
written to an object, the system first ensures that the subject’s 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-87- 

 
integrity is equal or higher than the object’s level, implementing a 
form of the Biba Integrity model. 

 
12.21 On Windows, the privilege that overrides all ACL checks is the ability 

to backup the computer, which requires over-riding the normal 
access controls to obtain a complete backup. 

 
12.22 On Windows systems, much of the application and service 

configuration information is centralized in the Registry, which forms a 
database of keys and values that may be queried and interpreted by 
applications on these systems. 

 
12.23 Virtualization refers to a technology that provides an abstraction of 

the computing resources used by some software, which thus runs in 
a simulated environment called a virtual machine (VM). 

 
12.24 Full virtualization, which allows multiple full operating system 

instances to execute on virtual hardware, supported by a hypervisor 
that manages access to the actual physical hardware resources. 
Specifically we discuss securing both native and hosted virtualization 
variants of this. 

 
12.25 The main security concerns with virtualized systems (from [SCAR11]) 

are: 
 •guest OS isolation, ensuring that programs executing within a guest 

OS may only access and use the resources allocated to it, and not 
covertly interact with programs or data in either other guest OS’s or 
in the hypervisor. 

 •guest OS monitoring by the hypervisor, which has privileged access 
to the programs and data in each guest OS, and must be trusted as 
secure from subversion and compromised use of this access 

 •virtualized environment security, particularly as regards image and 
snapshot management, which attackers may attempt to view or 
modify 

 
12.26 The basic steps to secure virtualized systems (from [NIST11]) are: 
 •carefully plan the security of the virtualized system 
 •secure all elements of a full virtualization solution, including the 

hypervisor, guest O/S’s, and virtualized infrastructure; and maintain 
their security 

 •ensure that the hypervisor is properly secured 
 •restrict and protect administrator access to the virtualization 

solution 
 
 
 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-88- 

 

ANSWERS TO PROBLEMS 
12.1 If a process running as root is compromised, then any child-processes 

the attacker spawns (such as a remote shell) will also run as root. If 
such a process can be used to read data, it will be able to read any 
local file. If such a process spawns a process that listens on UDP or 
TCP ports, that process can be bound to privileged ports (TCP 22, TCP 
80, and all other TCP/UDP ports lower than 1024). If such a process is 
merely sloppily coded, the impact of bug behavior may be much 
greater than if the process didn’t run as root (overwriting important 
files, interfering with other processes, etc.). 

 
12.2 The 'find' command allows for searches on the permissions, using the 

'perm' option, '-perm +4000' will find all files with the SUID bit set. 
The full command, with output to file, is:  

find / -perm +4000 > somelogfile 
To find both SUID and SGID files (and to show the symbolic form of perms) 

you can use: 
find / -perm +u+s -o -perm +g+s > somelogfile 
Once a list of files has been generated, the system operator can check the 

modification time and other statistics (like size, owner) to ensure the 
file is the genuine article. However, this is still a manual process, 
prone to human error. System Security Tools (like "tripwire") could be 
applied to the files in the list to actively monitor for modifications. 

 
12.3 Filesystem permissions are important because practically everything in 

Linux is represented by some sort of file. They specify whether a given 
user or group-member (subject) can read, write, or execute 
(actions) a given file, directory, special file, symbolic link, or other 
filesystem element (objects). 

 
12.4 drwxr-x---    2 ahmed staff    0 Jul 21 07:58 stuff  
 -rw-rw----    1 ahmed staff    0 Jul 21 08:00 ourstuff  
 
NOTE: it’s acceptable (albeit redundant) for the sticky bit to be set on 

“stuff,” so long as the write bit is not. If you don’t want group-users to 
either create or delete files in a directory, it’s sufficient to simply turn 
off the write bit.  

 
12.5 Assets: website availability, system availability, local network integrity 

(integrity of other systems the attacker may reach via compromised 
web server), corporate data, customer data, website availability, e-
commerce business activity (immediate revenue), company reputation 
(future revenue)  

 Vulnerability: buffer-overflow in Apache  

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-89- 

 
 Attack-vector: the worm “WorminatorX” (that multiple exploits may 

target the same vulnerability -- this is just the one we know about)  
 Attackers: competitors, thieves, identity thieves, website defacers 

(vandals), disgruntled ex-employees, the Byelorusan mob, etc. -- 
public web sites can be prey to any Internet-connected type of 
attacker  

 Likelihood of Occurrence: High (or synonyms thereof) -- Internet 
worms spread very far very quickly  

 Likely Impact: High -- complete exposure/loss of any or all affected 
assets to any potential attacker  

 Plausible Mitigations: Patch the Apache vulnerability; if no patch is 
available, protect Apache with SELinux or AppArmor; or run Apache in 
a chroot jail (Note that Apache already runs as an unprivileged user, 
by default -- presumably the WorminatorX vulnerability depends on 
some other privilege-escalation vulnerability) 

 
12.6 Logs provide audit trails of system and application events, and are 

useful for identifying problems, analyzing security breaches, analyzing 
system/application failures. (Bonus points if student mentions that in 
regulated or otherwise controlled environments, logs are usually 
mandated by industry or governmental auditors.) Logs may even, if 
monitored closely, provide an early warning of failures or attacks in 
progress. But logs only capture the level of detail 

 
12.7  'Normal' behavior would generally involve users creating, using or 

deleting files belonging to either the individual user or to a group to 
which they belong. Normal behavior would not involve attempting to 
gain superuser or root privileges or in any other way altering the 
operating system or attempting to perform what could be considered 
administrator functions. In particular the rules should watch for: 

 •bad or repeated login attempts 
 •copying large numbers of files to either external media or remote 

locations 
 •attempts to access system files or log files; 
 •accessing directories, files or programs that are not usually accessed; 
 •changing security settings. 
 •attempts to become a superuser using the su or sudo commands. 
A couple of SWATCH examples are: 
# watchfor /failed/ # echo bold # mail addressess=root,subject=Failed 

Authentication  
# watchfor /su:/ # echo bold # mail addresses=root,subject=Someone sued 

to root access  
 
12.8  The key advantage of file integrity checking tools is that they can 

precisely locate potentially damaging changes in a filesystem arising 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-90- 

 
from deviations in expected system behavior, without the need to 
explicitly codify the kinds of events that might produce such changes. 

  In the context of intrusion detection, this means that an 
attempted attack can be flagged by its effect on the integrity of 
particular system files and not by any a priori knowledge of the 
behavioral characteristics of the attack. Such information is required to 
create an meaningful attack signature in signature-based intrusion 
detection systems, and since new attack patterns cannot be detected 
until they have been codified, the corpus of known signatures needs to 
be continually updated. Further, integrity based tools can also detect 
aberrant system behavior that has nothing to do with malicious 
activity, such as misbehaving programs and inadvertent user actions 
that damage files and directories. 

  The problem with the file-integrity tools (and indeed all anomaly-
based systems) is that it is often very difficult to characterize normal 
system conditions with sufficient accuracy to allow intrusive or 
aberrant activity to be clearly distinguished. For usability, the rate of 
false alarms needs to be low, or system administrators will be 
continually responding to normal or unusual activity that is otherwise 
perfectly legitimate. The other problem is that integrity checking only 
provides evidence of malicious or aberrant activity after the fact. It 
does nothing to prevent it, and you still need effective recovery 
strategies as an adjunct to the intrusion detection process. 

  In general, it is desirable that executables (especially those in 
/bin and /usr/sbin) and critical system information resources (e.g. 
password files, configuration files for core services, and so on) be 
stringently monitored. These should not change except as a result of 
authorized system administrative action. Similarly, logfiles should be 
monitored to ensure that they are not modified or truncated. 
Directories, such as /root and /home should be carefully monitored for 
unauthorized changes, such as additions or modification to 
permissions. However, it is simply not sensible or feasible to monitor 
all files in this way, particularly those that change frequently as shared 
documents and user home accounts. 

 
12.9 Unix and Linux systems use a small number of access rights for 

subjects being owner/group/other across nearly all resources/objects – 
this means it is a simple model, but because the same rights are used 
everywhere, their meaning can differ for different objects, and 
sometimes it is hard or impossible to specify some desired complex 
requirements.  

  Windows systems use a much larger set of access rights, which 
differ for different types of objects – a more complex model, which can 
be harder to master, but which may allow better specification of some 
desired complex requirements. 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.



 

-91- 

 
  An increase in security features is desirable provided the system 

administrator is competent and completely understands the purpose 
and use of each of the security features, how they interact with each 
other, and which feature is best used in specific circumstances. 

I  f the administrator was not as familiar with all the complex 
security features then there would be a benefit in having less security 
features available. This is because having less to understand means 
less chance of making mistakes. 

 
12.10 When using BitLocker on a laptop, the laptop should not use standby 

mode, rather it should use hibernate mode. This is because 
Hibernate writes memory to the computer’s disk drive, which means 
the computer's memory content, is protected by bitlocker. Standby 
(aka sleep) simply keeps the computer in a very low power state, 
and memory is maintained and not protected by BitLocker.  

 

© 2015 Pearson Education, Inc., Hoboken, NJ.  All rights reserved.




