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1.1 Introduction to Systems of Linear Equations

(@) Thisisa linear equation in X,, X,, and X, .
(b) Thisis not a linear equation in X, , X,, and x, because of the term XX, .
(c)  We can rewrite this equation in the form x, +7x, —3x, =0 therefore it is a linear equation in X, X,, and Xx,.
(d) Thisis nota linear equation in X, , X,, and x, because of the term x,”.
(e)  Thisis not a linear equation in X,, X,,and x, because of the term x°.
(f)  Thisisalinear equation in X,, X,, and X, .
(@) Thisis a linear equationin x and V.
(b) This is not a linear equation in x and Yy because of the terms 2x"* and 3\/§.
(c) Thisis alinear equationin x and V.
(d) Thisis nota linear equation in x and y because of the term Zcosx .
(e) Thisis not a linear equation in x and Y because of the term Xy.
(f)  We can rewrite this equation in the form —x +y =—7 thus it is a linear equation in x and Y.
(@) auX, + a,x, = b
aX t o AyX, = b
® ax + oax + ax, = b
a21Xl + a22X2 + a23)(3 b2
a31)(1 + a32)(2 a33x3 b3
© anX apX, A3 %3 WX, = b
alel a22 XZ a23 XS a24 X4 = b2
(@) (b) (©
{aﬂ &, b a; 8, a; b1 {an ap A3 A, bl
A1 8y b Ay 8y Ay bz 8y 8y Ay Ay bz
a, a, a, b

31

32

33
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(@) (b)
2X, =0 3X, - 2%, = 5
3x, — 4x, = X, + X, + 4x, = -3
X, =1 - 2%, + X = 7
(@) (b)
X, — X - X, = -1 3X, + X, — 4x, = 3
5%, + 2X, - 3%, = -6 —4x, + 4%, + X, = -3
-X, + 3X, - 2x, = -9
- X, = 2
(@) (b) (©)
-2 6 6 -1 3 4 0 2 0 -3 1 0
3 8 [O 5 -1 J -3 -1 1 0 0 -1
9 -3 6 2 -1 2 -3 6
(a) (b) (©)
3 -2 -1 2 0 2 1001
4 5 3 3 -1 4 01 0 2
7 3 2 6 1 -1 0 0 013

The values in (a), (d), and (e) satisfy all three equations — these 3-tuples are solutions of the system.
The 3-tuples in (b) and (c) are not solutions of the system.

The values in (b), (d), and (e) satisfy all three equations — these 3-tuples are solutions of the system.
The 3-tuples in (a) and (c) are not solutions of the system.

(@) We can eliminate x from the second equation by adding —2 times the first equation to the second. This yields
the system
3x - 2y = 4
0 =1

The second equation is contradictory, so the original system has no solutions. The lines represented by the
equations in that system have no points of intersection (the lines are parallel and distinct).

(b) We can eliminate x from the second equation by adding —2 times the first equation to the second. This yields
the system

2x — 4y

0 =
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The second equation does not impose any restriction on x and Yy therefore we can omit it. The lines

represented by the original system have infinitely many points of intersection. Solving the first equation for x
we obtain x =%+ 2y. This allows us to represent the solution using parametric equations

1
X=—+2t,
> y

Il
—

where the parameter t is an arbitrary real number.

We can eliminate x from the second equation by adding —1 times the first equation to the second. This yields
the system

Il
o

X — 2y
_2y

Il
oo

From the second equation we obtain y =—4 . Substituting —4 for Y into the first equation results in x =-8.
Therefore, the original system has the unique solution

x=-8 y=-4

The represented by the equations in that system have one point of intersection: (—8,—4) .

We can eliminate x from the second equation by adding —2 times the first equation to the second. This yields
the system
2x — 3y = a
0 b-2a

If b—2a=0 (i.e.,, b=2a) then the second equation imposes no restriction on x and Yy; consequently, the
system has infinitely many solutions.

If b—2a=0 (i.e., b= 2a) then the second equation becomes contradictory thus the system has no solutions.
There are no values of a and b for which the system has one solution.

Solving the equation for x we obtain x =2+2y therefore the solution set of the original equation can be

described by the parametric equations

where the parameter t is an arbitrary real number.

Solving the equation for x; we obtain x, =%+ 2x, —4X, therefore the solution set of the original equation can

be described by the parametric equations

where the parameters r and s are arbitrary real numbers.
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Solving the equation for x, we obtain x, =—+++X, —2 X, +2x, therefore the solution set of the original

equation can be described by the parametric equations

where the parameters r, s, and t are arbitrary real numbers.

Solving the equation for v we obtain v=23w-2x+1y—2z therefore the solution set of the original equation

can be described by the parametric equations

v=%y—§g+%g—gy, w=t, x=t, vy=t, z=t,

where the parameters t;, t,, t;, and t, are arbitrary real numbers.

Solving the equation for x we obtain x=2-10y therefore the solution set of the original equation can be
described by the parametric equations

x=2-10t, y=t

where the parameter t is an arbitrary real number.

Solving the equation for x, we obtain x, =3-3x, +12x, therefore the solution set of the original equation can

be described by the parametric equations

X, =3-3r+12s, X,=r, X;=S

where the parameters r and s are arbitrary real numbers.

Solving the equation for x, we obtain x, =5-1x, —3x, —+x, therefore the solution set of the original

4

equation can be described by the parametric equations

1 3 1
X, =5—-=—r——s——t, Xx,=r, =s, z=t
! 2 4 4 2 y

where the parameters r, s, and t are arbitrary real numbers.

Solving the equation for v we obtain v=—-w—Xx+5y—7z therefore the solution set of the original equation
can be described by the parametric equations

v=-t —-t,+5t,-7t,, w=t, x=t, y=t, z=t,
where the parameters t;, t,, t,, and t, are arbitrary real numbers.

We can eliminate x from the second equation by adding —3 times the first equation to the second. This yields
the system

2x — 3y
0:
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The second equation does not impose any restriction on x and Yy therefore we can omit it. Solving the first
equation for x we obtain x=1+32y. This allows us to represent the solution using parametric equations

where the parameter t is an arbitrary real number.

We can see that the second and the third equation are multiples of the first: adding —3 times the first equation
to the second, then adding the first equation to the third yields the system

X, +3X, — X, =—4
0=0
0=0

The last two equations do not impose any restriction on the unknowns therefore we can omit them. Solving the
first equation for x; we obtain x, =—4—3x, + X, . This allows us to represent the solution using parametric

equations

X, ==4-3r+s, X,=r, X;=S

where the parameters r and s are arbitrary real numbers.

We can eliminate x, from the first equation by adding —2 times the second equation to the first. This yields
the system

0=0
3X, +X, =—4

The first equation does not impose any restriction on x, and X, therefore we can omit it. Solving the second

equation for x, we obtain x, = -3 —3X, . This allows us to represent the solution using parametric equations

X, =—%—%t, X, =t

where the parameter t is an arbitrary real number.

We can see that the second and the third equation are multiples of the first: adding —3 times the first equation
to the second, then adding 2 times the first equation to the third yields the system

2X—-y+27=-4
0=0
0=0

The last two equations do not impose any restriction on the unknowns therefore we can omit them. Solving the
first equation for x we obtain x =—-2+1y—z. This allows us to represent the solution using parametric

equations
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1
x=—2+5r—s, y=r, z=s

where the parameters r and s are arbitrary real numbers.

1 -7 8 8
Add 2 times the second row to the first to obtain |2 -3 3 .
0 2 -3 1
1 3 -8 3
Add the third row to the first to obtain |2 -9 3 2
1 4 -3 3
1 4 -3 3
(another solution: interchange the first row and the third row to obtain [2 -9 3 2}).
0 -1 50
2 -3 4
Multiply the first row by 1 toobtain | 7 1
-5 4 2
1 -1 -3 6
Add the third row to the firstto obtain | 3 -1 8 1
-6 3 -1 4
1 -2 -18 0
(another solution: add —2 times the second row to the first to obtain | 3 -1 8 1))
-6 3 -1 4

) . : 1
Add —4 times the first row to the second to obtain
8—-4k 18

} which corresponds to the system
X+ ky =—4
(8-4k)y=18

If k=2 then the second equation becomes 0 =18, which is contradictory thus the system becomes
inconsistent.

If k=2 then we can solve the second equation for Y and proceed to substitute this value into the first equation

and solve for x.

Consequently, for all values of k = 2 the given augmented matrix corresponds to a consistent linear system.

k

Add —4 times the first row to the second to obtain F 8_ ak

-1 .
0} which corresponds to the system
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X+ ky =-1
(8-4k)y=0

If k=2 then the second equation becomes 0 =0, which does not impose any restriction on x and Yy therefore

we can omit it and proceed to determine the solution set using the first equation. There are infinitely many
solutions in this set.

If k=2 then the second equation yields y=0 and the first equation becomes x =-1.
Consequently, for all values of k the given augmented matrix corresponds to a consistent linear system.

4

) . . |3
Add 2 times the first row to the second to obtain
0 0 2k+5

} which corresponds to the system

3x—-4y=Kk
0=2k+5

If k=—2 then the second equation becomes 0 =0, which does not impose any restriction on x and y

therefore we can omit it and proceed to determine the solution set using the first equation. There are infinitely
many solutions in this set.

If k=—2 then the second equation is contradictory thus the system becomes inconsistent.

Consequently, the given augmented matrix corresponds to a consistent linear system only when k=—-2.

Add the first row to the second to obtain L ‘ ; _(ﬂ which corresponds to the system
+
kx + y = -2
(4+k)x = 0

If k =—4 then the second equation becomes 0 =0, which does not impose any restriction on x and y

therefore we can omit it and proceed to determine the solution set using the first equation. There are infinitely
many solutions in this set.

If k #—4 then the second equation yields x =0 and the first equation becomes y=-2.

Consequently, for all values of k the given augmented matrix corresponds to a consistent linear system.

Substituting the coordinates of the first point into the equation of the curve we obtain

2
y, =ax; +bx, +c¢

Repeating this for the other two points and rearranging the three equations yields

2 _
X;a+xb+c=y,
2

X;a+x,b+c=y,

xZa+xb+c=y,
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2

Xl Xl 1 yl

This is a linear system in the unknowns a, b, and c . Its augmented matrixis [ x> x, 1 'y,

X§ X3 1 y3

Solving the first equation for X, we obtain X, =c—kx, therefore the solution set of the original equation can be

described by the parametric equations

where the parameter t is an arbitrary real number.

Substituting these into the second equation yields

c—kt+It=d

which can be rewritten as

c—kt=d-It

This equation must hold true for all real values t, which requires that the coefficients associated with the same power
of t on both sides must be equal. Consequently, c=d and k=1.

(@)

(b)

(©)

2X
2X
4x

The system has no solutions if either

e at least two of the three lines are parallel and distinct or

e each pair of lines intersects at a different point (without any lines being parallel)
The system has exactly one solution if either

e two lines coincide and the third one intersects them or

o all three lines intersect at a single point (without any lines being parallel)

The system has infinitely many solutions if all three lines coincide.

+ 3y + z 7

+ Yy + 3z
+ 2y + 5z = 16

We set up the linear system as discussed in Exercise 21.:

a + 1 + ¢ = 1 a + b + ¢
2’2a + 2b + ¢ = 4 ie. 4da + 2b + cC

(-1ya - 1 + c

Il
e S

1 a - b + c

One solution is expected, since exactly one parabola passes through any three given points (x,,Y;), (X,.¥,). (X5, Ys)

if X, X,,and x, are distinct.

X
2X
—X

+ Yy + z = 12
+ Yy + 2z
+ Z
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True-False Exercises
(@ True. (0,0,...,0) is asolution.

(b) False. Only multiplication by a nonzero constant is a valid elementary row operation.

(c) True. If k=6 then the system has infinitely many solutions; otherwise the system is inconsistent.

(d)  True. According to the definition, a x, +a,x, +---+a,X, =b is a linear equation if the a's are not all zero. Let us
assume a; = 0. The values of all x's except for x; can be set to be arbitrary parameters, and the equation can be used

to express X; in terms of those parameters.

(e) False. E.g. if the equations are all homogeneous then the system must be consistent. (See True-False Exercise (a)
above.)

(F)  False. If c=0 then the new system has the same solution set as the original one.
() True. Adding —1 times one row to another amounts to the same thing as subtracting one row from another.

(h) False. The second row corresponds to the equation 0=-1, which is contradictory.

1.2 Gaussian Elimination

1. (a) This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form.
(b)  This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form.
(c)  This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form.
(d)  This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form.
(e)  This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form.
(f)  This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form.

(9) This matrix has properties 1-3 but does not have property 4: the second column contains a leading 1 and a
nonzero number (—7) above it. The matrix is in row echelon form but not reduced row echelon form.

2. (@) This matrix has properties 1-3 but does not have property 4: the second column contains a leading 1 and a
nonzero number (2) above it. The matrix is in row echelon form but not reduced row echelon form.

(b)  This matrix does not have property 1 since its first nonzero number in the third row (2) is not a 1. The matrix is
not in row echelon form, therefore it is not in reduced row echelon form either.

(c)  This matrix has properties 1-3 but does not have property 4: the third column contains a leading 1 and a
nonzero number (4) above it. The matrix is in row echelon form but not reduced row echelon form.

(d)  This matrix has properties 1-3 but does not have property 4: the second column contains a leading 1 and a
nonzero number (5) above it. The matrix is in row echelon form but not reduced row echelon form.
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This matrix does not have property 2 since the row that consists entirely of zeros is not at the bottom of the
matrix. The matrix is not in row echelon form, therefore it is not in reduced row echelon form either.

This matrix does not have property 3 since the leading 1 in the second row is directly below the leading 1 in
the first (instead of being farther to the right). The matrix is not in row echelon form, therefore it is not in
reduced row echelon form either.

This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form.

The first three columns are pivot columns and all three rows are pivot rows. The linear system

X — 3y + 4z =7 X = 7+3y-4z
y + 2z = 2 can be rewritten as y = 2-2z

and solved by back-substitution:

~2(5)--¢
+3(-8)-4(5) -

therefore the original linear system has a unigque solution; x=-37, y=-8, z=5.

The first three columns are pivot columns and all three rows are pivot rows. The linear system

w + 8y - 5z = 6 w = 6-8y+5z
X + 4y - 9z = 3 can be rewritten as X = 3-4y+9z
y + 7 = 2 y = 2-12
Let z=t. Then
y=2-t
x=3-4(2-t)+9t=-5+13t
W=6-8(2-t)+5t=-10+13t

therefore the original linear system has infinitely many solutions:
w=-10+13t, x=-5+13t, y=2-t, z=t
where t is an arbitrary value.

Columns 1, 3, and 4 are pivot columns. The first three rows are pivot rows. The linear system

X, + TX, — 2X, - 8, = -3
X, + X, + 6X, = 5

X, + 3% = 9

0 = 0

can be rewritten: X, =-3—-7X, +2X, +8%;, X; =5-X, —6X,, X, =9-3X.

Let x,=s and x; =t. Then
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,=5—-(9-3t)-6t=—4-3t
,=—3-T7s+2(-4-3t)+8t=—11-7s5+2t

therefore the original linear system has infinitely many solutions:

X, ==-11-7s+2t, X,=5, X,=-4-3t, x,=9-3t, X, =t

where s and t are arbitrary values.

(d)  The first two columns are pivot columns and the first two rows are pivot rows. The system is inconsistent since
the third row of the augmented matrix corresponds to the equation

Ox+0y+0z=1.
(@) The first three columns are pivot columns and all three rows are pivot rows. A unique solution: x=-3, y=0,
z="7.

(b)  The first three columns are pivot columns and all three rows are pivot rows. Infinitely many solutions:
w=8+7t, x=2-3t, y=-5-t, z=t where t is an arbitrary value.

() Columns 1, 3, and 4 are pivot columns. The first three rows are pivot rows. Infinitely many solutions:
v=—2+65-3t, w=s, x=7-4t, y=8-5t, z=t where s and t are arbitrary values.

(d) Columns 1 and 3 are pivot columns. The first two rows are pivot rows. The system is inconsistent since the
third row of the augmented matrix corresponds to the equation

Ox+0y+0z=1.
1 1 2 8]
-1 -2 3 1 <«——— The augmented matrix for the system.
3 -7 4 10_
1 1 2 8]
-1 5 9 <—— The first row was added to the second row.
3 -7 4 10_
_ 1 81
0 -1 5 9 <«—— 3 times the first row was added to the third row.
_0 -10 -2 —14_
i 1 2 8]
1 -5 -9 <4— The second row was multiplied by —1.
_0 -10 -2 —14_
11 2 8]
01 -5 -9 <+—— 10 times the second row was added to the third row.
_O 0 -52 —104_
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11 2 8
0 1 -5 -9 <«——— The third row was multiplied by —2 .
00 1 2

The system of equations corresponding to this augmented matrix in row echelon form is

XX + X, + 2X; = 8 X, = 8-X,-2X,
X, — 5% = -9 and can be rewritten as X, = —-9+5x,
X, = 2 X, = 2
Back-substitution yields
X, =2
X, =—9+5(2)=1
x,=8-1-2(2)=3

2 2 2 i
-2 52 1 <+——— The augmented matrix for the system.
- 8 _1_
- _
-2 5 2 1 <«——— The first row was multiplied by = .
i 8 1 4 —1_
4 1 <+—— 2 times the first row was added to the second row.
8 4 -1]
1 1 1 O
0 7 4 1 <«——— -8 times the first row was added to the third row.
_0 -7 -4 -1]
1 1 1 O
o 1 4 4 <«—— The second row was multiplied by <.
_0 -7 -4 -1]
11 1 0]
01 é % <«—— 7 times the second row was added to the third row.
0 00O

The system of equations corresponding to this augmented matrix in row echelon form is

12
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XX + X, + X3 =0
4 1
X2 + 7)(3 = 7
0 =0
Solve the equations for the leading variables
X, ==X, — Xq
1
X, == —=X,
then substitute the second equation into the first
1
@=—7——&
1
@:7——@

If we assign X, an arbitrary value t, the general solution is given by the formulas

1 3 1 4
X1 2—7—71:, X2 27—71:, X3 =t

1 -1 2 -1 -1

<+——— The augmented matrix for the system.

-1 -4 1 1
3 0 -3 —3_
-1 2 -1 -1]
-6
1 _ <+— -2 times the first row was added to the second row.

1 -1 2 -1 -1
0 -6 0 O
<+—— The first row was added to the third row.
0 -2 0 0
3 0 -3 -3

<+— -3 times the first row was added to the fourth row.

13
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1 -1 2 -1 -1

0 2 00 h d ltiplied by

0 9 0 0 <+——— The second row was multiplied by =.

0 -6 0 0]

1 -1 2 -1 -1

0O 1 -2 0 O ) .

0 0 0 0 0 <+—— -1 times the second row was added to the third row.
0 3 6 0 0]

1 -1 2 -1 -1

0 -2 0 O

0 0 0 0 <+— -3 times the second row was added to the fourth row.
0 0 0 0 0

The system of equations corresponding to this augmented matrix in row echelon form is

X — vy + 2z - w = -1
y — 2z = 0
0 = 0

0 = 0

Solve the equations for the leading variables
X=-1+y-2z+w
y=2z
then substitute the second equation into the first
X=-1+2z-2z+w=-14+w
y=2z
If we assign z and w the arbitrary values s and t, respectively, the general solution is given by the formulas

X=-1+1, y=2s, =S5, w=t

-2 3 1
3 6 -3 -2 <+—— The augmented matrix for the system.
_6 6 3 3]
'3 6 -3 -2
0 -2 3 1 <+— The first and second rows were interchanged.
6 6 3 5
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1 2 -1 -2
0 -2 3 1 <«——— The first row was multiplied by .
6 6 3 5]
_ » 1 _%_
0 -2 3 1 <+«——— 6 times the first row was added to the third row.
0 6 9 9]
2 -1 -2
1 -3 -3 <«——— The second row was multiplied by —%.
0 6 9 9]
12 -1 -2]
0 —% —% <+—— 6 times the second row was added to the third row.
10 0 6]
_ » _%_
-3 -3 <«——— The third row was multiplied by +.
0 0 1

The system of equations corresponding to this augmented matrix in row echelon form

a + 2b - ¢ = 2
3
b - §c -1
2 2
0 = 1
is clearly inconsistent.
1 12 8]
-1 -2 3 1 <+——— The augmented matrix for the system.
3 -7 4 10|
1 1 2 8]
0 -1 5 9 <«——— The first row was added to the second row.
3 -7 4 10
[ 1 2 8]
-1 5 9 <«—— 3 times the first row was added to the third row.
0 -10 -2 -14]
‘ 1 2 8]
1 5 -9 <«——— The second row was multiplied by -1.
0 -10 -2 -14]

15
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10 times the second row was added to the third row.

The third row was multiplied by —2 .

5 times the third row was added to the second row.

—2 times the third row was added to the first row.

—1 times the second row was added to the first row.

The augmented matrix for the system.

The first row was multiplied by +.

2 times the first row was added to the second row.

—8 times the first row was added to the third row.

The second row was multiplied by % .
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1 110
01 % % <«—— 7 times the second row was added to the third row.
0 0O 0_
10§
01 % % <«—— -1 times the second row was added to the first row.
000 O

Infinitely many solutions: x, =—1—-2t, x, =2 -2t, x; =t where t is an arbitrary value.

1 -1 2 -1 -1]
11 2 1 -2 -2 -2 |
' -1 2 -4 1 1 <— The augmented matrix for the system.

3 0 -3 3]

1 -1 2 -1 -1

0 3 -6
-1 2 -4 <+—— -2 times the first row was added to the second row.
3 0 0 -3 -3

(1 -1 2 -1 -1

0 -6 0 O

<«+—— the first row was added to the third row.

0 -2 0 0

13 0 -3 -3]

(1 -1 2 -1 -1]

0 -6 0 O

0 2 0 0 <+— -3 times the first row was added to the fourth row.
10 -6 0 0]

(1 -1 2 -1 1]

C 1 o h d Itiplied by

0 1 -2 0 0 <+—— The second row was multiplied by 3.

0 3 -6 0 0]

(1 -1 2 -1 1]

0 1 -2 0 O . |

0O 0 0O 0 O <+——— -1 times the second row was added to the third row.
0 3 6 0 O]

(1 -1 2 -1 1]

0 1 -2 0 O _

0O 0 O 0 O <+——— -3 times the second row was added to the fourth row.
0 0 0 0 O]
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o
o
|
[REN
|
[EEN

<«— the second row was added to the first row.

O O O
o O
o O
o O
o O

The system of equations corresponding to this augmented matrix in row echelon form is

X - w = -1
y — 22 = 0
0 = 0

0 = 0

Solve the equations for the leading variables
X=-1+w
y=22
If we assign z and w the arbitrary values s and t, respectively, the general solution is given by the formulas

X=-1+t, y =2s, Z=s5, w=t

0 -2 3 1
12. 3 6 -3 -2 <+——— The augmented matrix for the system.
6 6 3 5]
3 6 -3 -2]
0 -2 3 1 <+—— The first and second rows were interchanged.
6 6 3 |
(1 2 -1 -2]
-2 1 <«——— The first row was multiplied by ;.
_6 6 3 3|
(1 2 -1 -2]
0 2 3 1 <+——— 6 times the first row was added to the third row.
_O -6 9 9_
2 -1 -2
1 -3 -3 <«——— The second row was multiplied by —1.
0 6 9 9_
12 -1 -2
01 —% —% <+—— 6 times the second row was added to the third row.
00 0 &6

18
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14.

15.

1.2 Gaussian Elimination 19

12 -1 -2
0 -3 -1 <«——— The third row was multiplied by +.
0 0 1]
12 4 _%_
-2 0 <+«——— 7 times the third row was added to the second row.
0 0 1]
12 1 o]
1 -3 <«——— % times the third row was added to the first row.
00 0 1]
1.0 2 0]
1 50 <«——— -2 times the second row was added to the first row.
00 01

The last row corresponds to the equation

0a+0b+0c=1

therefore the system is inconsistent.
(Note: this was already evident after the fifth elementary row operation.)

Since the number of unknowns (4) exceeds the number of equations (3), it follows from Theorem 1.2.2 that this
system has infinitely many solutions. Those include the trivial solution and infinitely many nontrivial solutions.

The system does not have nontrivial solutions.
(The third equation requires x, =0, which substituted into the second equation yields x, =0. Both of these

substituted into the first equation resultin x;, =0.)

We present two different solutions.

Solution | uses Gauss-Jordan elimination

3

00 <«——— The augmented matrix for the system.

<«——— The first row was multiplied by %

= N N
= O dlw
o

= Nw Nw

0 <+— -1 times the first row was added to the second row.

= Nw N



Unique solution: x, =0, X, =0, x,=0.

Solution II. This time, we shall choose the order of the elementary row operations differently in order to avoid
introducing fractions into the computation. (Since every matrix has a unique reduced row echelon form, the exact

|eo

= = N
|
[l L

O = N
|
o N e

O = N
|
= =

o '_\Nll—‘
o O

1.2 Gaussian Elimination

The second row was multiplied by %

—1 times the second row was added to the third row.

The third row was multiplied by %

The third row was added to the second row
and 7% times the third row was added to the first row

—% times the second row was added to the first row.

20

sequence of elementary row operations being used does not matter — see part 1 of the discussion “Some Facts About

Echelon Forms” in Section 1.2)

2

3
2 0

o O O

The augmented matrix for the system.

The first and second rows were interchanged

(to avoid introducing fractions into the first row).

—2 times the first row was added to the second row.

The second row was multiplied by —%.



Unique solution: x, =0, x, =0, x,=0.

16. We present two different solutions.
Solution | uses Gauss-Jordan elimination

2 -1 -3 0
-1 2 -30 —
1 1 4 0]

1 -1 -2 0]
-1 2 -3

1 1 4

1 -4 -3

0 3 -3 —
11 4

1 - 2

0 3 -2 «
0 3 u

L 2 2

1 -3 3

0 1 -3

0 3 u

L 2 2

1 -3 3

0 1 -3

0 0 10

1.2 Gaussian Elimination

—1 times the second row was added to the third row.

The third row was multiplied by 1.

The third row was added to the second row.

—2 times the second row was added to the first row.

The augmented matrix for the system.

The first row was multiplied by .

The first row was added to the second row.

—1 times the first row was added to the third row.

The second row was multiplied by Z.

—% times the second row was added to the third row.

21



1.2 Gaussian Elimination 22

1 -1 20
0 1 -3 0 <«——— The third row was multiplied by 15 .
0 0 10
1 -1 0 0]
0 100 <«—— 3 times the third row was added to the second row
0 0 10 and 2 times the third row was added to the first row
000
0100 <«—— 1 times the second row was added to the first row.
00 0

Unique solution: x=0, y=0, z=0.

Solution I1. This time, we shall choose the order of the elementary row operations differently in order to avoid
introducing fractions into the computation. (Since every matrix has a unique reduced row echelon form, the exact
sequence of elementary row operations being used does not matter — see part 1 of the discussion “Some Facts
About Echelon Forms” in Section 1.2)

2 -1 30

-1 2 30 <«——— The augmented matrix for the system.
1 1 40

-1 2 30 <+——— The first and third rows were interchanged
2 21 -3 0 (to avoid introducing fractions into the first row).

10 <«+—— The first row was added to the second row.

0 3 10 <+—— -2 times the first row was added to the third row.

10 <«+— The second row was added to the third row.

4
10 <«——— The third row was multiplied by —+-.
1



Ol—\I

O - O O - - o W =
= O O = O b~
o O O o O O

O O
o O o

~ O O
o O O

Unique solution: x=0, y=0, z=0.

17 3 11 10
5 -1 1 -1 0] ‘
L35 10
5 -1 1 -1 0]
T
0 -3 -3¢0 T
154 5 0]
o1 :10
oo
o110l T

If we assign x, and X, the arbitrary values s and t, respectively, the general solution is given by the formulas

1.2 Gaussian Elimination

—1 times the third row was added to the second row.

—4 times the third row was added to the first row.

The second row was multiplied by <.

—1 times the second row was added to the first row.

The augmented matrix for the system.

The first row was multiplied by 3.

—5 times the first row was added to the second row.

The second row was multiplied by —2.

—% times the second row was added to the first row.

1

1
xl:—zs, xzz—zs—t, X, =8, X,=t.

23

(Note that fractions in the solution could be avoided if we assigned x, =4s instead, which along with x, =t would

yield x, =—s, X, =—S—t, x, =4s, X, =t.)



18.

19.

If we assign w and x the arbitrary values s and t, respectively, the general solution is given by the formulas

W W N W W W W R
N N

N = v

|
-

I
w

O O R N
o O

O O 1—» O
O O w v~

= wWw O N
|
[EEY

O O O o

1.2 Gaussian Elimination

<+—— The augmented matrix for the system.

<+——— The first and second rows were interchanged.

<«——— The first row was multiplied by % .

<+— -2 times the first row was added to the third row
and 4 times the first row was added to the fourth row.

<+«—— -2 times the second row was added to the third row and
the second row was added to the fourth row.

— —% times the second row was added to the first row.

u=%s—§t, v=-35+2t, w=s, X=t.

<«——— The augmented matrix for the system.

24
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10 -1 -3 0
0 2 4 0
2 3 1 0 <+—— The first and second rows were interchanged.
-2 1 -2 0_
(1 0 -1 -3 0]
02 2 40
0 3 3 70 <+—— -2 times the first row was added to the third row
and 2 times the first row was added to the fourth row.
_0 1 1 -8 0_
1 0 -1 -3 0]
01 1 20 h d Itiplied by 1
03 3 70 <+—— The second row was multiplied by .
_0 1 1 -8 0_
10 -1 -3 0]
01 1 2 0
00 10 <+«—— -3 times the second row was added to the third and
-1 times the second row was added to the fourth row.
0 0 0 -10 0_
10 -1 -3 0]
01 1 20
00 0 0 <+——— 10 times the third row was added to the fourth row.
00 O O 0_
10 -1 0 0]
01 100
00 0 10 <«—— -2 times the third row was added to the second and
3 times the third row was added to the first row.
0 0 0O 0_

If we assign Yy an arbitrary value t the general solution is given by the formulas

w=t, x=-t, y=t, z=0.

1
1
20. 0 2 2 -1 <«——— The augmented matrix for the system.
2
1

O O O o o

25



1 3 0 10
0 1 2 -10
0 2 -2 -10
0 -10 1 -1 0
0 5 -1 0 0
13 0 1 0]
01 2 -10
00 30
0 021 -11 0
00 9 -5 0]
13 0 1 0]
01 2 -10
00 1 -20
0021 -11 0
00 9 -5 0]
130 1 0]
012 -10
00 1 -2 0
000 %0
000 Z 0]
130 1 0]
012 -10
00 1 -20
000 10
000 Z 0]
130 1 0]
012 -10
00 1 -20
000 10
000 00

X

+ 3X,

1.2 Gaussian Elimination

—1 times the first row was added to the second row,
—2 times the first row was added to the fourth row,
and —1 times the first row was added to the fifth row.

2 times the second row was added to the third row,
10 times the second row was added to the fourth row,
and 5 times the second row was added to the fifth row.

The third row was multiplied by 3.

—21 times the third row was added to the fourth row

and —9 times the third row was added to the fifth row.

The fourth row was multiplied by Z .

—4 times the fourth row was added to the fifth row.

+ x, =0
2x, - X%, =0
3
Xy — EX“ =0

26
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1.2 Gaussian Elimination

Using back-substitution, we obtain the unigque solution of this system

O O O

O O -~ O

o O -~ O

O O O

o O - O

1 3 4
0 -2 7
3 15
1 4
0 -2 7
-1 3 4
-3 5
1 4
2 7
7 -10
-16

8 -10
2 7
~7 10
7 -16
8 -10
2 7
~7 10
~14 14
15 -20
2 7
-7 10
1 -1
15 -20
2 7
-7 10
1 -1

0 -5
0 2 7
1 -7 10
0 1 -1
0 1

11]
13

X, =0, X,=0, x,=0.

The augmented matrix for the system.

The first and second rows were interchanged
(to avoid introducing fractions into the first row).

—2 times the first row was added to the second row,
—3 times the first row was added to the third row,
and -2 times the first row was added to the fourth.

The second row was multiplied by —1.

3 times the second row was added to the third row and

—1 times the second row was added to the fourth row.

The third row was multiplied by fﬁ.

—15 times the third row was added to the fourth row.

The fourth row was multiplied by —%.

27
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O

O = O O

|
w o

I
O - W O O

|
o W e O

|
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= O O O
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1.2 Gaussian Elimination

The fourth row was added to the third row,
—10 times the fourth row was added to the second,
and —7 times the fourth row was added to the first.

7 times the third row was added to the second row,
and 2 times the third row was added to the first row.

The augmented matrix for the system.

The first and third rows were interchanged.

The first row was added to the second row

and —2 times the first row was added to the last row.

The second and third rows were interchanged.

—3 times the second row was added to the fourth row.

The third row was multiplied by —+.

28
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24,

1.2 Gaussian Elimination 29

11 -2 0 -10
0 0 11 10
0 0 01 00 <«—— 3 times the third row was added to the fourth row.
_O 0O 0 0 O 0_
(1 1 -2 0 -1 0]
00 10 10
0 0 01 0 0 <+—— -1 times the third row was added to the second row.
10 0 0 0 0 0]
1100 1 O]
00 10 10
000 100 <«— 2 times the second row was added to the first row.
0 00 0O O_

If we assign Z, and Z, the arbitrary values s and t, respectively, the general solution is given by the formulas

(@)

(b)

(©)
(d)

(@)

(b)

(©)

(d)

Z,=-s—-t, Z,=s, Z,=-t, Z,=0, Z,=t.
The system is consistent; it has a unique solution (back-substitution can be used to solve for all three
unknowns).

The system is consistent; it has infinitely many solutions (the third unknown can be assigned an arbitrary value
t, then back-substitution can be used to solve for the first two unknowns).

The system is inconsistent since the third equation 0 =1 is contradictory.

There is insufficient information to decide whether the system is consistent as illustrated by these examples:

1 = *
e For|0 O 0 | the system is consistent with infinitely many solutions.
10 0 1 =
(1 * = 1 % % =%
e For|0 O 0 | the system is inconsistent (the matrix can be reducedto [0 0 1 O0|).
0 1 0 001

The system is consistent; it has a unique solution (back-substitution can be used to solve for all three
unknowns).

The system is consistent; it has a unique solution (solve the first equation for the first unknown, then proceed
to solve the second equation for the second unknown and solve the third equation last.)

1000
The system is inconsistent (adding —1 times the first row to the second yields [0 0 0 1|; the second

1 * =x= =%
equation 0 =1 is contradictory).

There is insufficient information to decide whether the system is consistent as illustrated by these examples:
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26.

1.2 Gaussian Elimination

0 01
e For|l 0 O 1] thesystem is consistent with infinitely many solutions.
1 001
10 0 2 1 00 2
e For|l 0 0 1] thesystem isinconsistent (the matrix can bereducedto |0 0 0 1))
1 001 0 00O
1 2 -3 4
-1 5 2 <«——— The augmented matrix for the system.
4 1 a’-14 a+2]
1 2 -3 4
—7 14 -10 <«—— -3 times the first row was added to the second row
0 -7 a*-2 a-14 and —4 times the first row was added to the third row.
1 2 -3 4
—7 14 -10 <«—— -1 times the second row was added to the third row.
0 0 a’-16 a-4]

1 -2 2 <«——— The second row was multiplied by —2.
0 0 a®-16 a-4]

The system has no solutions when a=—4 (since the third row of our last matrix would then correspond to a
contradictory equation 0 =-8).

The system has infinitely many solutions when a =4 (since the third row of our last matrix would then correspond
to the equation 0=0).

For all remaining values of a (i.e., a=—4 and a = 4) the system has exactly one solution.

2 -2 3 1 <«— The augmented matrix for the system.

1 2 2
—6 1 -3 <+—— -2 times the first row was added to the second row
0 0 -a%?+2 a-2 and —1 times the first row was added to the third row.
1 1 2
1 ~% 3 <«——— The second row was multiplied by —+.

30



1.2 Gaussian Elimination 31

The system has no solutions when a = J2 ora=—/2 (since the third row of our last matrix would then correspond
to a contradictory equation).

For all remaining values of a (i.e., a# J2 and a# —\/E) the system has exactly one solution.

There is no value of a for which this system has infinitely many solutions.

27.

28.

o O

O

w
|

[EEN

o))

[ 2
o

1 3 1 a
-1 -2 1 b
3 7 -1 c|
3 1 a |
1 2 a+b
-2 -4 3a+c|
31 a |
1 2 a+b
00 —a+2b+c_

The augmented matrix for the system.

—1 times the first row was added to the second row.

The second row was added to the third row.

The second row was multiplied by —+.

The augmented matrix for the system.

The first row was added to the second row and
—3 times the first row was added to the third row.

<+— 2 times the second row was added to the third row.

If —a+2b+c=0 then the linear system is consistent. Otherwise (if —a+2b+c = 0) it is inconsistent.

2 1 a
{ } <4——— The augmented matrix for the system.

36D

a

N[

1 1
[3 é b} «——— The first row was multiplied by .
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The system has exactly one solution: x =

1
H
Njo e
|~

QD
L 1

11 a

30. 2 0 b

0 3 C|

1 11 a |

0 -2 0 -2a+b

0 33 ¢ |

111 a ]

010 a-2

033 c |

111 a |
010 a-2

0 0 3 -3a+3b+c]|

1 1 a |
0 a-3%

0 1 —a+5+%]

1 1 0 2a-2-¢]
a-3

0 1 —a+3+%5

100 a-% |
10 a-2%

0 0 1 -a+3+%5

The system has exactly one solution: x, =a—-$, X, =a—

1.2 Gaussian Elimination

-3 times the first row was added to the second row.

The third row was multiplied by Z.

—% times the second row was added to the first row.

and y=—-%a+2b.

The augmented matrix for the system.

—2 times the first row was added to the second row.

The second row was multiplied by f%.

—3 times the second row was added to the third row.

The third row was multiplied by 1 .

—1 times the third row was added to the first row.

—1 times the second row was added to the first row.

N|o

— b
,and X, =-a+5+%.

. . . . - 13
31. Adding -2 times the first row to the second yields a matrix in row echelon form {0 J .



1.2 Gaussian Elimination 33

Adding —3 times its second row to the first results in {0 ﬂ , which is also in row echelon form.

2 1 3
32. 0 -2 -29
_3 4 5_
(2 1 3]
-2 -29 <+— -1 times the first row was added to the third row.
i 1 3 2_
_ 3 .
-2 =29 <+——— The first and third rows were interchanged.
_2 1 3_
_ 3 .
-2 =29 <—— -2 times the first row was added to the third row.
_0 -5 —1_
_ 3 57
-2 =29 <+——— -3 times the second row was added to the third row.
_0 1 86_
_ 3 .
1 86 <+——— The second and third rows were interchanged.
_0 -2 —29_
1 3 2]
0 1 86 <«— 2 times the second row was added to the third row.
0 0 143_
1 3 2]
0 1 86 <«—— The third row was multiplied by - .
0 1_
1 0]
10 <+—— 86 times the third row was added to the second row
0 0 1 and —2 times the third row was added to the first row.
1 07
010 <«—— -3 times the second row was added to the first row.
0 1

33.  We begin by substituting x =sina, y=cosf, and z=tany so that the system becomes



1.2 Gaussian Elimination 34

X + 2y + 3z =0
2x + by + 3z =0
-Xx — by + 5z =0
1 2 3 0]
2 530 <4——— The augmented matrix for the system.
-1 -5 5 0_
2 3 0]
-3 0 <+— -2 times the first row was added to the second row
0 -3 8 0 and the first row was added to the third row.
1 2 3 0]
01-30 <4+——— 3 times the second row was added to the third row.
_0 0 -1 O_
1 2 3 0]
0130 <«——— The third row was multiplied by -1.
_0 0 1 0_
1 2 0 0]
0 100 <«—— 3 times the third row was added to the second row and
0 0 0 -3 times the third row was added to the first row.
1 0 0 0]
100 <+— -2 times the second row was added to the first row.
0

This system has exactly one solution x=0, y=0, z=0.
On the interval 0 <o <27, the equation sina =0 has three solutions: =0, a=7,and a =2x.
On the interval 0< <2, the equation cos =0 has two solutions: =% and g =3,

On the interval 0 <y <27, the equation tany =0 has three solutions: y =0, y=x,and y=2r.

Overall, 3-2-3=18 solutions (a,ﬂ,y) can be obtained by combining the values of «, £, and y listed above:

0Zo0llz%0]l,etc.
2 2

34.  We begin by substituting x =sina, y=cosf, and z=tany so that the system becomes

2x - y + 3z
4x + 2y — 2z = 2
6x — 3y + z

I
©
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2 -1 3 3]
4 2 -2 2 <+——— The augmented matrix for the system.
6 -3 1 9]
(2 -1 3 3]
0 4 -8 4 <«——— -2 times the first row was added to the second row
0 0 -8 0 and —3 times the first row was added to the third row.
(2 -1 3 3]
0 4 -8 4 <«——— The third row was multiplied by —+.
0 0 1 0]
2 -1 0 3]
0 40 4 <«——— 8 times the third row was added to the second row
0 01 O and —3 times the third row was added to the first row.
2 -1 0 3]
0 10 1 <«——— The second row was multiplied by +.
0 0 1 0]
2 0 0 2]
010 -1 <+——— The second row was added to the first row.
00 0]
10 0 1]
10 -1 <+——— Thefirst row was multiplied by % .
00 0

This system has exactly one solution x=1, y=-1, z=0.

The only angles «, 8, and y that satisfy the inequalities 0<a <27, 0<8<2x, 0<y <z and the equations
sina =1, cosf=-1, tany =0

are a=%, f=nx, and y=0.

35.  We begin by substituting X =x*, Y =y?, and Z =z* so that the system becomes
X +Y + Z =6

X =Y + 22 = 2
2X + Y - Z =3
1 16
-1 2 2 <«——— The augmented matrix for the system.
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1 1 6
-2 —4 <+— -1 times the first row was added to the second row
0 -1 -3 -9 and —2 times the first row was added to the third row.
1 1 1 6]
-1 -3 -9 <+—— The second and third rows were interchanged
0 -2 1 -4 (to avoid introducing fractions into the second row).
1 6]
1 9 <«——— The second row was multiplied by —1.
0 -2 1 -4
11 ]
01 9 <«—— 2 times the second row was added to the third row.
0 0 7 14
111 6]
139 <«—— The third row was multiplied by 2.
0 1 2]
1 0 4]
0 3 <4—— -3 times the third row was added to the second row
0 1 2 and —1 times the third row was added to the first row.
1 0 1]
10 <«+— -1 times the second row was added to the first row.
0 1 2]
We obtain
=1 = x=4%1
=3 = y=%J3
=2 = z=Ht/2

36.  We begin by substituting a=+, b=+, and ¢ =1 so that the system becomes

a + 2b - 4c =1

2a + 3b + 8 =0

-a + 9% + 10c = 5
12 41
23 80 <«——— The augmented matrix for the system.
-1 9 10 5

36
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1
3
4
0

—-26
—63

R N T

Using back-substitution, we obtain

Cc=
b=2+16c=—
91

a=1—2b+4c=—l = X=
13

equation corresponding to
equation corresponding to
equation corresponding to (4,
equation corresponding to (0,10):

7
~11
14

10

.
-200
—462

10

1.2 Gaussian Elimination

—2 times the first row was added to the second row

and the first row was added to the third row.

The second row was multiplied by —1.

—11 times the second row was added to the third row.

The third row was multiplied by ﬁ .

1 91
- = — = ——
c 8
1 91
- = —=—
b 5
1_13
a 7

Each point on the curve yields an equation, therefore we have a system of four equations

a + b + ¢ + d = 7
27a + 9% + 3¢ + d = -11
6da + 16b + 4c + d = -14

d = 10

<«+——— The augmented matrix for the system.

—27 times the first row was added to the second row
and —64 times the first row was added to the third.

37



1.2 Gaussian Elimination 38

1 1 1 1 7]
0 1 4 13 100
3 9 9 - 1
0 48 —60 —63 —462 <«——— The second row was multiplied by —4=.
0 0 0 1 10 |
(111 1 7]
0 1 4 B wWw
0 0 Z ; 2_24 <— 48 times the second row was added to the third row.
3 3
|10 0 0 1 10|
(111 1 7]
0 1 4 1B 1
3 9 9 - o 1
9 107 <«—— The third row was multiplied by .
0 0 1 5 %
10 0 0 1 10]
1110 -3
0 1 4 0 -
3 32 —% times the fourth row was added to the third row,
1
00 0 —% times the fourth row was added to the second row,
000 1 10 and —1 times the fourth row was added to the first.
110 0 -5]
0 10 0 -6 ) .
0010 2 <+——— —% times the third row was added to the second row and
600 1 10 -1 times the third row was added to the first row.
1. 0 0 0 1]
0 10 0 -6
00 10 2 <«—— -1 times the second row was added to the first row.
0 0 0 1 10]

The linear system has a unique solution: a=1, b=-6, c=2, d =10. These are the coefficient values required
for the curve y =ax® + bx* + cx + d to pass through the four given points.

38.  Each point on the curve yields an equation, therefore we have a system of three equations

equation corresponding to (-2,7):
equation corresponding to (—4,5):
equation corresponding to (4,-3):

53
The augmented matrix of this system | 41
25

53a
41a

2b + 7¢ + d
4 + 5¢ + d

258 + 4b - 3¢ + d

-2 710

-4 5 1 0] has the reduced row echelon form

4 310
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100 40
010 -20
001-%0

)

If we assign d an arbitrary value t, the general solution is given by the formulas

a:—it, bzit, c=it, d=t
29 29 29

(For instance, letting the free variable d have the value —29 yields a=1, b=-2,and c=-4)

Since the homogeneous system has only the trivial solution, its augmented matrix must be possible to reduce via a
1 000

sequence of elementary row operations to the reduced row echelonform |0 1 0 0.
0010

Applying the same sequence of elementary row operations to the augmented matrix of the nonhomogeneous system
1 00T

yields the reduced row echelonform |0 1 0 s | where r, s, and t are some real numbers. Therefore, the
0 0 1t

nonhomogeneous system has one solution.

(&) 3 (this will be the number of leading 1's if the matrix has no rows of zeros)
(b) 5 (if all entriesin B are 0)
(c) 2 (this will be the number of rows of zeros if each column contains a leading 1)

(@) There are eight possible reduced row echelon forms:

1 00| (10 1 0] (1 010/ (01rr 0 01 0 00
0f,|]0 1 , 10 1{,(0 ,/0 0 1(,/0 O Of,{0O O Of,and|0 O O
11 (0 O 0 0| |0 0 0 0| (0 O O] |0 OO 0 0O

o »w =
o O =
o O =
O O w»w

01
00
where r and s can be any real numbers.

(b)  There are sixteen possible reduced row echelon forms:



42. (a)
(b)
43. (a)

1T 1T
O O OO O O O PFr O o ok

o O —» O

O O O O O O O =

o - O O

O O Ok O O O wuw

OOHOOOI—‘OII—‘OOO

O O OO OO0 O Fr O ook

o O —» O

O O OO O o o =

o —» O O

O O O kb O O O wuw

o O O =

O ~ v =
L

(D(DC)!‘"I

1

T

O O O O O O OO O o o k-

O O OO OO0 ok, O o o

O O OO OO PFr O OO un =

O O OO O o O k-

[o}]
>
o

.
0
1
0_
o7
0
1
0_
E
0
0
0_

where r, s, t,and u can be any real numbers.

Either the three lines properly intersect at the origin, or two of them completely overlap and the other one
intersects them at the origin.

All three lines completely overlap one another.

We consider two possible cases: (i) a=0, and (ii) a=0.

(i) If a=0 then the assumption ad —bc =0 implies that b= 0 and c # 0. Gauss-Jordan elimination yields

a
C

We assumed a=0

The rows were interchanged.

O O O b O O -, O

o O o o

O O kb O O O »n =

o O O o

o O ©

o oo o o v =

O O OO O o O Bk

O O O O g

O O Ok, O O O =

o O —» O

o O O =

1.2 Gaussian Elimination

I

1

0Ol |21 r O s
0| |10 0 1 t
1/'lo0 0 0 0O
0/ [0 0 0 0
ol [0 1 r s]
1/ 10 0 0 O
0|'|0 0 0 0O
0] [0 0 00

The first row was multiplied by < and

the second row was multiplied by +. (Note that b,c #0.)

—% times the second row was added to the first row.

<+——— Thefirst row was multiplied by <.

4+—

—c times the first row was added to the second row.
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1.2 Gaussian Elimination 41

1 b
0 ;‘. <«——— The second row was multiplied by —2—.
- - (Note that both a and ad —bc are nonzero.)
1 0] _ :
1 — —g times the second row was added to the first row.

In both cases (a=0 as well as a = 0) we established that the reduced row echelon form of {a ﬂ is [é ﬂ
c

provided that ad —bc =0 .

(b)  Applying the same elementary row operation steps as in part (a) the augmented matrix {a
c

ﬂ will be

- 10
transformed to a matrix in reduced row echelon form {0 L p} where p and g are some real numbers. We
q

conclude that the given linear system has exactly one solution: x=p, y=q.

True-False Exercises

(@)
(b)

(©)
(d)

(e)
(f)
(9)

(h)

True. A matrix in reduced row echelon form has all properties required for the row echelon form.

. . . 1 0| . . . .
False. For instance, interchanging the rows of {0 J yields a matrix that is not in row echelon form.

False. See Exercise 31.

True. In a reduced row echelon form, the number of nonzero rows equals to the number of leading 1's. The result
follows from Theorem 1.2.1.

True. This is implied by the third property of a row echelon form (see Section 1.2).
False. Nonzero entries are permitted above the leading 1's in a row echelon form.

True. In a reduced row echelon form, the number of nonzero rows equals to the number of leading 1's. From
Theorem 1.2.1 we conclude that the system has n—n=0 free variables, i.e. it has only the trivial solution.

False. The row of zeros imposes no restriction on the unknowns and can be omitted. Whether the system has
infinitely many, one, or no solution(s) depends solely on the nonzero rows of the reduced row echelon form.

False. For example, the following system is clearly inconsistent:

X+y+z=1
X+y+z=2

1.3 Matrices and Matrix Operations

(@ Undefined (the number of columns in B does not match the number of rows in A)

(b) Defined; 4 x4 matrix



(©)
(d)
(€)
()
(@)
(b)
(©
(d)
(€)
()

(@)

(b)

(©)

(d)

(€)

()

(9)

Defined;
Defined;
Defined;
Defined;

4 x 2 matrix
5x2 matrix
4 x5 matrix

5x5 matrix

1.3 Matrices and Matrix Operations

Defined; 5x4 matrix
Undefined (the number of columns in D does not match the number of rows in C)
Defined; 4 x 2 matrix
Defined; 2 x4 matrix

Defined; 5x 2 matrix

Undefined (BA" isa 4 x4 matrix, which cannot be added to a 4 x 2 matrix D)

1+6 5+1 2+43| [ 7 6 5
-1+(-1) 0+1 1+2|=|-2 1 3
i 3+4 2+1 4+3_ i 7 3 7

1-6 5-1 2-3] [-5 4 -1
-1-(-1) 0-1 1-2|=| 0 -1 -1
| 3-4 2-1 4-3| [-1 1 1

5.3 5.0 [15 0
5-(-1) 5-2
51 51| | 5 5

Il

|
(¢1
-
o

[-71 -7:4 -7.2] [ -7 -28 -14
|73 71 -7.5| |-21 -7 -35

Undefined (a 2x3 matrix C cannot be subtracted from a 2x2 matrix 2B )

4.6 4.1 4.3] [2.1 2.5 2.2 24-2 4-10 12-4
4-(-1) 4-1 4-2|-|2-(-1) 2.0 2-1|=|-4-(-2) 4-0 8-2

4.4 4.1 4.3 2-3 2-2 2-4 16 -6 4-4 12-8
22 -6 8
=|-2 4 6
10 0 4
15 2 2-6 21 2.3 5+2 2+6
-3/|-1 0 1|+|2:(-1) 2:1 2:2||=-3|-1+(-2) 0+2 1+4
3 2 4 2-4 21 2.3 2+2 446
-3-13 -3-7 -3-8 -39 -21
=|-3:(-3) 32 35 |=| 9 -6
-3-11 -3-4 -3-10 -33 -12

42



(i)

)

(k)

(1

(@)

(b)

(©)

(d)

(€)

()

~

9

1.3 Matrices and Matrix Operations

3-3 0-0 00
—1—(—1) 2-2/=|0 0
1-1 1-1 00
1+0+4=5
15 2 3-6 3-1 3-3 1-18 5-3 2-9
trl|-1 0 1|- 3-(—1) 31 3:2||=tr —1—(—3) 0-3 1-6
3 2 4 3-4 3-1 3-3 3-12 2-3 4-9
-17 2 7]
=tr 2 -3 5||=-17-3-5=-25
-9 -1 -5

wll 7o 757

s
=4tr
0

Undefined (trace is only defined for square matrices)

3 -11 1 4
2 +
{0 2 J [3 1

Undefined (a 2 x2 matrix B" cannot be added to a 3x 2

21 £3] [+3
b4 21|
12 3] |31

6 -1 4] [1

21 1 1|-3/5
3 2 3| |2
12-3 -2-(-3)

=[2-15 2-0
6-6 4-3

o 2 Ekey

|
o
|

INY (S N TR Y [

[l \C B e
Il

= N e
+

ENEE N N T

N[5 I NI S N [0}
|

alw mlo Bl

IV

N
I
N

2 o

-1 3] [2:6 2:(-1) 24
0 2|=[21 21 21
14| (23 22 23
8-9 9 1 -1
2-6|=|-13 2 -4
6-12 01 -6

-7
D=4(28+14) =4.42 =168
14

2“{2-3+1 2-(-1)+4 2-1+2}{7 2 4}

5| |2.043 2.2+1 21+5| |3 5 7
4] [1-6 -1-(-1) 3-4] [-5 0 -1
1|=|5-1 0-1 2-1|=| 4 -1 1
3| |2-3 1-2 4-3| [-1 -1 1
37 (-5 4 -1\ [-5 0 -1
20| =/ 0 -1 -1]| =| 4 -1 1
-3 101 1 1 -1 1
matrix 5C")

O Nw

o

31 3(-1) 3-3
-[35 3.0 32
3.2 31 34
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1.3 Matrices and Matrix Operations

6 -1 4] [1 -1 3 2.6 2.(-1) 2.4] [31 3-(-1) 3-3])
hy |2[1 1 1]-3l5 2.1 21 2.1|-[3:5 3.0 3.2
3 2 3 2.3 22 32 31 3.4
12-3 -2- 9 1 -1 9 -13 0
“|l2-15  2- [13 2 4] _[1 2 1]
6-6 4- 01 -6]] [-1 -4 -6

. 6 1 3
[3 9 14} 112
7 25 27)) J
[ (3-6)—(9-1)+(14-4)
(17-6)—(25-1) +(27-4

(3'1)+(9'1)+(14-1) (3-3)+(9-2)+(14-3) }

) (17-1)+(25-1)+(27-1) (17-3)+(25-2)+(27-3)

[ 65 26 69
1185 69 182

() Undefined (a 2x2 matrix B cannot be multiplied by a 3x2 matrix A)

15 2|6 -1 4
k) t||-1 0 1|1 1 1
32 4(3 2 3

'(1-6)+(5-1) +(2:3) —(1-1)+(5-1)+(2-2) (1-4)+(5-1)+(2-3)
=tr| | —(1-6)+(0-1)+(1-3) (1-1)+(0-1)+(1-2) (1-4)+(o-1)+(1-3)ﬂ
| (3:6)+(2-1)+(4-3) —(3-1)+(2-1)+(4-2) (3-4)+(2-1)+(4-3)

(17 8 15
=tr||-3 3 -1||=17+3+26=46

132 7 26

() Undefined (BC isa 2x3 matrix; trace is only defined for square matrices)
(3-4)+(0-0) —(3-1)+(0-2)] [12 -3
(@) —(1-4)+(2-0) (1-1)+(2-2) =|-4 5
(1-4)+(1-0) —(1-1)+(1-2) 4 1

(b)  Undefined (the number of columns of B does not match the number of rows in A)
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1.3 Matrices and Matrix Operations

31 3.3 1 5 2
(©) -— 31 3.2(|-1 0 1
3-:1 3.3|| 3 2 4

[(18-1)—(3-1)+(9-3) (18-5)+(3-0)+(9-2) (18-2)+(3-1)+(9-4)
= ( ) ( 1)+(6-3) —( ) ( 0)+(6-2) —(3-2)+(3-1)+(6-4)]
| (12-1)-(3-1)+(9-3) (12-5)+(3-0)+(9-2) (12-2)+(3-1)+(9-4)
(42 108 75
=12 -3 21
36 78 63]
(3-4)+(0-0) —(3-1)+(0-2) -3
(d) {(1.4)42.0) (1.1)+(z.z)][; X ﬂ: - ]E X ﬂ
(1-4)+(1-0) —(1-1)+(1-2) 4 1
[(12-1)-(3-3) (12-4)-(3-1) (12-2)-(3-5)
=|-(4-1)+(5-3) —(4-4)+(5-1) —(4-2)+(55)
(4-1)+(1-3)  (4-4)+(11 (4-2)+(1-5)]
3 45 9
=11 -11 17
|7 17 13]

30 30
(4-1)—(1-3) (4-4)=(1-1) (4-2)—(L-5) 115 3
(€) {‘i 21{(0.1)42.3) (0-4)+(2-1) (o-2)+(2-5)}{_1 Zj{e 2 10}

1)+(0-6) (3-15)+(0-2) (33)+(01o)] [3 45 9]
( 2) —( -

|_\
00

)+(2-10) | ={11 -11 17
7 17 13

17 35

}{(1.'11);(4:4):(2:;) (13-3)+(4:1):(2:5)}:[21 17}
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(i)

)

(k)

1.3 Matrices and Matrix Operations

0
0) - +
4 5 (4-3)+50) —(- 2) (4 1)+(5-1)
_|16 21{3 o 1}— (16-3)~(2-0) —(16-1)~(2-2) (16-1)—(2-1)
g 8|0 % Y |(8:3)+(8-0) —(81)+(82) (81)+(8-1)
12 6 9
=148 -20 14
24 8 16
15 2|1 -1 3
trj|-1 0 11|15 0 2
3 2 4|2 1 4
(10)+(5-5)4(2-2) —(1-0)+(5-0)+(2-1) (1-3)+(5-2)+(2-4)
| (10)+(0-5)+(12)  (1-0)+(0-0)+(11) —(1-3)+(0-2)+(1-4)
| (30)+(2:5)+(4-2) ~(3-1)+(2.0)+(4-1) (3-3)+(2-2)+(4-4)
(30 1 21
=tr|]| 1 2 1||=30+2+29=61
21 1 29

6 -1 4 152 4.6-1 4~(—1)—5 4.4-2
tr 4[1 1 1]{1 0 1] =tr 4-1—(—1) 4.1-0 4.1-1
3 2 3 3 2 4 4.3-3 4.2-2 4.3-4
23 9 14
=tr { 5 4 3] =23+4+8=35
9 6 8

1.3)+(3-0) —(1-1)+(3-2) (1-1)+(3-1)] {26 2:(-1) 2-4
tr{| (4-3)+(1-0) —(4-1)+(1-2) (4-1)+(1-1)(+|21 21 2:1
(2-3)+(5-0) —(2:1)+(5-2) (2-1)+(5'1J Ls 2-2 2-3”
'3 5 4] [12 -2 8 15 3 12
tr{{12 -2 5(+| 2 2 2||=tr|{14 0 7||=15+0+13=28
| 6 8 7|6 46 12 12 13
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1.3 Matrices and Matrix Operations 47

(1

[(6-1)+(1-4)+(3-2) (6:3)+(1-1)+(3:5) ||
=tr| || —(1-1)+(1-4)+(2-2) —(1-3)+(L-1)+(2:5) || |-1 2
(41)+(1-4)+(3-2) (4-3)+(11)+(3-5) D { ]
(16 34))'[ 3 0 30
—u||| 7 8|||-1 2||=tr {16 ! 14} -1 2
14 28] | 1 1 8 8]y
(16-3)—(7-1)+(14-1) (16-0)+(7-2)+(14-1)]
“U|(34-3)-(8-1)+ (28-1) (34-0)+(8-2)+(28-1)J
55 28
=110 44D 55+ 44 = 99
1 -1 3] [6 3 0] [21-6  2-(-1)-1 2:3-3][ 3 0
@ (2[5 0 2|-|-1 —12_25(1)20—1 2.2-2|-1 2
i ] L ﬂ{ Lz o i
(4 +(3 ~(4-0)-(3-2)+(3-1)
~| 11 113 +(1 (11-0)- (1-2)+(2-1)]
0 )-(1-1) (0-0)+(1-2)+(5-1)

(-6
36 0
| 4 7

(b)  Undefined (a 2x3 matrix (4B)C cannot be added to a 2x 2 matrix 2B)
(3-1)+(0-3) (3-4)+(0-1) (3-2)+(0-5) 1 -1 3
© |-|-(11)+(2-3) —(1-4)+(2-1) —(1-2) +( 5) +5/5 0 2
(1-1)+(1- ) (1-4)+(1-1)  (1-2)+( 1 4
3 12 6 5.1 5-(—1) -3 5 4 -5 15
=-|5 -2 8|| +|5-5 5-0 =-12 2 -5{+|25 0 10
4 5 7 52 5.1 -6 -8 -7 5 20
| -3+5 5+(-5) —4+15| [2 -10 11
=|-12+25 2+0 -5+10 |=|13
_—6+1O -8+5 -7+20 4 -3 13
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|

10 18
18 30

|

1.3 Matrices and Matrix Operations
4 0
-1 2

W

)

21-11 17—(—1
0)+(3:2)

4-2 2-10
17—(—1)

26 42

)
|
| &
}[

2}
]

3 -1 1] [21 2.4 22
0 2 1] |23 2.1 25
2 8 4))
6 2 10])
[ 10 -6
-
-1 -8
21 17] [11 -1
17 35| |-1 5
(4-18)+(0-30)

4 2

Il
(4-10) +(0-18)

|

(4:3)-(10) (4
~(1-10)+(2-18) —(1-18)+(2-30

(0-3)+(2:0) —(0-1

[12 6 3
[10 -14 -1

| 0
4 0
-1 2

4 -1
0 2

|
|

o
|

15 2
-1 0 1
3 2 4

1 -1 3|6 -1 4 6 1 3
5 0 21 1 1|-(|-11 2
1 4|3 2 3 4 1 3

2

()

/|

+(2-4
0 0 O]
0 0O
0 0 0]

+(3-4)
+(3-4)

11
11
11

~—_— —

(6-2)+

+
14 4 12
36 -1 26
25 7 21

0)+(2-2) —(1-2

14 4 12
36 -1 26
25 7 21

|

14 36 25])
4 -1 7
12 26 21

~— — — ~ T ~—

I

14 4 12
36 -1 26
25 7 21

|



(@)

(b)

(©

(d)

(€)

()

(@)

1.3 Matrices and Matrix Operations

6 -2 4
first row of AB= [firstrowof A] B=[3 -2 7]{0 1 3]

7 5
=[(3-6)—(2-0)+(7-7) —(3-2)-(2-1)+(7-7) (3-4)—(2-3)+(7-5)]
=[67 41 41]

6 —2 4
third row of AB = [third row of A] B=[0 4 9]{0 1 3

7 75
=[(0-6)+(4-0)+(9-7) —(0-2)+(4-1)+(9-7) (0-4)+(4-3)+(9-5)]

=[63 67 57]

second column of AB = A [second column of B ]

3 -2 7|-2] [-(3-2)-(2-1)+(7-7)| [41
=6 5 4| 1|=|-(6-2)+(51)+(4-7)|=|21
0 4 9] 7] {(0-2)+(4-1)+(9.7) L?]

first column of BA = B [first column of A]

6 -2 47[3] [(6-3)-(2-6)+(4-0)] [ 6
=0 1 3 6}—{(0-3)+(1-6)+(3-0)]— 6}

7 7 50| [(7-3)+(7-6)+(5-0)| |63

3 27
third row of AA = [third row of A] A=[0 4 9]{6 5 4}

0 4 9
=[(o-3)+(4-6)+(9-o) —(0-2)+(4-5)+(9-4) (0-7)+(4-4)+(9-9)]
=[24 56 97]

third column of AA= A [third column of A]

3 2 77[7] [(3:7)—(2-4)+(7-9)] [76
=16 5 4 {4 =1 (6-7)+(5-4)+(4-9) {98]
0 4 9)9] |(0:7)+(4-4)+(9-9)] [97

first column of AB = A [first column of B ]

(3 -2 7{6 (3:6)—(2-0)+(7-7) r?]

{6 5 4||0|=|(6-6)+(5-0)+(4-7)|=|64
0 4 97| |(0-6)+(4-0)+(9-7)| |63

49



(b)

(©)

(d)

(€)

(f)

(@)

(b)

1.3 Matrices and Matrix Operations

third column of BB =B [third column of B ]
6 -2 4][4] [(6-4)—(2-3)+(4-5)| [38
_{ 1 3]{ ]_ (0-4)+(1-3)+(3-5) {18]
7 7 5]|5] [(7-4)+(7-3)+(5-5)| |74

6 -2 4
second row of BB = [second rowof B] B=[0 1 3]{0 1 3]
7T 7 5

=[(0-6)+(1-0)+(3-7) —(0-2)+(1-1)+(3-7) (0-4)+(1-3)+(35)]

=[21 22 18]
first column of AA = A [first column of A]
3 -2 7][3] [(3-3)-(2-6)+(7-0)] [-3]
=|6 5 4/6|=|(6-3)+(5-6)+(4-0)|=|48
0 4 9|0 [(0-3)+(4-6)+(9-0)| |24]

third column of AB = A [third column of B ]

(3 -2 7|[4] [(3-4)-(2:3)+(7-5)| [41]
=[6 5 4| 3|=|(6-4)+(5-3)+(4-5)|=|59
0 4 9]|5| [(0-4)+(4-3)+(9:5)| |57

3 -2 7
first row of BA = [firstrowof B] A=[6 -2 4][6 5 4]
4 9

=[(6-3)-(2:6)+(4-0) —(6-2)—(2-5)+(4-4) (6-7)—(2:4)+(4-9)]

=[6 -6 70]

3 -2 7 -3

first column of AA=3|6|+6| 5|+0 =148
0 4 9 24_

3 -2 71 [12

second column of AA=-2|6|+5| 5|+4 =29
0 4 9] |56

3 -2 7 76

third column of AA=7|6|+4| 5|+9 =|98
0 4 9 97

6 -2 4 64

first column of BB =6({0|(+0| 1(+7 =21

7 7 5 77
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1.3 Matrices and Matrix Operations 51

4 14
second column of BB =-2|0 +1{ 11+7 3]{22
5

38
third column of BB =40 |+3 1:|+5 3 {18]

74
3 [7 67
10. (a) firstcolumnof AB=6|6|+0| 5|+7|4|=|64
0 E 63
3] [7 41
second column of AB=-2|6|+1] 5|+7|4|=|21
0_ El 67
3 - 7] [41
third column of AB=4|6 |+3| 5|+5/4|=|59
0 4 9] |57
6 -2 4 6|
(b) first columnof BA=3|0|+6| 1|+0{3|=| 6
7 7 5 63 |
6 -2 4] [-6
second column of BA=-2|0|+5| 1|+4|3|=|17
7 7 S| |41
6 -2 4 70
third columnof BA=7/0|+4] 1(+9/3|=| 31
7 7 5| |122
2 35 X, 7 2 -3 5| x 7
11. (@ A=|9 -1 1|, x=|X, |, b=|-1];thematrix equation: |9 -1 1] X, |=|-1
1 5 4 X, 0 1 5 4fx 0
4 0 -3 1 X, 1 4 0 -3 1(x| |1
1 0 -8 X, 3 . . 5 1 0 -8(x, 3
(b) A= , X= , b= ; the matrix equation: =
-5 -1 X, 0 2 5 9 -1 x 0
3 -1 7 X, 2 0 3 -1 7|x, 2



12.

13.

14.

15.

16.

17.

18.

19.

20.

1 -2 3
2 10
a A= ,
@ 0 -3 4
11 0 1
(3 3
(b) A=|-1 -5
| 0 -4
(@ 5x, + 6x,
=X, — 2X,
4x,
(@) X, — X
4%, + 3X,
2% + X,
11 0]
[k 1 1] 10 2
0 2 -3

The only value of k t

120
[2 2 kK][2 0 3

1
, |, b
X3

+ 2%, =
+ IX, =
+ 5%, =

[

“[k 1 1]
1

hat satisfies the
[2
2 =[2 2 k]

0 31

k

-1

1.3 Matrices and Matrix Operations

-3 1 -2 3 -3
Xl
. . 2 10 0
; the matrix equation: X, |=
0 -3 4 1
X3
5 1 01 5
-3 3 3 3x -3
b=| 3|;the matrix equation: | -1 -5 -2/ X, |=| 3
0 0 -4 1{x, 0
by X + vy + z = 2
2X + 3y = 2
5 - 3y - 6z = -9
3w — 2x + Z
2 (b) 5w + 2y - 22
3w + x + 4y + 7z
4 2w + b5x + y + 6z
[k+1
k+2 =k2+k+k+2—1=k2+2k+1=(k+1)2
-1

equation is k=-1.

6
3k+4|=k*+12k +20=(k+10)(k +2)

_k+6

The values of k that satisfy the equation are k=-10 and k=-2.

4 [1 4 1]{:2}[

‘21[0 1 2]{:?}[—2 3 1]:{0

0

30 2]:{2

-9

4 8 6
J’_
2 4 2 -3

0 0 6 0
J’_
o ol o

-5 5
-1 3

N

ek

41 [6 0
6| [13 16

o ol ool ot I MG HHE 2

|2 _1]{_‘2‘}[4 o]{ﬂ[l _1]=B _(iHﬁ gHi

e

o O O O

52



21.

22,

23.

24,

25.

1.3 Matrices and Matrix Operations 53

x, | [-3r—-4s-2t] [0] [-3r] [-4s]| [-2t] [0] [-3] [-4]| [-2]
X, r 0 r 0 0 0 1 0 0
X, -25s 0 0| |-2s 0 0 0 -2 0

= = + + + = +r +S +t

X, s 0 0 0 0 0 1 0
X t 0 0 t 0 0 0 1
EN i 113 L o)L o) of |3 Lo Lo [oO]

'x, | [-3r—4s—2t] [-3r] [-4s] [-2t] [-3] [-4] [-2]

X, r r 0 0 1 0 0

X, -25 0| |-2s 0 0 -2 0
= = + + =r +S +1

X, S 0 S 0 0 1 0

X 0 0 t 0 0 1

X | | 0 L o] o] o [ o] [o] |o0]

The given matrix equation is equivalent to the linear system
a=4
3=d-2c

-1=d+2c

a+b=-2
After subtracting first equation from the fourth, adding the second to the third, and back-substituting, we obtain the
solution: a=4, b=-6, c=-1,and d=1.
The given matrix equation is equivalent to the linear system
a — b =
a + b =

c + 3d =
- Cc 4+ 2d =

O N - 0

After subtracting first equation from the second, adding the third to the fourth, and back-substituting, we obtain the
solution: a=%, b=-1,c=—%,and d=2%.

(a) Ifthe ith row vector of A is [0 --- 0] then it follows from Formula (9) in Section 1.3 that i th row vector

of B=[0 -+ 0]B =[0 - 0]

0
(b) Ifthe jthcolumn vector of B is | : | then it follows from Formula (8) in Section 1.3 that the j th column

vector of AB = A
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a, 0 0 0 0] ay, &, A, A, ag ag|
0 a22 O 0 0 0 a'22 a23 a24 a25 a26
(a) 0 0 a33 0 0 0 (b) 0 0 a‘33 a34 a‘35 a‘36
0 O a, 0 O 0 0 0 a, a, a,
o 0 0O 0 a O 0 0 0 0 a, ag
1 0 0 0 0 0 ag 0 0 0 0 0 ag,
[a, 0 0 0 0 0] fa, a, 0 0 0 O]
a a, 0 0 0 O a, a, a, 0 0
(C) a31 a32 a33 O O 0 (d) O a32 a33 a34 0 O
a41 a42 a'43 a44 O 0 O O a43 a44 a45 O
a'51 a52 a53 a'54 a55 0 O O 0 54 a55 a56
L 61 a62 a63 64 65 a66 L O 0 O a65 a66_
X1 |8y 8, || X} |ayX+a,y+a,z X+y
Setting the lefthand side Ajy |=|a, &, &, | Y |=|ayX+a,y+a,z|equalto|x-y| yields
z a, a, az|lz Ay X +a,,Y + a7 0

a,X+a,y+az=X+y
Ay X+ay,y+ayZ=X-Y
A, X+ag,y+a,z=0

Assuming the entries of A are real numbers that do not depend on x, y, and z, this requires that the coefficients
corresponding to the same variable on both sides of each equation must match. Therefore, the only matrix satisfying

1 10
the given conditionis A=|1 -1 0].
0 0O
X all a12 a’lS X a’llx + alZy + a13z Xy
Setting the left hand side Ay |=|a,, a,, a, | Yy|=|a,X+a,y+a,z|equalto| O | yields
z a, A, a;|/z Ay X+ay,y +a,z 0

aX+a,y+aZ=Xy
a, X+a,Yy+a,z=0
Ay X +a,Y+a,2=0

Assuming the entries of A are real numbers that do not depend on x, Y, and z, it follows that no real numbers a,, ,
a,,, and a,, exist for which the first equation is satisfied for all x, y, and z . Therefore no matrix A with real
number entries can satisfy the given condition.

y 0 O
(Note that if A were permitted to depend on x, Y, and z, then solutions do existe.g., A=|z 0 -x|.)

0 z -y
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() E ﬂ and E :ﬂ

(b)  Four square roots can be found: V5 0] {_\E O] {\/E 0] and {_\/E 0}.

| 0 3 0 3 0 -3 0 -3
2 3 4 5 11 1 1 -1 -1 1 1
3 4 56 12 4 8 -1 -1 -1 1
(a) (b) (©)
4 5 6 7 13 9 27 1 -1 -1 1
56 7 8 1 4 16 64 1 1 -1 1

the total cost of items purchased in January

. . the total cost of items purchased in February
The given matrix product represents . .
the total cost of items purchased in March

the total cost of items purchased in April

(@) The 4x3 matrix M +J represents sales over the two month period.

(b) The 4x3 matrix M —J represents the decrease in sales of each item from May to June.

d y=[1 1 1 1]

(e) Theentry inthe 1x1 matrix yMx represents the total number of items sold in May.

True-False Exercises

(@)
(b)

(©)

(d)

(€)

(f)

(9)

(h)

True. The main diagonal is only defined for square matrices.

False. An mxn matrix has m row vectors and n column vectors.
. 10 00 00
False. E.g., if A= and B = then AB= does not equal BA=B.
00 10 00

False. The ith row vector of AB can be computed by multiplying the i th row vector of A by B.

True. Using Formula (14), ((AT )T) :(AT),-i =(A),-

ij

10 00 00
False. E.g., if A:{O 0} and B:{O J then the trace of AB{0 0} is 0, which does not equal tr(A)tr(B)=1.

1 1
False. E.g., if A= 0 and B = 00 then (AB)T |00 does not equal A"B" = 0 .
00 10 00 00

True. The main diagonal entries in a square matrix A are the same as those in A .
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(i)  True. Since A" isa 4x6 matrix, it follows from B" A" being a 2x6 matrix that B" must be a 2x4 matrix.
Consequently, B isa 4x2 matrix.

4) True.
a, - &, €y, e Oy,
tricl @ . i||=tr|] P T
an A cay, ca,,
a, - a,
:Ca11+"'+cann:C(a11+"'+ann):Ctr — .
a, - a,

(k)  True. The equality of the matrices A—C and B—C implies that a; —c; =b; —c; forall i and j. Adding c; to

both sides yields a; =b; forall i and j.Consequently, the matrices A and B are equal.
10 00 00
(D False.E.g., if A= and B=C = then AC=BC = even though A= B.
00 10 0 0

(m) True. If Alisa pxq matrixand B isan rxs matrix then AB being defined requires g=r and BA being defined

requires S=p. For the pxp matrix AB to be possible to add to the qxq matrix BA, we must have p=(.

0
(n)  True. If the jth column vector of B is | : | then it follows from Formula (8) in Section 1.3 that
0
0 0
the jthcolumnvectorof AB = A |:| =
0 0

10

11
(o) False.E.g., if A= and B=
11 10

} then BA= A does not have a column of zeros even though B does.

1.4 Inverses; Algebraic Properties of Matrices

1. (a) A+(B+C)=(A+B)+C=[g 2} (b) A(BC):(AB)C{

-34 -21
-2

52 28
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14 15 -12 -3

(c) A(B+C)=AB+AC:[O —18} (d) (a+b)C:aC+bC:[ 9 6}
-24 -16
@ a(BC):(aB)C:B(aC)z{ - 36}

-16 5
(b) A(B—C):AB—AC{ o _6}

(c) (B+C)A=BA+CA={ 1 8}

~18 -22
(d) a(bc)z(ab)c{_1;‘21 _zﬂ

o sl ] o o)1 L]
@ (A+B) =AT +B =E ﬂ (b) (aC) =aC’ =[1Z _ﬂ

The determinant of A, det(A)=(2)(4)—(-3)(4) =20, is nonzero. Therefore A is invertible and its inverse is

s 43[4
SO 4 2] |- AT
10

The determinant of B, det(B)=(3)(2)—(1)(5)=1, is nonzero. Therefore B is invertible and its inverse is

gi| 2 -1
|5 3|

The determinant of C, det(C)=(2)(3)—(0)(0)=6, is nonzero. Therefore C is invertible and its inverse is

L 3 0] [t o0
ct=1 =12 [l
0 2] |0 1

The determinant of D, det(D)=(6)(—1)—(4)(—2)=2, is nonzero. Therefore D is invertible and its inverse is
pioa|t AT 2]
22 6 1 3

The determinant of A —[

o

gl o=
-

(e ve) -3l >]

1 X -X 1 X —-X
—er—e7) L(e+e)

det(A)=1(e* +e‘x)2 —i(e* —e> )2 =i(e” +2+e)-4(e” ~2+e?")=1(2+2)=1 is nonzero. Therefore A is

invertible and its inverse is A™ _[
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The determinant of the matrix is (cos@)(cos@) —(sin@)(-sin@) =10. Therefore the matrix is invertible and its

cosé
sin@

AT_24
-3 4]

. . —sin@
inverse is .
cos@

W -GarmEe 2 o)

Al:(z>(4)—l<—s><4>{—3 E%H H —}
R R e F e . (S A
ABC{_:L _;Eﬂ;(ABC)1:(—18)(36)i(—12)(64){—2i —Lﬂ_%[—zi —ﬂ:[—g

cpiad o 113 0 2 11
6/0 2|)|-5 3|l20|-4 2
-12 ;(ABC)T: -18 64 L CTRTAT = 2 0|3 5| 2 4 _ -18 64
36 -12 36 0 3|1 2||-3 4 -12 36
From part (a) of Theorem 1.4.7 it follows that the inverse of (7A)71 is 7A.
1 -2 -7 1|1-2 -7 2 7 112 7
=— = . Consequently, A==
(—3)(—2)—(7)(1) -1 3| -1/-1 -3 1 3 711 3

From part (a) of Theorem 1.4.7 it follows that the inverse of (5AT )_1 is 5A".

2 1 -2 -1 1
Thus 5AT _ L - .
1/-5 -3 5 3
From part (a) of Theorem 1.4.7 it follows that the inverse of (I +2A)'l is | +2A.
1 5 2] 1[5 2] (-5 %
(-)(5)-(2)(4) -4 -1 -84 1] [ & &
_5 2 1 0 _9 1
Consequenty A:zﬂ il M b 4]
2\l & = 101 5 Tn

; 5 17 [ & &
From part (a) of Theorem 1.4.7 we have A:(A‘l) " Therefore Azé{ 3 2}:{ P }

13 13

SN
w
L
N —
I
——
O N
wl- O
[
|
a1 N
|
w =
[
|

-18

ABC =
{ 64

Thus 7A=

}. Consequently, Az{

2
5
1
5

[S1[N)

Thus | +2A=

{

~j=

1]

~Jw
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@ A3:AAA{41 15}
30 11
e 1 1 -15] [ 11 -15
& (4 ‘(41)(11)_(15)(30)[_30 41}{_30 41}
W _onero| 3 T3 1]_,[3 1],[1 0] _[11 4] [6 2] [1 0] _[6 2
e F M KPS M AP L P
. .. [80
@ A —AAA—{ZS J
a1 1 1 0] 1f 1 0] [+ 0
® () _(8)(1)—(0)(28){—28 8}8[—28 8}{—% 1}
(c) A2—2A+I—2 0112 0—22 0+1 g g 0+1 S
14 141 4 1] |0 1| |12 1] |8 2| |0 1] |4 0
1 1] 2 20 7 3 36 13
(@) A—Z'{Z 1 (b) 2A _A+I_L4 6} ) A _2A+|{26 10}
(@) A—2I=B _01_ (b) 2A2-A+|=L; (2)} ) A3—2A+'=B g}
AB—a b0 1_—0 a'BA—O llla b| {c d
“|lc dJlo o] |0 ¢|" |0 0Jlc d] |0 0]

0 d
The matrices A and B commute if [0 a} :{C }
c

£.
00

59

Therefore, a b and 01 commute if c=0 and a=d .
c d 0 0

If we assign b and d the arbitrary values s and t, respectively, the general solution is given by the formulas

a=t, b=s, ¢=0, d=t

o P S e ] P S

The matrices A and C commute if [g 8} ={O 0] i.e.

o

a b
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Therefore, a b and 00 commute if b=0 and a=d.
c d 10

If we assign ¢ and d the arbitrary values s and t, respectively, the general solution is given by the formulas

a=t, b=0, c=s d=t
5. %=l 5 =i =5
%, %=y = %=t =t
2. =G =k %o~ B h
2. % =fia g ~b = = fotar o = =4

29. p(A)=A*-9I :[2 4]

30. P (A)p,(A) =(A+31)(A-3I)
=A(A-31)+(31)(A-3I)
= (A% = A(31))+((31)A-(31)(31))
= (A? =3(Al))+(3(1A)-9lI)
=(A* —3A)+(3A-0I)

= A?-91=p(A)

31. (a)

vy 1o oo o)

(b)  Using the properties in Theorem 1.4.1 we can write

Theorem 1.4.1(e)

Theorem 1.4.1(i)

Theorem 1.4.1(m)

Property Al =IA=A onp. 43

Theorem 1.4.1(b)

10 0 1 1 1)1 -1 1 -1
If A= and B = then (A+B)(A-B)= = does not equal
00 00 0 0|0 O 0 O

(A+B)(A-B)=A(A-B)+B(A-B)=A? - AB+BA-B’
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(c) Ifthe matrices A and B commute (i.e., AB=BA)then (A+B)(A-B)=A’-B*.
100 (100 0 0] |[-1 0O
32.  Wecan let A be one of the following eight matrices: |0 1 0|, 0 1 0}, -1 0|, 0 -1 0},
0 01 0 0 1/ |0 0 1 0 01
10 0/, (-2 0 O}1 0 O |-1 O
o1 0,01 O0[,|0 -2 0|, 0 -1 O0f.
0 0 -1 0 0 -1 |0 0 -1 0 0 -1
010
Note that these eight are not the only solutions - e.g., Acanbe |1 0 0|, etc.
0 01
33. (@) We can rewrite the equation
A*+2A+1=0
AP +2A=-1
—A? —2A=1
A(-A-21)=I

which shows that A is invertible and A" =—A-21 .
(b) Let p(x)=c,X"+---+C,X* +C¢,x+C, With ¢, #0. The equation p(A)=0 can be rewritten as
C, A" +---+C,A’ +c,A+c,l =0
C, A"+ +C,A* +Cc A=—,)l

C

n 2 A2 _
—C—”A —---—E—OA —%A_I
0

Ch AN-1 2 _
Al-2A™ - Z AT )=

. . . 0 Co ant c, C,
which shows that A is invertibleand AV =——" A" —... - 2 A_1]

CO CO CO

34. If A’ =1 then it follows that AA* =1 therefore A must be invertible (A™ = A?).

35. Ifthe ithrow vectorof Ais [0 --- 0] then it follows from Formula (9) in Section 1.3 that
i th row vectorof AB=[0 --- 0]B=[0 - 0].

Consequently no matrix B can be found to make the product AB=1 thus A does not have an inverse.
0

If the jth column vector of A'is | : | then it follows from Formula (8) in Section 1.3 that

61
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the jth column vectorof BA=B |:|=]:
0 0
Consequently no matrix B can be found to make the product BA=1 thus A does not have an inverse.
If the ith and j th row vectors of A are equal then it follows from Formula (9) in Section 1.3 that
i th row vector of AB= j th row vector of AB.
Consequently no matrix B can be found to make the product AB=1 thus A does not have an inverse.

If the ith and j th column vectors of A are equal then it follows from Formula (8) in Section 1.3 that
the i th column vector of BA = the jth column vector of BA
Consequently no matrix B can be found to make the product BA=1 thus A does not have an inverse.

Xll X12 Xl3
Letting X =| X,, X,, X, |, the matrix equation AX =1 becomes
X31 X32 X33

o
o

Xll + X31 X12 + X32 X13 + X33 1

o

Xt X X+ Xy Xgt+ Xy |= 01

o
[EEN

X21 + X31 X22 + X32 X23 + X33 0
Setting the first columns on both sides equal yields the system
Xy + Xy =1
X, + X, =0
Xp1 + X3 =0

Subtracting the second and third equations from the first leads to —2x,, =1. Therefore x,, =—1 and (after

substituting this into the remaining equations) x,; =X, =+ .

The second and the third columns can be treated in a similar manner to result in

i1 _1 i 1 _1
2 2 2 2 2 2
X=|-1 1 1} Weconcludethat A invertible and its inverseis A*=| -1 1 1
1 -1 1 1.1 1
2 2 2 2 2 2
Xll X12 X13
Letting X =| X,;, X,, X, |, the matrix equation AX=1 becomes
X31 X32 X33
Xpg F Xy + Xy Xy + X5y + X5y Xpg + Xog + Xgg 100
X141 X1 X3 =0 10
Xpy + Xy Xpp + X3y Xp5 + Xg3 0 01

Although this corresponds to a system of nine equations, it is sufficient to examine just the three equations
corresponding to the first column

62
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Xpg + X + X5 =1

X, =0

+X,, =0

31

to see that subtracting the second and third equations from the first leads to a contradiction 0 =1.

We conclude that A is not invertible.
(AB)”(Ac)(Dc?) D
-(8*a)(acH)((c ) (0) "o
=(B*A™)(AC™)(cD)D™
=B*(A*A)(c'c)(pDY)
=B

=B*

(Ac™)"(Ac?)(act) AD™
~((c)"a*)(ac?)((c ) A)aD
=(CA*)(AC)(cAt)AD™

=C(A*A)(CcC)(A*A)D™

=ClIID™
=CD™*
C cn
If R=[r, -+ r]and C=| i |then CR=| :
Cn Cnrl

<4— Theorem 1.4.6

<4— Theorem 1.4.7(a)
<4— Theorem 1.4.1(c)

<4— Formula (1) in Section 1.4

<4— Property Al =1A= A in Section 1.4

<4— Theorem 1.4.6

<4— Theorem 1.4.7(a)

<4— Theorem 1.4.1(c)
<4+— Formula (1) in Section 1.4

<4— Property Al =1A= A in Section 1.4

Cl rn

and RC =[rc, +---+r,c,|=[tr(CR)].

n'n

63

Yes, it is true. From part (e) of Theorem 1.4.8, it follows that (A*)" =(AA)T =ATAT :(AT )2 . This statement can be

extended to n factors (see Section 1.4) so that

(A") :(AA---A

n factors

—ATAT...AT :(AT)”

n factors

(@) Assuming A is invertible, we can multiply (on the left) each side of the equation by A™:

AB=AC
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A" (AB)=A"(AC) <“—— Multiply (on the left) each side by A™
(A’lA)B =(A’1A)C <+— Theorem 1.4.1(c)
=IC <+—— Formula (1) in Section 1.4
B=C <4— Property Al =1A= A on Section 1.4

(b) If Aisnotan invertible matrix then AB = AC does not generally imply B =C as evidenced by Example 3.

Invertibility of A implies that A is a square matrix, which is all that is required.
By repeated application of Theorem 1.4.1(m) and (1), we have

(A" = () (A) (KA) (KA) () = (KA) () ) A2 = (kB)-+ (KA == A

" adors "2 fotors "3 tors
@ A(A'+B)B(A+B)"
=(AA'B+AB'B)(A+B)" +———  Theorem 1.4.1(d) and (e)
=(IB+Al)(A+ B) <«—— Formula (1) in Section 1.4
=(B+A)(A+ B) <+—— Property Al = IA=A in Section 1.4
= (A+B)(A+B)" <«——— Theorem 1.4.1(a)

=1 <+— Formula (1) in Section 1.4

(b)  We can multiply each side of the equality from part (a) on the left by A™, then on the right by A to obtain
(A*+B*)B(A+B) A=I

which shows that if A, B, and A+B are invertible then sois A™*+B™.

Furthermore, (A’1 + B’l)_1 =B(A+ B)fl A.

@ (1-A)
~(1-A)(1-4)
=1l -1A-Al + AA <+—— Theorem 1.4.1(f) and ()
=1 -A-A+A? <«——— Property Al = 1A= A in Section 1.4
=I-A-A+A +— Aisidempotentso A’ = A
=1-A

(b) (2A-1)(2A-1)
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= (2A)(2A)—2A| —1 (2A)+ I <4— Theorem 1.4.1(f) and (g)

=4N° —2A-2A+1 <—— Theorem 1.4.1(l) and (m);
Property Al =1A= A in Section 1.4

=4A—-4A+1 <« A isidempotentso A’ =A

47.  Applying Theorem 1.4.1(d) and (g), property Al =1A=A, and the assumption A* =0 we can write

(1= A)(1+ Ak A 4o A2 4 A

:I_A+A_A2+A2—A3+"'+Ak_2—Ak_l+Ak_l—Ak
=] - A
=1-0

=]
a bila b a b 10
48. A’ — d)A d-bc)l = - d d-b
(a+d)A+(a c) L d}[c d} (a+ )L OI}+(a c){0 J
_|a®+bc ab+bd| |a*+da ab+hd ,|ad=bc 0 | 0O
ca+dc cb+d? ac+dc ad+d?’ 0 ad—bc| [0 O

True-False Exercises

(@) False. A and B are inverses of one another if and only if AB=BA=1.

(b) False. (A+ B)2 =(A+B)(A+B)=A”+AB+BA+B does not generally equal A’+2AB+B?” since AB may not
equal BA.

(c) False. (A—B)(A+B)=A?+AB—BA-B? does not generally equal A>—B? since AB may not equal BA.
(d) False. (AB) " =B™A™ does not generally equal A"B™.

(e) False. (AB) =B"A" does not generally equal A'B'.

(f)  True. This follows from Theorem 1.4.5.

(@  True. This follows from Theorem 1.4.8.

(h)  True. This follows from Theorem 1.4.9. (The inverse of AT is the transpose of A™.)

(i) False. p(1)=(a,+a +a,+--+a,)l.
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(k)
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True.
If the i th row vector of Ais [0 --- 0] then it follows from Formula (9) in Section 1.3 that
i th row vector of AB=[0 --- 0]B=[0 - O].
Consequently no matrix B can be found to make the product AB=1 thus A does not have an inverse.
0
If the jth column vector of A is | : | then it follows from Formula (8) in Section 1.3 that
0
0 0
the j th column vector of BA = B =
0 0

Consequently no matrix B can be found to make the product BA=1 thus A does not have an inverse.

False. E.g. | and —I are both invertible but 1 +(—1)=0 is not.

1.5 Elementary Matrices and a Method for Finding A™

(a) Elementary matrix (corresponds to adding —5 times the first row to the second row)
(b) Not an elementary matrix

() Not an elementary matrix

(d) Not an elementary matrix

(@) Elementary matrix (corresponds to multiplying the second row by \/§)

(b)  Elementary matrix (corresponds to interchanging the first row and the third row)

(c) Elementary matrix (corresponds to adding 9 times the third row to the second row)

(d) Not an elementary matrix

1 3
(@) Add 3 times the second row to the first row: [0 J

(b)  Multiply the first row by —<:

O O -
O = O
L O O

1
(c) Add 5 times the first row to the third row: | 0
5

O = O
= O O

66



(d)

(@)

(b)

(©

(d)

(@)

(b)

(©

(@)

(b)

(©)

1.5 Elementary Matrices and a Method for Finding A™

Interchange the first and third rows:

o O O
o O —» O
o O O -
= O O O

1
Add 3 times the first row to the second row: [3 ﬂ

100
Multiply the thirdrowby +: |0 1 0
00 %
0 001
. 0100
Interchange the first and fourth rows:
0010
1000
10210
Add < times the third row to the first row: 0100
0010
0 001

-6 -6 -6
Interchange the first and second rows: EA:{ 1 o & J

Add -3 times the second row to the third row: EA=| 1 -3 -1 5 3
-1 9 4 -12 -10

13 28
Add 4 times the third row to the firstrow: EA=| 2 5
3 6

6 12 -30 6
Multiply the first row by —6: EA=
3 6 -6 -6

2 -1 0 -4 -4
Add —4 times the first row to the second row: EA=|-7 1 -1 21 19
2 0 1 3 -1

1 4
Multiply the second row by 5: EA=|10 25
3 6
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(@)

(b)

(©

(d)

(@)

(b)

(©)

(d)

(@)
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1 0] (B was obtained from A by interchanging the first row and the third row)

1 0] (A was obtained from B by interchanging the first row and the third row)

(C was obtained from A by adding —2 times the first row to the third row)

= O O

o - O

0
0| (A was obtained from C by adding 2 times the first row to the third row)
1
0
0| (D was obtained from B by multiplying the second row by -3)
1

o
o

(B was obtained from D by multiplying the second row by —1)

= O

=
— O
N O

(F was obtained from B by adding 2 times the third row to the second row)

o
[EEN

o

0
-2 | (B was obtained from F by adding —2 times the third row to the second row)
1

O O
O

(Method I: using Theorem 1.4.5)
The determinant of A, det(A)=(1)(7)-(4)(2)=-1, is nonzero. Therefore A is invertible and its inverse is

P I S I A
A = 1 = .
-2 1 2 -1

(Method II: using the inversion algorithm)

1 4|1 0
[2 7 ‘O 1 <4—— The identity matrix was adjoined to the given matrix.

1 47110
[O _1‘_2 1 <+—— -2 times the first row was added to the second row.
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1 411 0
<4—— The second row was multiplied by 1.

0 1|12 -1
1 0|-7 4
0 1| 2 —1/’ <+— -4 times the second row was added to the first row.

. .| =7 4
The inverse is .
2 -1

(b)  (Method I: using Theorem 1.4.5)
The determinant of A, det(A)=(2)(8)—(-4)(—4)=0. Therefore A is not invertible.
(Method I1I: using the inversion algorithm)

2 -4]1 0]

{_4 slo 1 <+——— The identity matrix was adjoined to the given matrix.
2 —4]1 0]
0o ol2 1 <+— 2 times the first row was added to the second row.

A row of zeros was obtained on the left side, therefore A is not invertible.

10. (a) (Method I: using Theorem 1.4.5)
The determinant of A, det(A)=(1)(-16)—(-5)(3)=-1, is nonzero. Therefore A is invertible and its inverse

. -16 5] [16 -5
IS A =_—1 = .
-3 1 3 -1

(Method II: using the inversion algorithm)

1 —5]1 0]
<«— The identity matrix was adjoined to the given matrix.
_3 -16 (0 1_
1 5| 1 0]
0 -11-3 1 <«——— -3 times the first row was added to the second row.
1 5{1 O
0 1l3 41 <—— The second row was multiplied by -1.
1 0|16 -5
0 1l 3 —1l’ <«——— 5 times the second row was added to the first row.

s _
The inverse is 6 -5 .
3 -1
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(b) (Method I: using Theorem 1.4.5)
The determinant of A, det(A)=(6)(-2)—(4)(-3)=0. Therefore A is not invertible.

(Method I1: using the inversion algorithm)

6 4]1 0]

3 2lo 1 <+—— The identity matrix was adjoined to the given matrix.
[0 01 2]

3 olo 1 <+—— 2 times the second row was added to the first row.

A row of zeros was obtained on the left side, therefore the matrix is not invertible.

1 00

1 2
11. (a) 2 53|01 <«—— The identity matrix was adjoined to the given matrix.
10

0 1 3|2 <4— -2 times the first row was added to the second row and
0 =2 5/-1 0 1 -1 times the first row was added to the third row.
2 3/ 10 0]
0 -3 |2 <+—— 2 times the second row was added to the third row.
0 0 -1|-5 2

()
w
(BN
o
o

-3|1-2 1 0 <«—— The third row was multiplied by —1.

0| 13 -5 -3 <«—— 3 times the third row was added to the second row and
00 1| 5 —2 -1 -3 times the third row was added to the first row.

<«— -2 times the second row was added to the first row.

The inverseis| 13 -5 -3].
5 2 -1



-1 3
(b) 2 4
4 2

1 -3

2 4

4 2

1 -3

0 10

0 -10

1 -3

0 10

0 0

-4|1
1]0
-9|0
-1
0
9| 0
4]-1
7| 2
7|-4
4]-1
7| 2
0[-2
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The identity matrix was adjoined to the given matrix.

The first row was multiplied by 1.

—2 times the first row was added to the second row and

4 times the first row was added to the third row.

The second row was added to the third row.

A row of zeros was obtained on the left side, therefore the matrix is not invertible.

11 21
5 5 5
12. (a) t & 1|0
% 1|0
1 215
1 1o
-4 110
1 1 2| 5
0 0 5|5
0 5 3|5
i 1 2] 5
5 5|5
0 0 5|5
11 2] 5
1 1] 1
00 1]-2
11 0] 1
010|0
0 0 1|-2

N O

The identity matrix was adjoined to the given matrix.

Each row was multiplied by 5 .

-1 times the first row was added to the second and
—1 times the first row was added to the third row.

The second and third rows were interchanged.

The second row was multiplied by —1 and

the third row was multiplied by % .

% times the third row was added to the second row and
2 times the third row was added to the first row.



= O O

-2 2

o O -

0

1

0
1 3 1
Theinverseis| 0 1 -1
- 0

2 2
5 s 5|1
(b) § % w5 |0
5 5 w0
1 1 2|5
2 3 -2|0
1 -4 1|0
1 1 2] 5
0 5 $£[-10
0 5 5| -5
1 1 -2| 5
0 5 $|-10
0 0 0| 5
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1
-1 <+— -1 times the second row was added to the first row.
0
0 0]
10 <+——— The identity matrix was adjoined to the given matrix.
0 1
0 0]
50 <«—— Each row was multiplied by 5 .
0 5
0 0]
50 <«— -2 times the first row was added to the second and
0 5 —1 times the first row was added to the third row.
0
S <+— -1 times the second row was added to the third row.
-5 5

A row of zeros was obtained on the left side, therefore the matrix is not invertible.

10 1
13. 01101
11

O O

O - O
-
o
-

O
N R O

NI

<+—— The identity matrix was adjoined to the given matrix.

<«— -1 times the first row was added to the third row.

<«— -1 times the second row was added to the third row.

<+——— The third row was multiplied by —+.




1001 -2
0 10[-% 1

00 1| & 1 -
1.1 1

2 2 2
Theinverseis | -+ 1 1
101 _1

2 2 2
\/53\/5010

14, —4J2 2 olo 1
0 0 110 O

+ 0

1 3 0|7

4 100 L

00 1ipo o

1 30/% O
013 0|22 L

0 0 1| o0 o
130|% O

01 032 £

00 10 O
100|L 3
0102 2

0 01| 0 0

2 32

26 26

The inverse is | 22 32
0 0

2 6 61 0

15. 2 7 6|01
2 7 7100

2 6 6 10

01 0|11

01 1(-10

N Nl N
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<+—— -1 times the third row was added to the second and
—1 times the third row was added to the first row
<+——— The identity matrix was adjoined to the given matrix.
<«— Each of the first two rows was multiplied by % .
<«—— 4 times the first row was added to the second row.
<«——— The second row was multiplied by ﬁ
<+—— -3 times the second row was added to the first row.

<«——— The identity matrix was adjoined to the given matrix.

-1 times the first row was added to the second and
—1 times the first row was added to the third row

4



o O N

O - O

The inverse is

16.

o O O -
o O O -
o o w o P =

o O O -
o O w o

w w w o

w w w o

o o1 O O

ol o1 O O

ol o1 O O

g o1 © O

|
|~ O = N
|
H H

|
O =~
|
HH

o
o
o O - O

|
=
o O - O

o

o
|
-

O =, O O O - O O O = O O

o

-1

= O O O _ O O O = O O O

m O O O
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—1 times the second row was added to the third row.

—6 times the third row was added to the first row

—6 times the second row was added to the first row

The first row was multiplied by .

The identity matrix was adjoined to the given matrix.

-1 times the first row was added to each of the remaining
rows.

—1 times the second row was added to the third row and
to the fourth row.

—1 times the third row was added to the fourth row
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1000/ 1 0 0 0]
0100-3% 3 00
00 10/ 0 -2 1o <«——— The second row was multiplied by £,
0001 O 8 _i 1 the third row was multiplied by %, and
T the fourth row was multiplied by %
1 0 0 0]
_1 1 00
Theinverseis | * 7 .
0 —< 50
0 0 -4 4]
(2 4 0 0[100 0]
17 1 2 12 0/{0 1 0 O
' 0 2 0/l0 0 10 <4— The identity matrix was adjoined to the given
matrix.
0 -1 4 50 00 1
1 2 12 0/0 10 O]
2 -4 0 01000
0 0 2 0/l00 10 <+—— The first and second rows were interchanged.
|0 -1 4 5|0 00 1
1 2 12 0/0 10 O]
0 8 -24 0|1 -2 0O
0O O 2 0/l0 0 10 <«—— -2 times the first row was added to the second.
|10 -1 -4 5|0 0 0 1]
1 2 12 o0fo0 0 0]
0 -1 -4 50 001
0 O 2 0/l0 0 10 <+—— The second and fourth rows were interchanged.
|10 8 -24 0|1 -2 0 0]
1 12 0/0 10 O]
0 1 4 50 00 1
0 0 2 0/l0 0 1 0 <«——— The second row was multiplied by -1.
|0 -8 -24 0|1 -2 0 O]
1212 0/0 10 O]
01 4 50 00 -1
00 2 o0l0 01 0 <«— 8 times the second row was added to the fourth.
0 0 8 40|1 -2 0 -8




1 2 12 0|0 1
01 4 50 O
0O 0 1 o0(0 O
0 0 8 40|1 -2
1 2 12 0(0 1
01 4 5|0 O
00 1 0|0 O
0O 0 0 40|1 -2
1 2 12 0|0 1
0 1 4 5|0 0
00 100 0
00 0 1|2 -%
1 2 12 0| O 1
01 4 0f-1 2
00 10 O 0
00 0 1] & —%
1200 0 1
010 0-% 1
0 0 100 0
000 1|4 -3
1000 & 1
010 0-% 1
0 010 O 0
_0 0 0 1 4—10 —2—10
R
11 _3
The inverseis | 2 4 2
0 0 1
41 1
40 20 10
0O 0 2 010
18, 1 0 0 10 1
0 -1 3 0(0 O
2 15 3100

’5"“ N N

|
Sk o © © Aok O O o N O O

o

|
)]

|" Nl Nlw

=
o

|
w

)

|" Nl N

=
o

o O O

(SIS

O = O O
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0
-1
0 <+—— The third row was multiplied by .
-8 |
0]
-1
0 <+——— -8 times the third row was added
to the fourth row.
-8
0]
-1
0 <+——— The fourth row was multiplied by .
_1
5 |
0]
0
0 <«— -5 times the fourth row was added
) to the second row.
-1 |
0]
0
0 <«— -4 times the third row was added
to the second row and
—-£ —12 times the third row was added
- to the first row.
0
0
0 <+— -2 times the second row was added
to the first row.
_% |
0
0
0 <«——— The identity matrix was adjoined to the given matrix.
1



o O

N O O k-
S
g ow N o

g w N O

a N w o

o O O -

w O

1

o O O - o O O R

o O —» O o O - O

o » O O |
O

m O O O
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110 1 0 O
0j]1 0 0 O
olo 0 1 0 <«—— The first and second rows were interchanged.
=310 0 O 1_
0 10 0]
1 00O
olo o 1 0 <«— -2 times the first row was added to the fourth row
and to the fourth row.
-5/0 -2 0 1
110 1 0 0]
0j0 0 1 0
ol1 0 0 o <«—— The second and third rows were interchanged.
-5/0 -2 0 1_
1/0 0 0]
0|0 -1 0
ol1 o0 0o o0 <+——— The second row was multiplied by —1.
50 -2 0 1_
0 1 0 0]
0)j0 0 -1 0
ol1 o 0 <«—— -1 times the second row was added
to the fourth row.
5|0 -2 1 1
110 1 0 0]
0l 0 0 -1 0
ol 1 o 0 <——— -4 times the third row was added
to the fourth row.
-5|-4 -2 1
110 1 0 O]
0 (1) 8 _; g The third row was multiplied by 4 and
0 E , . . the fourth row was multiplied by —<.
/s § =5 -5
_4 3 1 17
5 5 5 5
% 0 -1 0
10 0 0 <«——— -1 times the fourth row was added to the first row
2 and
+ 2 -1 -4 ] 3 times the third row was added to the second.



19.

4 3
5 5
20
: 2
The inverse is L
0
4 2 _
5 5
k 0 0 O
0 k, 0 O
a
@ 0 0 k, O
0 0 0 Kk,
M 1
1 0 0 Ok
010 0/0
0 0 1 0/|0
0 00 1o
'k—lloo
0L 0
The inverse is j
00%
0 0 O
k 100
) 0100
0 0 k 1
0 001
1+ 00
0100
0 01 ¢
0 001
100 0f2
0 1 0 00
0 0 1 0f0
0 0 0 1/0
Pt
The inverse is 0 Lo
0 0%
0 0O

|~

L.

o

Ul

O O O

O O O -

O O O =k

© o O -~ O

o o 7k

O O R =k 5|H
O O -» O O O - O

o O

o O o

= ==

o O gl

Ul

o O

O ==

o O

o &

O = O O

O = O O

o o

O ==

= O O O

o O o

|

r O O O , O O O

o O

= x|
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<+——— The identity matrix was adjoined to the given matrix.

The first row was multiplied by 17k,

the second row was multiplied by 1/k, ,
the third row was multiplied by 1/k,, and
the fourth row was multiplied by 1/Kk, .

<+—— The identity matrix was adjoined to the given matrix.

<«——— First row and third row were both multiplied by 1/K .

—% times the fourth row was added

<«+— to the third row and
—+ times the second row was added

to the first row.



20.

(@)

The inverse is

(b)

0 O
0 O
0 Kk,
k, O
k, O
0 Kk,
0 O
0 O
10
01
00
00
0
0
0
1
Lk
k 0
1 kK
0 1
00
10
+ 1
0}
00
10
0 1
0 ¢
00
1 00
010
0 0 1
0 0 +

0 k|1
k, 0]0
0 0]/0
0 0]/0
0 0]o0
0 0]/0
k, 0]0
0 k|1
0o 0|0
0 0|0
1 0|0
0 1|

ki
0 0
0
L0
0 0
0 0]1
0 010
k 00
1 k|0
0 0|L
0 0/0
1 0|0
L 1]0
0o o %
0 0%
1 0| o
+ 10
o] +
0|~
o| &
11 o

o ¥k = o

o O

o &l

O O 1= O

O = O O

o o o 7k
O O~k O O O - O |

o

==

o O

O - O O

o O O - O

o o &l

O - O O

== O O

o O o = O O o

x|~

o

O O O R O O O

o o o Tk

= O O O

o O O ~ O O O ~= O O O

==
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The identity matrix was adjoined to the given matrix.

The first and fourth rows were interchanged;
the second and third rows were interchanged.

The first row was multiplied by 1/k,,

the second row was multiplied by 1/k,
the third row was multiplied by 1/k,, and
the fourth row was multiplied by 1/k; .

The identity matrix was adjoined to the given matrix.

Each row was multiplied by 1/k .

—+ times the first row was added
to the second row.

—% times the second row was added
to the third row.



21.

22.
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1000 *+ 0 00
0100/ % 00
L L L <«——— —+ times the third row was added
0010 v % + 0
00 0 1 ) ) - to the fourth row.
TR ek
+ 0 0 0
_ ) —kiz + 0 0
The inverse is 1 1ol
k® k2 k
1 1 _1 1
K4 K3 K2 Kk

It follows from parts (a) and (c) of Theorem 1.5.3 that a square matrix is invertible if and only if its reduced row

echelon form is identity.

N =)
R o o
o

<——— The first and third rows were interchanged.

O B =
o o K
o

1 1 c
0 —-l1+c 0 - —1 times the first row was added to the second row and
0 0 5 —c times the first row was added to the third row.

c—-C

If c—c¢®=c(1-c)=0 or -1+c=0,i.e.if c=0 or c=1 the last matrix contains at least one row of zeros, therefore

it cannot be reduced to | by elementary row operations.

Otherwise (if c=0 and ¢ #1), multiplying the second row by - and multiplying the third row by - would

—1+c c—c?

result in a row echelon form with 1’s on the main diagonal. Subsequent elementary row operations would then lead
to the identity matrix.
We conclude that for any value of ¢ other than 0 and 1 the matrix is invertible.

It follows from parts (a) and (c) of Theorem 1.5.3 that a square matrix is invertible if and only if its reduced row
echelon form is identity.

10
c 1
1 ¢

o - O
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<+——— The first and second rows were interchanged.

c <+—— The second and third rows were interchanged.

1 C <+—— —c times the first row was added to the third row.

C 1

c <+—— ¢* -1 times the second row was added to the third.
0 0 ¢*-2c

If c®-2c=c(c*-2)=0,ie.ifc=0, c= \/5 or c= —\/5 the last matrix contains a row of zeros, therefore it cannot

be reduced to | by elementary row operations.

Otherwise (if ¢® —2c = 0), multiplying the last row by —— would result in a row echelon form with 1’s on the main

c-2¢
diagonal. Subsequent elementary row operations would then lead to the identity matrix.
We conclude that for any value of ¢ other than 0, V2 and —/2 the matrix is invertible.

23.  We perform a sequence of elementary row operations to reduce the given matrix to the identity matrix. As we do so,
we keep track of each corresponding elementary matrix:

-3 1]
A:
2 2 |
1 5] 1 2
) <+— 2 times the second row was added to the first. E = 0 1
1 5] 10
0 g <«——— 2 times the first row was added to the second. E,= 9 1
1 5] 1 0]
0 1 <«——— The second row was multiplied by fé. E, = 0 1
i LY T8
10 ] 1 -5
0 1 <«——— -5 times the second row was added to the first. E,= 0 1

Since E,E,E,E;A=1, then
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G ., 1 =271 o][1 o][1 5
A=(E,E,E,E,) I:E11E21E31E41:[0 J{z 1}[0 _SMO J and

. 1 5][1 O 1 o][1 2
A =E,E,E,E, = X :
0 1j|0 -i|[-2 1]jo 1

Note that this answer is not unique since a different sequence of elementary row operations (and the corresponding
elementary matrices) could be used instead.

24. We perform a sequence of elementary row operations to reduce the given matrix to the identity matrix. As we do so,

we keep track of each corresponding elementary matrix:

1 0 |
A=
{—5 2

1 0] 1 0
{ <«——— 5 times the first row was added to the second row. E; ={ }

o
N

<«——— The second row was multiplied by % .

1
O
— O
L |
m
N
I
1
o -
N )
[I—

-5 1j|0 2 0 1|5 1

Note that this answer is not unique since a different sequence of elementary row operations (and the corresponding
elementary matrices) could be used instead.

_ 1 0][1 0 1 0][1 0
Since EzElA:I,A:(EzEl)llellEzlz[ }[ }and A1:E2E1={ }[ }

25.  We perform a sequence of elementary row operations to reduce the given matrix to the identity matrix. As we do so,
we keep track of each corresponding elementary matrix:

1 0 -2
A=|0
I -2 | 100
3 <+—— The second row was multiplied by +. E,=|0 + O
L0 1 00 1
r 27 (10 0
0| <«——— —2 times the third row was added to the second. E,=(0 1 -3
L0 1 00 1
10 0] 1 2
0 1 0| <«——— 2 timesthe third row was added to the first row. E;=|0 1 0
0 01 0
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10 01 0 01 0 -2
Since E,E,E,A=1,wehave A=(E,EE, ) I =EE;'E;*=|0 4 0][0 1 2|[0 1 0
0 0 10 0 140 O
10 210 0}1 00
and A*=E,E,E;=|0 1 0[]0 1 -2||0 % 0O].
0 0 10 0 1j0 0 1

Note that this answer is not unique since a different sequence of elementary row operations (and the corresponding
elementary matrices) could be used instead.

26. We perform a sequence of elementary row operations to reduce the given matrix to the identity matrix. As we do so,

we keep track of each corresponding elementary matrix:

11
A=|1 1
0 1 |
(1 1 1 100
0 01 <+— -1 times the first row was added to the second row. E,=|-11
(001 1] 100
M1 1 1 0
<+—— The second and third rows were interchanged E,=|0 0
L0 1 0 1
1 0| (1 0 O]
0 <+— -1 times the third row was added to the second. E;= 0 1 -1
100 1 0 1
M1 T (1 -1 0]
10 <+—— —1 times the second row was added to the first row. E,=|0 1
0 1 0 O

Since E,E,E,E;A=1, we have

10 0J[1 0 0[1 0 0J[1 10
A=(E,EEFE ) I =E'E,'"E;'E;*=|1 1 0][0 0 1[0 1 1|[0 1 O|and
0 0 1jlo 1 offo o 1jjo 0 1
1 -1 0][1 0 o)1 0 100
A*=EEEE =[0 1 0[[0 1 -1{{0 0 1|[-1 1 0
0 0 1jlo0 0 1flo 1 0 1

Note that this answer is not unique since a different sequence of elementary row operations (and the corresponding
elementary matrices) could be used instead.

27.  Letus perform a sequence of elementary row operations to produce B from A. As we do so, we keep track of each
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corresponding elementary matrix:

1 2 3
A=|1 4 1
21 9 |
i 2 3] 10 O]
-2 <+— -1 times the first row was added to the second row. E,=|-1 1 0
i 9] 0 0 1
(1 0 5] 1 -1 0]
-2 <+— -1 times the second row was added to the first row. E,=|0 1
I 9| 0 i
1 0 5] 1 0]
B=0 2 -2 <«— -1 times the first row was added to the third row. E;= 0 10
4 -1 0

Since E,E,E,A=B, the equality CA=B is satisfied by the matrix

100][t-10][100][2-10
C=EEE=| 0 1 0/[0 1 0/-1 1 0|=/-1 1 0f.
-1 0 1/0 0 10 0 1| |2 1 1

Note that this answer is not unique since a different sequence of elementary row operations (and the corresponding
elementary matrices) could be used instead.

28. Let us perform a sequence of elementary row operations to produce B from A. As we do so, we keep track of each

corresponding elementary matrix:

2 1 0
A=|-1 1 O
30 —1_
2 1 0] 1 0 O]
5 -1 0 <«—— -2 times the first row was added to the second. E,=|-2 1
| 3 0 —1_ i 0 0 |
[ 2 1 0] i 0]
5 -1 0 <+—— -2 times the first row was added to the third row. Ez =
i -1 -2 —1_ _—2 0 |
[ 6 9 4] 1 0 -4]
B=-5 -1 0 <+—— —4 times the third row was added to the first row. E,= 01 0
-1 2 1 00



29.

30.
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Since E,E,E,A=B, the equality CA=B is satisfied by the matrix
10 -4| 100 1200 9 0 4
C=EEE =01 0| 0 1 0|2 1 0(=-2 1 0]
0 0 1f|-2 0 1) 0 0 1| |-2 0 1

Note that a different sequence of elementary row operations (and the corresponding elementary matrices) could be
used instead. (However, since both A and B in this exercise are invertible, C is uniquely determined by the

formula C=BA™))

100
A=|0 1 0| cannot result from interchanging two rows of 1, (since that would create a nonzero entry above the
a b c

main diagonal).

A can result from multiplying the third row of I, by a nonzero number c
(in this case, a=b=0, c=0).

The other possibilities are that A can be obtained by adding a times the first row to the third (b=0,c=1) or by
adding b times the second row to the third (a=0,c=1).

In all three cases, at least one entry in the third row must be zero.

Consider three cases:

e If a=0 then A has arow of zeros (first row).

e If a#0 and h=0 then A has arow of zeros (fifth row).

e If a#0 and h=0 then adding —¢ times the first row to the third, and adding —¢ times the fifth row to the third
results in the third row becoming a row of zeros.

In all three cases, the reduced row echelon form of A is not I,. By Theorem 1.5.3, A is not invertible.

True-False Exercises

(@)

(b)
(©)

(d)

False. An elementary matrix results from performing a single elementary row operation on an identity matrix; a
product of two elementary matrices would correspond to a sequence of two such operations instead, which generally
is not equivalent to a single elementary operation.

True. This follows from Theorem 1.5.2.

True. If A and B are row equivalent then there exist elementary matrices El,...,EID such that B= Ep --EA.
Likewise, if B and C are row equivalent then there exist elementary matrices ElEq such that C = Eq E,B.
Combining the two equalities yields C = E;---EIED ---E,A therefore A and C are row equivalent.

True. A homogeneous system Ax =0 has either one solution (the trivial solution) or infinitely many solutions. If A

is not invertible, then by Theorem 1.5.3 the system cannot have just one solution. Consequently, it must have
infinitely many solutions.
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(e)  True. If the matrix A is not invertible then by Theorem 1.5.3 its reduced row echelon form is not |, . However, the

matrix resulting from interchanging two rows of A (an elementary row operation) must have the same reduced row
echelon form as A does, so by Theorem 1.5.3 that matrix is not invertible either.

(f)  True. Adding a multiple of the first row of a matrix to its second row is an elementary row operation. Denoting by E
be the corresponding elementary matrix we can write (EA)f1 = A'E™" so the resulting matrix EA is invertible if A
is.

. 1 0] [1/2 o][2 o] [1/3 0][3 ©
() False. Formstance[ }:[ }{ }:[ }{ }
0 1 0 1l/0 1 0 1/l0 1
1.6 More on Linear Systems and Invertible Matrices

. . . . 11 X 2
1. The given system can be written in matrix form as Ax=b, where A:{5 } x:{ 1} , and b:{g]

We begin by inverting the coefficient matrix A

1 11 0
[5 6|O J <«+——— The identity matrix was adjoined to the coefficient matrix.
111 0]
0 5 1 <+—— -5 times the first row was added to the second row.
1 06 -1
0 1-5 1 <«—— -1 times the second row was added to the first row.
R -1 6 -1 : 1 .
Since A™ = 1 Theorem 1.6.2 states that the system has exactly one solution x=A"b:

e HE -

. . . . 4 -3 X -3
2. The given system can be written in matrix form as Ax=b, where A= {2 5} , X= {xl} ,and b ={ 9} .
- 2

We begin by inverting the coefficient matrix A

-3(1
2 5 <+——— The identity matrix was adjoined to the coefficient matrix.
2 5[0 1]
301 <+——— The first and second rows were interchanged.
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2 50 1
{0 7‘ 1 2} <+—— -2 times the first row was added to the second row.
1 -5|0 1]
2 . ; ¢ The first row was multiplied by £ and
0 7 the second row was multiplied by <.
105 -2
14 14 5 4 .
0 1r -2 <«——— > times the second row was added to the first row.
7 7 ]

5
Since A™ = {114 “ 1, Theorem 1.6.2 states that the system has exactly one solution x = A™'b:
7

BEHE MM

1 31 X,
The given system can be written in matrix formas Ax=b, where A=|2 2 1|, x=|X, |,and
2 31 Xq
4
b=| -1|. We begin by inverting the coefficient matrix A
3
1 311 0 0]
2 210 10 <+—— The identity matrix was adjoined to the coefficient matrix.
2 3 10 0 1
1 3 110 0]
0 4 -1-2 10 <+—— -2 times the first row was added to the second and
0 -3 -1-2 0 1 —2 times the first row was added to the third row.

0 4 -1-2 10 <«— -1 times the second row was added to the third row.

0 1 00 -11 <«——— The second and third rows were interchanged.

1 3 1
01 0 -11 <+«— 4 times the second row was added to the third row.
00
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1 3 111 0 O
0 100 -1 1 <«—— The third row was multiplied by —1.
0 0 112 3 -4
1 3 0/-1 -3 4]
0100 -1 1 <«——— -1 times the third row was added to the first row.
00 1/2 3 4|
1 0 0-1 0 1]
0100 -1 1 <«——— -3 times the second row was added to the first row.
0 0 112 3 -4
-1 0 1
Since A*=| 0 -1 1|, Theorem 1.6.2 states that the system has exactly one solution x=A"b:
2 3 -4
x] [-1 o 1] 4] [-1
X, |=| 0 -1 1|-1|=| 4],ie, X,=-1X,=4, and x, =-7.
X 2 3 41| 3 -7

4

b =|2 |. We begin by inverting the coefficient matrix A

5

———

o O -

o w ol

= w O

= W w

= N O

o o -

o O ne o

O Nlw N

O R N

O dlo N

0

0 «— o . . . .
1 The identity matrix was adjoined to the coefficient matrix.
0]

0 <+—— -1 times the second row was added to the first row.

1

0]

0 <«——— The first row was multiplied by % .

0]

0 <+——— -3 times the first row was added to the second row.
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=
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|
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O e

N jw

Nl Do N

N

O e

o o N

O N

Nlo

| Njo

O v

|
[NJ[S)]

N|w Njw N
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0

1 <+——— The second and third rows were interchanged.

0

0]

1 <+——— -3 times the second row was added to the third row.
-3

<4——— The third row was multiplied by -1.

0]
-2 <4——— -1 times the third row was added to the second row.

3

0
—2 |, Theorem 1.6.2 states that the system has exactly one solution
3

-2 0|4 1
2 =2|2|=|-11],ie, x =1x,=-11 and x,=16.
-2 3|5 16

The given system can be written in matrix formas Ax=b, where A=| 1 1 -4|, x=|y|,and

b=|10 |. We begin by inverting the coefficient matrix A

5
0
11
11
4 1
1
0
05

0

0 <+—— The identity matrix was adjoined to the coefficient matrix.
1

0]

0 <+—— -1 times the first row was added to the second row and

4 times the first row was added to the third row.

<+—— The second and third rows were interchanged.
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1 1 00
0 % 0 % ¢ The second row was multiplied by % and
0 + —+ 0 the third row was multiplied by —+.
1 0l 1+ O
0 0 % % % <«— -1 times the third row was added to the second row
0 110 and to the first row.
1 00 % 0 —%
010 % % % <«—— -1 times the second row was added to the first row.
0 0 1 % —% 0 ]
Lo
Since A*=|2 L 1| Theorem 1.6.2 states that the system has exactly one solution x=A"b:
i _1 9
L5 5 i
x| |2 0 —%| 5 1
yl=|2 L 1]|10|=| 5|,ie, x=1y=5 and z=-1.
z _% -1 0j| O -1
0 -1 -2 -3 w 0
. . . . 1 1 4 4 X 7
The given system can be written in matrix formas Ax=b, where A= , X = ,and b= )
1 3 7 9 y 4
-1 -2 -4 -6 y4 6

We begin by inverting the coefficient matrix A

0O -1 -2 311 00O
11 40 1 00 The identity matrix was adjoined to the coefficient
1 3 7 90 010 matrix.
i -1 -2 -4 60 0 0 1 |
1 1 4 40 1 0 0]
0O -1 -2 311 00O _ _
1 3 7 90010 <+—— The first and second rows were interchanged.
i -1 -2 -4 -6/0 0 0 1 |
1 1 4 40 1 0 0]
0 -1 -2 311 0 0O
<«— -1 times the first row was added to the third row and
0 2 3 50-110 the first row was added to the fourth row.
0 -1 0 -20 1 01 |



O O O -

©CCe9r s oo, 9990w p—— © O Ok
[EEN

O O O B

O O O

O O - - O O - - o O = O O - B O O - B
O O r

O O = O

4 410 0
2 3-1 00

3 50 -11
0 210 10
4 40 10
2 3-1 00

-1 -12 -1 1
2 1-1 10
4 40 1 0

2 3-1 0 O

1 1-2 1 -1

2 1-1 1 0

4 40 1 O

2 3-1 0 O

1 112 1 -1

0 -1 3 -1 2
4 40 1 O
2 3-1 0 O
1 1-2 1 -1
0 1j-3 1 -2
4 0|12 -3 8
2 008 -3 6
101 0 1
0 11-3 1 -2
0 08 -3 4
0 06 3 4
101 0 1
0 13 -2
0 0/2 0 O
0 06 -3 4
1001 0 1
0 13 -2

O O o = O O o R O O o

=, O O O

1.6 More on Linear Systems and Invertible Matrices

<+—— The second row was multiplied by —1.

<+—— -2 times the second row was added to the third row
and the second row was added to the fourth.

<«——— The third row was multiplied by -1.

<—— -2 times the third row was added to the fourth.

<«—— The fourth row was multiplied by —1.

<+——— -1 times the last row was added to the third row,
—3 times the last row was added to the second row
and —4 times the last row was added to the first.

<—— -2 times the third row was added to the second row
and
—4 times the third row was added to the first row.

<+—— -1 times the second row was added to the first.
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Since At =

x=A"b:

N < X =S

1.6 More on Linear Systems and Invertible Matrices

0 0 -1
-3 4 1 .
0 1 1 , Theorem 1.6.2 states that the system has exactly one solution
-2 -1
2 0 0 -1j0 -6
|6 -3 4 1|7] |1
11 0o 1 14| |10/
-3 1 -2 -1||6 -7

ie,w=-6, x=1, y=10,and z=-7.

. o . 3 5 X
7. The given system can be written in matrix formas Ax=b, where A= L 2} , X :{ 1} , and
X

8.

2

2

b.
b= [bl} . We begin by inverting the coefficient matrix A

5|1
olo 1 <+——— The identity matrix was adjoined to the coefficient matrix.
_ 0 1]
511 0 <+——— The first and second rows were interchanged.
1 20 1]
0o -1l1 -3 <+—— -3 times the first row was added to the second row.
1 20 1
0 1-1 3 <+——— The second row was multiplied by -1.
1 002 -5
0 1.1 3 <«—— -2 times the second row was added to the first row.

] 2
Since A™ {

3} , Theorem 1.6.2 states that the system has exactly one solution x=A"b:

5][b 2b, —5Db
Xl _ 2 S 1 — 1 2 , Ie' Xl:2bl_5b2' X2:—b1+3b2.
X, -1 3 b2 _bl +3b2

1 2 3
The given system can be written in matrix formas Ax=b,where A={2 5 5|, x=|x,|,and b=|b, [. We
3 58

begin by inverting the coefficient matrix A
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1 2 311 0O
2 55010 <+—— The identity matrix was adjoined to the coefficient matrix.
3 5 80 01
1 2 310 0]
0 1 -1-21 <+— -2 times the first row was added to the second row and
0 -1 -11-3 0 1 -3 times the first row was added to the third row.
12 310 0]
1 -1-2 0 <+—— The second row was added to the third row.
0 0 -2|-5 1
12 31 0 0]
01 -1-2 1 0 <«—— The third row was multiplied by —%.
00 1§ 5 4
1208 3 3
01 % % _% <4——— The third row was added to the second row and
0 1 % _% _% —3 times the third row was added to the first row.
10 0-% % 3
010 % % _% <«— -2 times the second row was added to the first row.
0 11 &8 —1 _1
L 2 2 2 |
_15 1 5
2 2 2
Since A*=| 1 1 —1| Theorem 1.6.2 states that the system has exactly one solution x=A"b:
$ -1t
X _% % % by _1_25b1 +%b2 +%b3
X (=l 37 3 —3|0|=| shtzb—3b | e,
X3 % _% _% b, %bl_%bz_%bs
X, =—%b1 +1h, +§b3, X, =2b, +3b, —%b,, and x, =§b1 —-+b, —1b,.

B
E
b

2

-511|-2

2 ‘ 4l s <+——  We augmented the coefficient matrix with two columns of

i constants on the right hand sides of the systems
(i) and (ii) — refer to Example 2.
5|1|-2]
“— -3 times the first row was added to the second row.

1711 11_
5| 1]-2]

NN <«———  The second row was multiplied by - .

17 17 |

93



1.6 More on Linear Systems and Invertible Matrices

1 0/2|2
{ ‘ ﬂ <+«——— 5 times the second row was added to the first row.

= =
<h

01 5

We conclude that the solutions of the two systems are:

) x=F x=5 () x=5 x%=37
-1 4 1|0]-3]
10. 19 -2/1| 4 <«———  We augmented the coefficient matrix with two columns of
6 4 -8|0/|-5 constants on the right hand sides of the systems

- - (i) and (ii) — refer to Example 2.
1 -4 -1]0] 3

1 9 -2|1]| 4 <«——  The first row was multiplied by —1.
6 4 -8|/0|-5

1 -4 1|0 3
0 13 111 1 <+——— -1 times the first row was added to the second row and
0 28 -2|01|-23 -6 times the first row was added to the third row.

1 4 -1|0 3
0 1 -|/%| 3 <«———  The second row was multiplied by L.
0 28 -2|0|-23

1 4 -1 O 3

0 1 —| % ' <+——— 28 times the second row was added to the third row.
0 0 2|_2|_32
13 13 13

1 -4 -1 0 3
0 1 % 5| = <«——  Thethird row was multiplied by £ .
0 0 1|14|-=

1 -4 0]-14|-2]
0 1 -1 -2 <«——— L times the third row was added to the second row
0 O -14 | % and the third row was added to the first row.
0| -18 | -4
0 10| -1 _% — 4 times the second row was added to the first row.
0 0 1|-14|-%&
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We conclude that the solutions of the two systems are:

. .. 421 25 327
(l) X1=—18, X2 =—1, X3 =—14 (") Xlz—T, X2 :—7, X3 :—T.
(4 -7]0|-4] -1]|-5]
11. 1 2016 3|1 <+«—— We augmented the coefficient matrix with four columns
L i of constants on the right hand sides of the systems (i),
(i), (i), and (iv) — refer to Example 2.
1 2|1]6] 3] 1]
I 4 —700l-4] 1|5 | <«+——  Thefirst and second rows were interchanged.
1 2] 1| 6 3| 1]
0 —-15| —a |-28| —13 | 9 | — —4 times the first row was added to the second row.
1 2] 1|6 3]1]
2 losl 13 | 3 <«———  The second row was multiplied by —<t.
0 1| % |5 555 ]
1 0| 2 |2 2]-21]
15 [15] 15 5 . -
0 1‘ 4 |28] 13 ‘ 3 «— —2 times the second row was added to the first row.
15 |15| 15 5 |
We conclude that the solutions of the four systems are:
() X1=%' X2=% (i) X1=%’ X2=%
(i) x, =12, x, =2 (iv)  x=-%,x,=2
1 3 5[1]0][-1]
12 -1 -2 0/0j1}-1 <+——  We augmented the coefficient matrix with three columns
2 5 41-11110 of constants on the right hand sides of the systems
- (i), (i) and (iii) — refer to Example 2.
1 3 5]1]0]-1]
0 1 5|1 -2 <«———  The first row was added to the second row and
0 -1 -6|-3 2 —2 times the first row was added to the third row.
1 1]0|-1]
01 1 -2 <«+———  The second row was added to the third row.
0 0 -1|-2 0
1 3 5[1| 0]-1]
0 151 1|2 <«———  The third row was multiplied by -1.
0 0 1{2|-2|0
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1 3 0[{-9|10|-1
0 1 09112
00 1, 2(-2|0
10 0[18|-23| 5
0 1 09| 11(-2
0 0 1] 2| -2|0

—

«—

1.6 More on Linear Systems and Invertible Matrices

-5 times the third row was added to the first row
and to the second row.

—3 times the second row was added to the first row.

We conclude that the solutions of the three systems are:

() x =18 x,=-9, x,=2

(i) x=-23,x,=11, x,=-2

@iy x, =5 X,=-2, X, =0
13 1 3|b, ]
' -2 1|b,

13| b |
0 7|2b+b,

1 3] b
01

2 1
7Q+7Q

The system is consistent for all values of b, and b,.

6 -4 |
14 .
' 3 -2 |b,
1 _% %Q_
3 2| b,
1 _% %bl 1
0 0|-3b+bh, |
1 2 5|h
15. 4 -5 8|h,
-3 3 -3|b,

The augmented matrix for the system.

2 times the first row was added to the second row.

The second row was multiplied by <.

The augmented matrix for the system.

The first row was multiplied by ¢ .

—3 times the first row was added to the second row.

<«—— The augmented matrix for the system.
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16.

-2 5 b,
3 -12|-4b +b,
-3 12| 3b, +b,
5 b,
-12| —4b, +b,
O —b,+b, +b,
5 b,
—4 _% by + % b,
0
—b, +b, +Db,

-2 1| b,
5 2|b,
7 4|b,
-1/ b,
—2|4b, +h,
0 4b, +b,
-1 b
0| 4b, +b,
—2|4b, +D,

1.6 More on Linear Systems and Invertible Matrices

<«——— 4 times the first row was added to the second row
and 3 times the first row was added to the third row.

<«— The second row was added to the third row.

<+——— The second row was multiplied by = .

<«—— The augmented matrix for the system.

<+— 4 times the first row was added to the second row
and to the third row.

<«—— The second and third rows were interchanged.
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1 -2 -1 b

0 1 0|-4b—h <+—— The second row was multiplied by —1.

0 -3 —2|4b +h,

2 1 b,
0 1 0 -4b-b, <+——— 3 times the second row was added to the third row.
0 0 -2|-8b+b,~3b,

1 -2 -1 b,
1 0| -4b —h, <«—— The third row was multiplied by —4.
0 0 1[4b,—ib,+32b,|

o

The system is consistent for all values of b, b,, and b,.

1 -1 3 2|b |
2 15 1lp
17. 3 2 2 -lb, <——— The augmented matrix for the system.
4 -3 1 3lb,

-1 3 2| b

1

0 -1 11 5|2b+b,

0 -1 11 5|3b +b <«—— 2 times the first row was added to the second row,
- h + 0, 3 times the first row was added to the third row, and

0 1 -11 -5|-4b + b4_ —4 times the first row was added to the fourth row.

1 -1 3 2| b

0 1 -11 -5|-2b —b,
0 -1 11 5|3b+h,
0 1 -11 -5|-4b +b, |

<«—— The second row was multiplied by —1.

1 -1 3 2 b,

0 1 -11 -5| -2b -b,
0 0 0 Of b-b,+h,
0 0 0 O0]-2b+b,+b,|

<— The second row was added to the third row and
—1 times the second row was added to the fourth row.

The system is consistent for all values of b, b,, b,, and b, that satisfy the equations
b,—b, +b,=0 and -2b, +b, +b, =0.
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These equations form a linear system in the variables b, b,, b,, and b, whose augmented matrix

11100 has the reduced row echelon form 1o -1-170
-2 10 0 0 -2 -1 0

b, =h, +b, and b, =2b, +b, .

} . Therefore the system is consistent if

18. (a) Theequation Ax=x can be rewritten as Ax = Ix, which yields Ax—-Ix=0 and
(A-1)x=0.

This is a matrix form of a homogeneous linear system - to solve it, we reduce its augmented matrix to a row
echelon form.

11 20
2 1 -2|0 < The augmented matrix for the homogeneous system
31 0[0 (A-1)x=0.
(1 1 2/0]
-1 6|0 <«—— -2 times the first row was added to the second row
0 -2 -6|0 and —3 times the first row was added to the third row.
1 1 2|0]
1 0 <4—— The second row was multiplied by -1 .
0 -2 6|0
_ 0]
0 1 6/0 <«—— 2 times the second row was added to the third row.
00 0
1 0]
1 6|0 <«—— The third row was multiplied by .
00 0

Using back-substitution, we obtain the unique solution: x, =x, =x,=0.

(b) Aswas done in part (a), the equation Ax =4x can be rewritten as (A— 41 )x =0. We solve the latter system
by Gauss-Jordan elimination

-2 1 2|0
2 -2 2|0 <«—— The augmented matrix for the homogeneous system
1 -3lo (A-41)x=0.
2 2 -2|0]
-2 1 2/0 <+—— The first and second rows were interchanged.
3 -3/0




1 -1 -1
2 1 2
3 1 -3
1 -1 1
0 -1 0
0 4 0
1 -1 1
0 1 0
0 4 0
10 -1
01 0
00 O

1.6 More on Linear Systems and Invertible Matrices

<«——— The first row was multiplied by % .

<+—— 2 times the first row was added to the second row and

—3 times the first row was added to the third row.

<«—— The second row was multiplied by —1.

<+— -4 times the second row was added to the third row and

the second row was added to the first row.

If we assign X, an arbitrary value t, the general solution is given by the formulas

X =t, X,=0,and x; =t.

1 -1 1|12 -1 5 7
19. X=/2 3 0| |4 0 -3 0
0 2 1| |3 5 -7 2

o
N
R
o
o

o O
N
|

= O
|

o N

O
|

= N

-
|
[EN
-
[N
o
o

1|.Letusfind|{2 3 O

0 2 -1

The identity matrix was adjoined to the matrix.

—2 times the first row was added to the second row.

—2 times the third row was added to the second row.

—2 times the second row was added to the third row.
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1 -1 110 O

0 1 0-2 1 -2 <——— The third row was multiplied by —1.

0O 0 14 2 -5
1 -105 -2 5]

0]-2 1 -2 <«——— -1 times the third row was added to the first row.
0 0 14 -5 ]
I o 3 -1 3]
-2 1 2 <«——— The second row was added to the first row.

0 1-4 -5

- --1
-1 1 3 -1 3
Using|2 3 0| =|-2 1 -2| weobtain

0 2 -1 |4 2 -5

3 -1 3|2 -1 5 78 11 12 -3 27 26
X=|-2 1 -2||4 0 83 0 1lj=f 6 -8 1 -18 -17
-4 2 5|3 5 -7 21 -15 21 9 38 -35

2 0 1774 3 2 1 2 o0 11"
20, X=| 0 -1 -1| |6 7 8 9| Letusfind| 0 -1 -1
1 4|1 37 9 1 1 -4

0 -1 -110 1 0 <+— The identity matrix was adjoined to the matrix.

-1 -10 1 0 <4——— The first and third rows were interchanged.

0 -1 -10 1 0 <+— 2 times the first row was added to the third row.

40 0

01 10 -1 0 <+——— The second row was multiplied by 1.
0 2 711 0 2




0

-1

2

1 1 -4|0
0 1 1/0
0 0 -91
11 -4 0 o0
1 110 -1
00 1-1 -2
11 0|-¢ -8
0103 3
00 14
10 0-% -1
010 & -1
00 1-1 -2
2 o0 1"
Using| 0 -1 -1| =
1 1 -4
X =

True-False Exercises

O

O

|
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—2 times the second row was added to the third row.

The third row was multiplied by —%.

—1 times the third row was added to the second row and

4 times the third row was added to the first row.

©ov o ol

we obtain

| |
©old o ol

9

be I . Consequently, Ax =c must have a unique solution as well.

1] [-3 -z
9|=|-4 -
9| |2 -2

25
_ 40

32
9

—1 times the second row was added to the first row.

_B
_44

37

9

True. Since B is a square matrix then by Theorem 1.6.3(b) AB=1_ implies B=A".

True. Since A and B are row equivalent matrices, it must be possible to perform a sequence of elementary row

102

True. By Theorem 1.6.1, if a system of linear equation has more than one solution then it must have infinitely many.

True. If A isasquare matrix such that Ax=Db has a unique solution then the reduced row echelon form of A must

operations on A resulting in B. Let E be the product of the corresponding elementary matrices, i.e., EA=B. Note

Any solution of Ax=0 is also a solution of Bx =0 since Bx=EAx=E0=0.

Likewise, any solution of Bx =0 is also a solution of Ax=0 since Ax=E'Bx=E'0=0.

(a)
(b)
(©)
Therefore, BA=A"A=1_.
(d)
that E must be an invertible matrix thus A=EB.
(e)

True. If (S’lAS)X =b then SS™ASx = A(Sx)=Sb. Consequently, y =Sx is a solution of Ay =Sb.



(f)

(@)

1.6 More on Linear Systems and Invertible Matrices

True. Ax =4x isequivalentto Ax =4I _x, which can be rewritten as (A— 41 )x =0. By Theorem 1.6.4, this

homogeneous system has a unique solution (the trivial solution) if and only if its coefficient matrix A—41_ is

invertible.

True. If AB were invertible, then by Theorem 1.6.5 both A and B would be invertible.

1.7 Diagonal, Triangular, and Symmetric Matrices

(@)
(b)
(©)

(d)
(@)
(b)
(©)

(d)

o O w

0

(1 2 -5
3 -1 0

The matrix is upper triangular. It is invertible (its diagonal entries are both nonzero).
The matrix is lower triangular. It is not invertible (its diagonal entries are zero).

This is a diagonal matrix, therefore it is also both upper and lower triangular. It is invertible (its diagonal
entries are all nonzero).

The matrix is upper triangular. It is not invertible (its diagonal entries include a zero).
The matrix is lower triangular. It is invertible (its diagonal entries are both nonzero).
The matrix is upper triangular. It is not invertible (its diagonal entries are zero).

This is a diagonal matrix, therefore it is also both upper and lower triangular. It is invertible (its diagonal
entries are all nonzero).

The matrix is lower triangular. It is not invertible (its diagonal entries include a zero).
0 0| 2 1 (3)(2) (3)(1) 6 3

-1 04 1=(-1)(-4) (-1

0 2| 2 5] | (2)(2) (2)(5)] |4 10

Il
N
|
H

4

o

YW @6 (5] [4 6 -
(2){14 2)(3 52}{4610}

o w

o

o[-3 2 0 4 4] [ (5)(-3) (5 (

o 1530 35 @0 @5 @0
36 222 2| (3 (3 () (3 (I
-15 10 0 20 -20

2 -10 6 O 6
18 6 6 -6 -6

oON

0 0] 4 -1 3| -3

00
0 -1 0/ 1 2 0|l 05 0l=(-)A)(-3) (-1)(2)5) (-1)(0)2)
0 0 2

0 4/-5 1 -2
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

1® 0

|0 (—1)39}

_11000 ]

0 (_1)1000

au av|

(@) bw bx
lcy cz)
ua vb|

(@ wa xb
ya zb|
2 -1

a

@ | 3}
0 3

From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero.

o O O

-15
0
0

o O O

1.7 Diagonal, Triangular, and Symmetric Matrices

0 O
20 O
0 84
[ra sb tc|
(b) ua vb wc
| xa yb zc |
[ar as at |
(b) bu bv bw
[cx ¢y cz |
1 3 7 2
3 1 -8 -3
(b)
7 -8 0 9
2 3 9 0
[ 7 -3 2
7 5 -7
b
2 -3 5 —6
| 2 -7 6 3

Since this upper triangular matrix has a 0 on its diagonal, it is not invertible.

From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero.

Since this upper triangular matrix has all three diagonal entries nonzero, it is invertible.

From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero.

Since this lower triangular matrix has all four diagonal entries nonzero, it is invertible.

From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero.

Since this lower triangular matrix has a 0 on its diagonal, it is not invertible.
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(3)(-1)  x x
23. AB=| 0 (1)(5) x |.Thediagonal entries of AB are: -3,5, —6.
| 0 0 (-1)(6)
(4)6) 0o 0
24. AB=| x (0)(5) 0 |.Thediagonal entries of AB are: 24,0,42.
| X < (7)(6)
25.  The matrix is symmetric if and only if a+5=-3. In order for A to be symmetric, we must have a=-8.
26. The matrix is symmetric if and only if the following equations must be satisfied
a — 2b + 2c = 3
24 + b + ¢ = 0
a + Cc = =2
We solve this system by Gauss-Jordan elimination
1 -2 2| 3]
2 1110 <«—— The augmented matrix for the system.
1 0 1}-2
1 0 1]-2]
1 0 <4——— The first and third rows were interchanged.
- _2 3 -
1]-2
0 -1 4 <+—— -2 times the first row was added to the second row
— 1l 5 and -1 times the first row was added to the third.
10 1]-2]
01-1 4 <«—— 2 times the second row was added to the third row.
0 -1]13 |
10 -2
0 1 - 4 <«—— The third row was multiplied by -1.
00 -13 |
10 0f 11]
0 10 -9 <«—— The third row was added to the second row
0 0 1/-13 and —1 times the third row was added to the first.
In order for A to be symmetric, we must have a=11, b=-9, and ¢ =-13.
27. From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero.
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Therefore, the given upper triangular matrix is invertible for any real number x such that x #1, x#-2,and x = 4.



28.

29.

30.

31.

32.

33.

34.

35.

1.7 Diagonal, Triangular, and Symmetric Matrices 107
From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero.
Therefore, the given lower triangular matrix is invertible for any real number x suchthat x =%, X1, and x#—+.

By Theorem 1.7.1, A™ is also an upper triangular or lower triangular invertible matrix. Its diagonal entries must all
be nonzero - they are reciprocals of the corresponding diagonal entries of the matrix A.

By Theorem 1.4.8(e), (AB)T =B"A". Therefore we have:
(8"8)

=B'(B") =B'B,
(BB") =(B") B" =BB", and

T

(BTAB)T =(B"(AB)) (AB)' (B )T =B"ATB=B"AB since A is symmetric.

0 O
A= -1 0
0 0 1
+ 00 -+ 002 0 O
For example A=|0 % 0| (there are seven other possible answers, e.g.,, | 0 % 0 -+ 0], etc)
0 01 0 0 1|0 0 -1
(-1)(2)+(2)(0)+(5)(0) (-1)(-8)+(2)(2)+(5)(0) (-1)(0)+(2)(2)+(5)(3)
AB=| (0)(2)+(1)(0)+(3)(0)  (0)(-8)+(1)(2)+(3)(0)  (0)(0)+(1)(1)+(3)(3)
(0)(2)+(0)(0)+(-4)(0) (0)(-8)+(0)(2)+(-4)(0) (0)(0)+(0)(2)+(-4)(3)
-2 12 17
=| 0 2 10|.Since this is an upper triangular matrix, we have verified Theorem 1.7.1(b).
0 0 -12

(@) Theorem 1.4.8(e) states that (AB)T =B" A" (if the multiplication can be performed). Therefore,

T 2
(AZ) =(AA) = ATAT =(AT) = N
symmetric

which shows that A* is symmetric.

() (2A*-3A+1) = 2(A) —3AT +1" = 2(AT) ~3AT 417 = 2A°-3A+I
148 148 are

(b-d) (e) symmetric

which shows that 2A? —3A+1 is symmetric.

31
1 _
@ A =gEom L 2} {

Uil o

} is symmetric, therefore we verified Theorem 1.7.4.

(SIS



(b) -2

45
14
: -1 _ 13
Since A~ = -

1
14

36. All 3x3 diagonal matrices haveaform |0 b

-2 3|1
1 -7/0

-2 3|10

1 5|3

o

0 1411 1

-2 311 0

1 53 0

11
0 114 14

w
|
|

w

14 14

14 14

A?—3A-4] =

1.7 Diagonal, Triangular, and Symmetric Matrices

0
10 <+—— The identity matrix was adjoined to the matrix A.
1
0]
0 <«——— 2 times the first row was added to the second row and
—3 times the first row was added to the third row.
0 _
0 1 <+—— The second and third rows were interchanged.
0]
-1 <«—— The second row was multiplied by -1.
0
0]
-1 <+— 3 times the second row was added to the third row.
-3
0]
-1 <«———— The third row was multiplied by ﬁ .
o
o
14
ﬁ <«——— -5 times the third row was added to the second row and
_% —3 times the third row was added to the first row.
1
14
ﬁ <«—— 2 times the second row was added to the first row.
.
is symmetric, we have verified Theorem 1.7.4

a 0o
0].
0 0 c
a o0 a 00 a 00 100
0 b 0O b 0|-3/]0 b 0(-4/0 1 0
0 0 c|[0 O ¢ 0 0 c 0 01
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1.7 Diagonal, Triangular, and Symmetric Matrices 109

a’-3a-4 0 0
= 0 b?-3b-4 0
0 0 c*-3c-4
(a-4)(a+1) 0 0
= 0 (b—4)(b+1) 0
0 0 (c—4)(c+1)

This is a zero matrix whenever the value of a, b, and c is either 4 or —1. We conclude that the following are all
3x 3 diagonal matrices that satisfy the equation:

37. (a) a;=j*+i’=i"+j"=a; forall i and j therefore A is symmetric.

(b) a; =j*—i® does not generally equal a; =i” — j* for i# j therefore A is not symmetric (unless n=1).

() a;=2j+2i=2i+2j=a, forall i and j therefore A is symmetric.
(d) a; =2j*+2i° does not generally equal a; =2i* +2j° for i# j therefore A is not symmetric (unless n=1).

38. If a;, =f(i,j) then A is symmetricif and only if f(i,j)=f(j,i) forall values of i and j.

. . a
39. For a general upper triangular 2x2 matrix Az{o

As_| 8 blfa blla b]
10 c]lo cJlo ¢

{az ab+bc|[a b] [a"’ a2b+(ab+bc)c}_[a3 (a2+ac+c2)b]

b} we have
c

0 ¢ o c] |o c



40.

41,

42,

1.7 Diagonal, Triangular, and Symmetric Matrices

1 30
Setting A’ :[O 8} we obtain the equations a® =1, (a2 +ac+cz)b:30, ct=-8.

The first and the third equations yield a=1,c=-2.
Substituting these into the second equation leads to (1— 2+ 4)b =30,i.e., b=10.

1 30 1 10
We conclude that the only upper triangular matrix A such that A’ :[0 8} is A:[O 2}.

10 0]y, 1

(@ Stepl.Solve |-2 3 0|y, |=|-2

2 4 1]y, 0
The first equation is y, =1.
The second equation (-2)(1)+3y, =2 yields y, =0.
The third equation (2)(1)+(4)(0)+1y, =0 yields y, =-2.

2 -1 3||x 1
Step2.Solve |0 1 2|/ x,|=| O] using back-substitution:
0 0 4|x -2

3

The third equation 4x, =-2 yields x, =—%.
The second equation 1x, +(2)(—%)=0 yields x, =1.
The first equation 2x, +(-1)(1)+(3)(-%)=1 yields x, = .

2 0 0][y,] [4

(b) Stepl.Solve| 4 1 0| y,|=|-5

-3 -2 3|ly,| | 2
The first equation 2y, =4 vyields y, =2.

The second equation (4)(2)+1y, =5 yields y, =—13.

The third equation (-3)(2)+(-2)(-13)+3y, =2 yields y, =-6.

3 5 2||x 2
Step 2. Solve |0 4 1]|x, [=|—-13| using back-substitution:
0 0 2} x, -6

The third equation 2x, =—-6 yields x, =-3.
The second equation 4x, +(1)(-3)=-13 yields x, =—3.
The first equation 3x, +(-5)(—%)+(2)(-3) =2 yields x, =—3.

0 0 4 00 -8
@ |0 01 () [0 0 —4
4 10 8 4 0

The condition A" =—A is equivalent to the linear system

110



1.7 Diagonal, Triangular, and Symmetric Matrices 111

2a — 3b + ¢ = 2
3a — 5b + 5¢ = 3
52 - 8 + 6¢ = 5
d =0
2 -3 10 2 1 0 -10 0 1
_ - 1 -7
The augmented matrix 3 5503 has the reduced row echelon form 0 00 .
5 -8 6 05 00 0 10
0 0 010 00 0 0O

43.

44,

45.

If we assign ¢ the arbitrary value t, the general solution is given by the formulas

a=1+10t, b=7t, c=t, d=0.

No. If AB=BA, A" =-A, and B" =-B then (AB)' =B"A" =(~B)(~A)=BA= AB which does not generally

equal —AB. (The product of skew-symmetric matrices that commute is symmetric.)

1(A+AT) is symmetric since (%(A+ AT ))T =1AT +1(AT )T =1(A+AT) and +(A-AT) is skew-symmetric since

2

(%(A— AT ))T =1AT (AT )T =4(AT-A)= —(%(A ~A )) therefore the result follows from the identity

(@ (AY)
= (AT )71 <—— Theorem 1.4.9(d)
= (—A)f1 <4— The assumption: A is skew-symmetric
=_A"1 <+— Theorem 1.4.7(c)
® (A7)
=A <+— Theorem 1.4.8(a)
=_AT <4— The assumption: A is skew-symmetric
(A+B)
=A" +B' <«———  Theorem 1.4.8(b)
=—-A-B <+—— The assumption: A and B are skew-symmetric

=—(A+B) <«———  Theorem 1.4.1(h)



47.
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(A-8)

=A"-B' <+— Theorem 1.4.8(c)

=—A—(—B) <4— The assumption: A and B are skew-symmetric
=—(A-B) <«——  Theorem 1.4.1(i)

(ka)'

=KkA" <4——  Theorem 1.4.8(d)

= k(—A) <4— The assumption: A is skew-symmetric

=—kA <4— Theorem 1.4.1(1)

AT = (AT A)T =A (AT )T = ATA= A therefore A is symmetric; thus we have A’ =AA=ATA=A,

True-False Exercises

(@)
(b)

(©)
(d)
(e)
)
(9)
(h)
(i)

()

(k)

True. Every diagonal matrix is symmetric: its transpose equals to the original matrix.

False. The transpose of an upper triangular matrix is a lower triangular matrix.

11 10 2 1. . .
False. E.g., + = is not a diagonal matrix.
0 1] |1 1 1 2

True. Mirror images of entries across the main diagonal must be equal - see the margin note next to Example 4.
True. All entries below the main diagonal must be zero.

False. By Theorem 1.7.1(d), the inverse of an invertible lower triangular matrix is a lower triangular matrix.
False. A diagonal matrix is invertible if and only if all or its diagonal entries are nonzero (positive or negative).
True. The entries above the main diagonal are zero.

True. If A is upper triangular then A" is lower triangular. However, if A is also symmetric then it follows that

A" = A must be both upper triangular and lower triangular. This requires A to be a diagonal matrix.

. . 01 0 0. . 0 1].
False. For instance, neither A= 0 0 nor B = 1o is symmetric even though A+ B = 10 is.

. . 0 1 0 0], . 01
False. For instance, neither A= 10 nor B = 1o is upper triangular even though A+ B = 0 0 is.
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. 0 0. . , [0 0].
()  False. For instance, A= 10 is not symmetric even though A” = 0 0 is.

(m) True. By Theorem 1.4.8(d), (kA)T =kA". Since kA is symmetric, we also have (kA)T =kA . For nonzero k the
equality of the right hand sides kA" =kA implies A" = A.

1.8 Matrix Transformations

1. (@ T,(x)=Ax mapsany vector x in R? intoavector w=Ax in R®.
The domain of T, is R?; the codomain is R®.

(b) TA(X)z Ax maps any vector x in R® into avector w=Ax in R*.

The domain of T, is R?; the codomain is R”.

(©) TA(x)z Ax maps any vector x in R® into avector w=Ax in R®.
The domain of T, is R®; the codomain is R®.

(d) T,(x)=Ax mapsany vector x in R® into avector w=Ax in R'=R.
The domain of T, is R®; the codomain is R.

2. (9 TA(x)z Ax maps any vector x in R® into a vector w = Ax in R*.

The domain of T, is R®; the codomain is R*.

(b)  T,(x)=Ax mapsany vector x in R* into a vector w=Ax in R°.
The domain of T, is R*; the codomain is R®.

(©)  T.(x)=Ax mapsany vector x in R* into a vector w=Ax in R".
The domain of T, is R*; the codomain is R*.

d T, (x) = Ax maps any vector x in R"=R into a vector w= Ax in R®.
The domain of T, is R; the codomain is R®.

3. (a) The transformation maps any vector x in R® into a vector w in R,

Its domain is R?; the codomain is R?.

(b)  The transformation maps any vector x in R® into a vector w in R®.
Its domain is R?; the codomain is R®.

4. (a) The transformation maps any vector x in R® into a vector w in R®.
Its domain is R®: the codomain is R®.



10.

11.

(b)

(@)

(b)

(@)

(b)

(@)

(b)

(@)

(b)

The transformation maps any vector X i

Its domain is R®: the codomain is R?.

The transformation maps any vector X i

Its domain is R®: the codomain is R?.

The transformation maps any vector X i

Its domain is R?; the codomain is R®.

The transformation maps any vector X i

Its domain is R?; the codomain is R?.

The transformation maps any vector X i

Its domain is R®: the codomain is R®.

The transformation maps any vector X i

Its domain is R?; the codomain is R?.

The transformation maps any vector X i

Its domain is R®: the codomain is R?.

The transformation maps any vector X i

Its domain is R*: the codomain is R?.

R3

R3

RZ

R2

R3

RZ

R3

R4

The transformation maps any vector x in R®

Its domain is R®; the codomain is R®.

1.8 Matrix Transformations

into a vector w in R?.

into a vector in

into a vector in

into a vector in

into a vector in

into a vector in

into a vector in

into a vector in

into a vector in

R%.

R®.

R?.

R®.

R?.

R?.

R%.

R®.

The transformation maps any vector x in R? into a vector in R®. Its domain is R?; the codomain is R®.

The transformation maps any vector x in R* into a vector in R*. Its domain is R*; the codomain is R*.

W, 2 -3 1
(a) The given equations can be expressed in matrix form as [ l} = { 3 s J X,
W, -

(b)

. . .. ]2
therefore the standard matrix for this transformation is L

The given equations can be expressed in matrix form as | w,

therefore the standard matrix for this transformationis | 0

W,

7

4

Xl
X3
1
-1
7 2 8| X
=0 -1 5|x
4 7 -1|x
-8
5.
-1
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12.

13.

14.

(@)

(b)

(@)

(b)

(©)

(d)

(@)

1.8 Matrix Transformations

W, -1 1

X
The given equations can be expressed in matrix formas |w, =] 3 -2 {xl}
W, 5 7|7
-1 1
therefore the standard matrix for this transformationis | 3 -2].
5 -7
W, 1 0 0 0Ofx
. . i . W, 11 0 0fx,
The given equations can be expressed in matrix form as =
W, 111 0fx
w,| |11 1 1]x,
1000
. i .11 100
therefore the standard matrix for this transformation is 111 ol
11 11
X, 0 1 0 1
—X -1 0] x .- 0
T(X,%,)= L= ! | the standard matrix is
X, +3X, 1 3| x 3
X, =X, 1 -1 1 -1
Xl
TX, +2X, =X, + X, 72 -1 1 y
T (X)X, X5, X, ) = X, + X, =01 10 Xz;
—X, -1 0 3
Xy
72 -11
the standard matrixis | 0 1 1
-1 0 O
(0] [0 0 O] 0 0 O]
0| |0 0 0| x 0 0O
T(X,X,X;)=|0|=[0 0 0| X, |;the standard matrixis |0 0 0
0] |0 O 0} X 00O
10/ |0 0 0] 10 0 0]
_x4__0001_x [0 0 0 1]
X, 10 00 Xl 10 00
T(X. %X %,)=| X [=[0 0 1 0 xz ; the standard matrixis [0 0 1 0
X, 01 00 X3 01 00
X, -%] |1 0 -1 0] 10 -1 0]

2X, — X 2 1| x 2 -1
T(x.%)=| ' = 1 the standard matrix is
X + X, 1 1]x, 1 1
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15.

16.

1.8 Matrix Transformations 116

10 1
(b) T(xl,xz)z{xl}z[ }[Xl};thestandardmatrixis{ 0}
X, | [0 1] x, 01

X, +2X, + X, 1 2 1]x 1 21
()  T(X.%.X)=| X+5% |=|1 5 0]lXx,|;thestandard matrixis |1 5 0
i X, 0 0 1] x, 0 01
[ 4ax, ] [4 0 0]x 4 0 0
(d)  T(x.%,X%)=| 7%, |=|0 7 0| x, |; the standard matrixis |0 7 0
8%, | |0 0 -8 x 00 -8

w, 3 5 -1|x
The given equations can be expressed in matrix formas |w, [=|4 -1 1| x, | therefore the standard matrix for

x

W, 3 2 -1j| %
3 5 -1
this operatoris |4 -1 1|.
3 2 4

By directly substituting (—1,2,4) for (x,,X,,x,) into the given equation we obtain

By matrix multiplication, |w, (=|4 -1 1
W, 3 2 -1

W 2 3 -5 -1
The given equations can be expressed in matrix form as {wl} ={ } ? | therefore the standard

. . . .12 3 -5 -1
matrix for this transformation is .
1 5 2 -3

By directly substituting (1,—1,2,4) for (x,,X,,X,,X,) into the given equation we obtain
w, =(2)(1)-(3)(1)-(5)(2)-(1)(4)=-15
(D@)+(5)(1)+(2)(2)-(38)(4)=-2

W,

By matrix multiplication,
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)
BN }l |G- 9000000 2]

X, | [-1 1 -
X X : the standard matrix is 11 .
X, L 0 1] % 01

17. (a) T(Xl,X2)=|:

-1 1][-1] | (1)(1)+(1)(4) 5
T(x):[ 0 J{ 4}:{_(0)(1 +(i)(4)}=M matches T (-1,4)=(1+4,4)=(54).
2X, =X, + X, 2 -1 1| x 2 -1 1
(b) T(xl,xz,xs){ X, + X, }—{0 1 1“x2];thestandardmatrixis{0 1 1].
0 0 0 0} x 0 00
2 1 1] 2] [2@)-0n-0)E)] [ o
T(x)=|0 1 1) 1= (0)(2)+(2)1)-(1)(E) |=| -2
0 0 0)-3] [(0)@+0)1)-(0)@)] | o
matches T(2,1,-3)=(4-1-31-3,0)=(0,-2,0).

2%, — 2 -1 2 -1
18. (@) T(X.%)= S % | the standard matrix is :
1 1| x 1 1

2

)—(1)(2)} :[ﬂ matches

x, 110 ofx 10 0
(b) T(xl,xz,xs){xzx3 =0 1 1] le;thestandard matrix is {0 1 1].
X, | [0 1 0]x 01 0
T 0 o“f (1)(1)+(o)(o)+(o)(5)} {1]
T(x)=|0 1 -1{0]|=|(0)(1)+(1)(0)—(2)(5) |=| -5 | matches T (1,0,5)=(1-5,0).
0 1 0][5] |[(0)(2)+(2)(0)+(0)(5) 0
o 0 meoeme]t 7 2]

(b) TA(X)zAx=__; g 0}

1
20. (@ T,(x)=Ax=| 3 5 7
0

X, =2X, + X, +4X,
X, | =] 3X, +5X, +7X,
=1 X, 6X, — X,



1.8 Matrix Transformations

-1 1 y =X, + X,
(b) T,(x)=Ax=| 2 4 {xl}: 2%, +4x,
7 8|57 | 7x +8x,

21. (a) If u=(u,u,) and v=(v,v,) then

T(u+v)=T(u +v,u, +V,)

= (2(uy +vy) + (U, +V, ) (U +vy) = (1, +v,))

=(2u, +U,,U, —U, )+ (2V, +V,,V, =V, )

=T(u)+T(v)

and T (ku)=T (ku,,ku, ) =(2ku, +ku,,ku, —ku, ) =k(2u, +u,,u, —u, ) =KkT (u).
(b) 1f u=(uy,u,,u;) and v=(v,,v,,v,) then

T(U+V)=T (U +V,,U, +V,,U; +V, )
=(Uy +Vy, Uy +Va, Uy +V, +U, +V,)
= (Uy, Uy, Uy +Uy )+ (Vy, Vs,V +V, )
=T(u)+T(v)

and T (ku) =T (ku,,ku,,ku, ) = (ku,, ku,ku, +ku, ) =k (uy,uy,u, +u, ) =KT (u).

22. (a) If u=(u,u,u,) and v=(v,v,,v,) then
T(U+V)=T (U +V,, U, +V,, Uy +V, )
= (U +V, U, +V,, U, +V, +Uy + VU +V, )
= (U, + Uy, Uy +Ug, Uy ) +(V, +V,,V, +V,, V)
=T(u)+T(v)
and T (ku)=T (kuy,ku,,ku, ) = (ku, + ku,,ku, +ku,, ku, ) =k (u, +U,,u, +U,,u, ) =KT (u).
(b) 1fu=(u,u,)and v=(v,v,) then
T(Uu+v)=T(u +V,U, +V,)

= (U, +V,, U, +V, )
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23.

24,

25.

26.

27.

1.8 Matrix Transformations 119

= (U, Uy )+ (v, Vy)
=T(u)+T(v)
and T (ku)=T (ku,,ku, )= (ku,,ku, ) =k(u,,u, ) =KT (u).

(@) The homogeneity property fails to hold since T (kx,ky) = ((kx)?,ky) = (k’x?,ky) does not generally equal
KT (x, y) = k(xz,y) = (kxz, ky) . (It can be shown that the additivity property fails to hold as well.)

(b)  The homogeneity property fails to hold since T (kx,ky,kz) = (kx,ky, kxkz) = (kxky kzxz) does not generally
equal KT (x,y,z)=k(x,y,xz)=(kx,ky,kxz). (It can be shown that the additivity property fails to hold as well.)

(8)  The homogeneity property fails to hold since T (kx,ky) = (kx,ky +1) does not generally equal
KT (x,y) =k(x,y+1)=(kxky+k). (It can be shown that the additivity property fails to hold as well.)

(b) The homogeneity property fails to hold since T (kxl, kxz,kx3) = (kxl, ka,W/kxg) does not generally equal
kT(xl,xz,x3) = k(x X, \/7) (kx kx, k\/7) (It can be shown that the additivity property fails to hold as
well.)

The homogeneity property fails to hold since for b=0, f(kx)=m(kx)+b does not generally equal
kf (x) =k(mx+b)=kmx+kb . (It can be shown that the additivity property fails to hold as well.)
On the other hand, both properties hold for b=0: f(x+y)=m(x+y)=mx+my=f(x)+ f(y) and

f (kx) =m(kx)=k(mx)=kf (x).

Consequently, f is not a matrix transformation on R unless b=0

Both properties of Theorem 1.8.2 hold for T (x,y)=(0,0):
T((6y)+ (X)) =T (x+x\y+y)=(0.0)=(0.0)+(0,0) =T (x.y) +T (x\y)
T (k) =T (ke ky) = (0.0) =k(0.0)=KT (x,)

On the other hand, neither property holds in general for T(x,y)=(11), e.g.,
T((xy)+(x,y"))=T(x+x,y+y')=(L1) does not equal

T(xy)+T(x,y)=(11)+(11)=(2.2)

T(e,) | T(e,) |- Therefore

|
10 4 (1)(2)+(0)(1) +(4)(0) | |2
A=|3 0 -3|and T(x)=Ax=[(3)(2)+(0)(1)-(3)(0) [=|6|.
01 -1 (0)(2)+(1)@)-()(0) | |2
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[T(el) | T(e,) | T(e3)].Therefore

By Formula (13), the standard matrix for T is A

28.

a

a
c

il

|

-1 0 0fa
0 1 0}||b
00 1c

(©)

} and T (x)

2 31
1 -10
0 2

:

A=

a

0
5

0
b

-
|

2
-5

a

I

|

0 0
0 1
0 0
0 1

(b)
(b)

0

o o o
e — |
Il
1
c o o
L |
I 1
o o
o 1 o
_0 o 0_
~
O
N
1
c O O
S — |
Il
1
c o O
L |
I 1
o o «
o o o
_1 © O_
—~
o]

N

a

1 0 Ofla
0
0

-1.96
—-4.60

F

3-23
_3AE 9

oo e
o ﬁ_Z
I

cos(—60°)

cos(—60°) —sin
sin(—60°)

1
T
e —|
Il
I 1
n/_rn_.voo
L I
I 1
o o «d
o 1 o
ﬂl__OO
L |
—~~
O
N—r
T 1
_253_
Il
1
n/_rn_.voo
L I
I 1
o o -
o <1 o
I
_100_
—~
o]
N—r
1
R
e — |
Il
1
n/_rn_.voo
L I
I 1
o o
|
o 1 o
_100_
<
N—r
o
™

(b)




38.

39.

40.

41.

42.

1.8 Matrix Transformations

@ [ cosa —sina}[vl} [vlcosa—vzsina}
a =

|sina cosa ||V, v, sina +V, cosa

) | cos(-a) _Sin(_a)“:vl}:{Vlcos(—a)—VZSin(—a)}

V,Cosa +V, sina
sin(-a)  cos(-a) || v v, sin(-a)+V, cos(—a)

. —v,sina +V, cosa

By Formula (13), the standard matrix for T is Az[ T(e,) | T(ez)].Therefore

A{Z ;} and T(1,1)=Am{s:;]
@ Tile)-|:

. . . . k
} . Since T, is a matrix transformation, T, (ke,)=kT, (e, ) :{ a}.

c kc

(b) T.(e,)= B} Since T, is a matrix transformation,

TA(kel+Ie2):kTA(el)+|TA(ez):[E2}+Eﬂ:{:Zi:ﬂ'
-1 3 0
(@) TA(el): 2 'TA(ez): 1 'TA(e3): 2|
4 5 -3

(b) Since T, is a matrix transformation,

-1 3 0 2
T.(e,+e,+e,)=T,(e;)+T,(e,)+Ta(es)=| 2[+| 1|+ 2|=|5].
4 5 -3 6
0] 0
(c) Since T, isa matrix transformation, T, (7e,)=7T,(e,)=7| 2|=| 14]|.
3] |21
_ o1l 1]
Orthogonal projection onto the xy -plane: T(1,2,3)= 0 1 0|j2(=|2
10 03] [0]
1o olr1] 1

Orthogonal projection onto the xz -plane: T(1,2,3)=/0 0 0([2|=|0

Orthogonal projection onto the yz -plane: T(1,2,3)=0 1 0| 2|=|2]|.
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43,

44,

45,

46.

Reflection about the xy -plane: T(1,2,3)=|0

Reflection about the xz -plane: T (1,2,3)=|0

Reflection about the yz -plane: T (1,2,3) =

sin@

—si cos@ sind
it Az{cose smﬁ} then AT :{

coséd

-sin@ cosd

|

sin(—0)

[cos<—e> sin(-0)

1.8 Matrix Transformations

} (since cos(—6)=cosé and

122

sin(—e) =—sin@). The geometric effect of multiplying A" by X is to rotate the vector through the angle —@ (i.e.,

to rotate through the angle & clockwise).

The standard matrix for T is A =[ T(e,) | T(e,) ] . Observe that Lﬂ = 3&} — E} . Because

1
T, is a transformation, T, (e,)=T, [3{1} —[

Likewise, {0} =
1

ORAL

Therefore, the matrix for T, is A:{

2 (1 )
}—2 J SO we obtain

AR (H R

5 —4]
-11 9|

2
3

J

o

I

} _[_ﬂ i Lﬂ |

The standard matrix for T is Az[ T(e,) ‘ T(e,) | T(e,) ]so we need to express the

1 -3

standard basis vectors e,,e,, and e, as linear combinations of the vectors | 0 |, 1|, and | -1 |.

11

To do this, we compute the inverse of |0 1

2 1

-3
-1].

2

1 2



11 -3]1 0 0]
01 -1/0 1 0
2 1 20 01
1 3100
0 -1 0 1 0
0 -1 8/-2 0 1
1 3100
0 -1 0 1 0
0 71-2 1 1
11 3100
0 -1 0 10
00 1533
11 3100
0 1 o3 ¢
00 1% 43
110 433
0 1 0% %3
00 1433
100 2 -5 2
0 10-2 &1
00 1-2 11
3 _5

7 7
Weobtain—%%
_2 1

7 7

so that

q T
T(el):T%O_%
2 -

1
=3T||0]|-

2

Y] RN EEN] [N}

I

o O -

1.8 Matrix Transformations

The identity matrix was adjoined to the original matrix.

—2 times the first row was added to the third row.

The second row was added to the third row.

The third row was multiplied by < .

The third row was added to the second row.

<«—— 3 times the third row was added to the first row.

<+— -] times the second row was added to the first row.
% -3 2)0] [5 i I
=| -3, |-F 3 H|1]=] $|end|-3 & 3o|=|d
2| -2 1 gflo] [ &) |-z ifla] |4
-3
-1
2
-3 2 1 -5 2
—%T -1 =%—3—%3—%—1l=1.
2 10 8 7 0

123



47.

48.

49,

1.8 Matrix Transformations

2 1 -5 -1 2 1 -5 0
Likewise, T (e,)=—2| -3 |+%|3|+1|-11|=| 4| and T(e,)=2| -3 [+1|3 [+ -11|=|-2]|.
10 8 7 3 10 8 7 5
-1 0
Therefore, the standard matrix for Tis A=|1 4 -2]|.
0 3 5

The terminal point of the vector is first rotated about the origin through the angle @, then it is

translated by the vector x,. No, this is not a matrix transformation, for instance it fails the additivity

property: T(u+V)=X,+R,(U+V)=X, +R,U+RV#X, +Ru+X, +R,v=T(u)+T(v).

1
@ |0
0

_r O O
O = O

0
(b) 0
1

O R~ O
O - O

1
0
0

= O O

1
0 ©)
0

cos(260) —sin(20)

Since cos’ @ —sin® @ =cos(26) and 2sindcosd =sin(26), we have A=|
sin(20)  cos(20)

} . The geometric

effect of multiplying A by X is to rotate the vector through the angle 26.

True-False Exercises

(@)
(b)
(©)
(d)
()
()
(9)

False. The domain of T, is R®.
False. The codomain of T, is R".

True. Since the statement requires the given equality to hold for some vector X in R", we can let Xx=0.
False. (Refer to Theorem 1.8.3.)

True. The columns of A are T (e;)=0.

124

False. The given equality must hold for every matrix transformation since it follows from the homogeneity property.

False. The homogeneity property fails to hold since T (kx) =kx + b does not generally equal
KT (x)=k(x+b)=kx+kb.

1.9 Compositions of Matrix Transformations



3.

1
4. From Table 4 in Section 1.8, [T,]=| 0
0

ARARA AR MM LRARA AR

0
For these transformations, T, oT, =T, oT,.

(b) From Table 1 in Section 1.8, [Tl]:[; ﬂ and [Tz]:[o 1]

[TIOTZ]:[Tl][TZ]{_‘i (ﬂ [Tonl]:[Tz][Tl]:[

For these transformations, T, oT, #T, o T, .

0 0

For these transformations, T, oT, =T, o T, .

PRARA AR MM SAR A AR

: : cos
(b) From Tables 5 and 1 in Section 1.8, [T,] ={

2

[Tlon]=m[n]=[

For these transformations, T, oT, # T, o T, .

NN

2

10 O

1. (a) From Tables 1and 3 in Section 1.8, [T,]= [2 ﬂ and [T,]= {1 O} .

0

2. (@ From Table 3 in Section 1.8, [Tl]z[é 8} and [Tz]:{o 0]

—sin
coS

_Z}; [TZ oTl] Z[Tz][Tl] :[_

0
1

z
4

Z
4

1.9 Compositions of Matrix Transformations

0 0

o)

1 0l

o)

0 1/

00
0 0|

I

AR P

2
2

NN GRS
ol

NN

0 0O
From Tables 2 and 4 in Section 1.8, [T,]=|0 1 0|and [T,]=|0 1 O0f;
00 -1 00
0 0 O 0 0 0]
[L-T]=[L]T]=j0 1 0 [L-T]=[T]TL]=0 1 o
00 -1 0 0 -1

For these transformations, T, oT, =T, oT, .

0 0

0 0

2 00
1 0. Invector form, [T,]=|3y|=|0 3 0
0 01

2X X

y | so that

z z
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2 00
[T,]=|0 3 0. Therefore,
001
2 00 2 00
[T,°T,]=[T.][T.]=|0 3 0|and[T,-T,]=[T,][T.]=|0 3 0.
0 00 000
For these transformations, T, oT, =T, oT, .
[-10 -7 -8 -3
[TBOTA]Z[TB][TA]ZBAZ_ 5 _10}; [TAOTB]Z[TA][TB]ZABZ[]_B _12}
(40 0 20 19 18 22
[TeoT,]=[Ts][T.]=BA=|12 -9 18]; [TaoTe]=[T.][T:]=AB=[10 -3 16|
138 -18 43 31 -33 58

(@ We are looking for the standard matrix of T =T, o T, where T, is a rotation of 90° and T, is a reflection about

the line y = x. From Tables 5 and 1 in Section 1.8,

[Tl]:Lcicr:sg90(l° —;r;zﬂzﬁ ‘(ﬂ,[g]zﬁ ;]Therefore, [T]z[TZ][Tl]z[; _‘ﬂ

(b)  We are looking for the standard matrix of T =T, oT, where T, is an orthogonal projection onto the y -axis and

T, is a rotation of 45°about the origin. From Tables 3 and 5 in Section 1.8,

00 cos45° —sind5°] |2 -2 [0 =2
[T1]=[O 1}'[T2]={sin45° cos45°}={§ 7 |- Therefore, [T]=[Tz][T1]=_O %l

2

2

(c)  We are looking for the standard matrix of T =T, T, where T, is a reflection about the x -axisand T, is a

H - - . R 1 O_
rotation of 60° about the origin. From Tables 1 and 5 in Section 1.8, [T,]= {0 ) and
m,]- c0s60° -sin60°| | 3 -2
17 |sin60°  cos60°| |&£ 1|
(1 &
2 2
Therefore, [T]=[T,][T,]= & ol
L 2 2

(@) We are looking for the standard matrix of T =T, oT, o T, where T, is a rotation of 60°, T, is an orthogonal

projection onto the x -axis, and T, is a reflection about the line y = x. From Tables 5, 3, and 1 in Section 1.8,
c0s60° —sin60° 1 10 0 1

T1= = 2 21 [1,]= ,and [T, |= :

[T [sin60° cosGO"} l:g %] [T:] {0 O} [T:] [1 0}

Therefore, [T]=[T,][T.][T.]= l:? ;} :

|
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(b)

(©)

(@)

(b)

(©)

(@)
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We are looking for the standard matrix of T =T, T, oT, where T, is an orthogonal projection onto the x-axis,

T, is a rotation of 45°, and T, is a reflection about the y -axis. From Tables 3, 5, and 1 in Section 1.8,
e 10 [7,]-= cos45° —sin45° | Loz and [T, ] - -1 0
H70 0]t | sin45°  cos45°| £ o0 1]

=2 2
Therefore, [T]=[T3][T2][Tl]=[ zﬁ 0].

Nl%‘ N

We are looking for the standard matrix of T =T, oT, oT, where T, is a rotation of 15°, T, is a rotation of
105°, and T, is a rotation of 60°. The net effect of the three rotations is a single rotation of
15°+105°+60°=180°. From Table 5 in Section 1.8,

[T]— cos180° -sin180°| |-1 0

sin180°  cos180° 0 1]
We are looking for the standard matrix of T =T, o T, where T, is a reflection about the yz -plane and T, is an
orthogonal projection onto the xz -plane. From Tables 2 and 4 in Section 1.8,

1.0 0 100 10 0
[T.]=| 0 1 0|and[T,]=|0 0 0. Therefore, [T]=[T,][T.]=| 0 0 O]
001 001 00 1

We are looking for the standard matrix of T =T, o T, where T, is a reflection about the xy-plane and T, is an
orthogonal projection onto the xy -plane. From Tables 2 and 4 in Section 1.8,

10 O 1 00 100
[T.]=|0 1 0]and[T,]=[0 1 0. Therefore, [T]=[T,][T,]=[0 1 0.
00 -1 000 000

We are looking for the standard matrix of T =T, o T, where T, is an orthogonal projection on the xy -plane and

T, is a reflection about the yz -plane. From Tables 4 and 2 in Section 1.8,

1 00 -1 00 -1 0 0
[T.]=|0 1 0|, [T,]=| 0 1 0].Therefore, [T]=[T,][T,]=| 0 1 0.
0 0O 0 0 1 0 0O

We are looking for the standard matrix of T =T, o T, oT, where T, is a reflection about the xy -plane, T, is an

orthogonal projection onto the xz -plane, and T, is the transformation such that T, (x) =-X.

10 O 1 00
From Tables 2 and 4 in section 1.8, [T,]=/0 1 0| and[T,]=/0 0 0.
0 0 -1 0 01
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(b)

(©)

(@)

(b)

(©)
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-X -1 0 0} x -1 0 0
In vector form, T, (X,,X,,X;)=| =X, |[=| 0 -1 0|/ x, | sothat [T,]=| 0 -1
—X, 0 0 -1jx, 0O 0 -1
-1 00
Therefore, [T]=[T,][T,][T.]=| 0 0 0.
0 0 1

We are looking for the standard matrix of T =T, oT, oT, where T, is a reflection about the xy -plane, T, is a

reflection about the xz -plane, and T, is an orthogonal projection on the yz -plane. From Tables 2 and 4 in

10 O 1 0 0 0 0O
Section 1.8, [T,]=|0 1 0|, [T,]=|0 -1 0|,and [T,]=/0 1 0. Therefore,
0 0 1 0O 0 1 0 0 1
0 0 O
[T]=[T][T.][T.]={0 -1 o0
0 0 -1

We are looking for the standard matrix of T =T, oT, o T, where T, is an orthogonal projection onto the yz -

plane, T, is the transformation such that T, (x)=2x, and T, is a reflection about the xy -plane.
0 00O 10 0
From Tables 4 and 2 in section 1.8, [T,]=|0 1 0|and [T,]=|0 1 0].
0 01 0 0 -1
2X, 2 0 0] x 2 00
In vector form, T, (x,,X,,X;)=| 2%, |=|0 2 0] x, | sothat [T,]=/0 2 0]
2%, | |0 2 || X, 0 0 2
00 O
Therefore, [T]=[T,][T,][T.]=[0 2 0].
0 0 -2

X, + X 1 1x
In vector form, T,(x,%,)=| = *|= " | sothat [T,]= to
X =X, 1 -1]/x, 1 -1
3X 3 0 x
Likewise, T,(x,,X,)= o= ' | sothat [T,]= 3 0
2%, +4X, 2 4] % 2 4

R A
T

T (T (%0 %,)) = (5% +4%, , X, =4%,); T,(T,(X.%,)) =(3% +3%, , 6% —2X,)
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13.

14.

(@)

(b)

(©)

(@)

(b)

(©)

(@)
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4x, 4 0 0] x 4 00
In vector form, T, (X,,X,,X;)=| 2%, +X, |=|-2 1 0| x,|sothat [T,]=(-2 1 0[.
—X, —3X, -1 -3 0 x -1 30
X, +2X, 1 2 0}x 12 0
Likewise, T, (X, X,,X;)=| —X, [=/0 0 —1|x,|sothat[T,]={0 0 -1|.
4x, — X, 4 0 -1] X, 4 0 -1
(1 2 0] 4 00] [0 20
[T,°T,]=[T,][T.]=|0 0 -1} -2 0l]=| 1 3 0
14 0 -1)|-1 -3 0] |17 3 0
4 o0 o0]12 0][4 8 0
[T.oT,]=[T][T.]=|-2 1 0[0 0 -1|=|-2 -4 -1
-1 3 0J[4 0 -1] |-1 2 3
T, (To (%X, X3 )) = (4%, +8X,,-2X, — 4%, — Xq, =X, —2X, +3X,)
T, (T (% %50 %3 )) = (2%, %, +3%,,17%, +3X, )
X, — 1 -1 1 -1
In vector form, T, (x,,X,)=|—X, +2x = 2 { sothat [T.]=|-1 2|.
3X, 0 3 0
4x 0 4 0] 040
Likewise, T, (X, X,, %, ) = {x +;x} [1 ) 0} >;2 so that [T, ]= L ) 0]

3

_ 1 -1 _
040 4 8
[TZOTl]:[TZ][Tl]: 1 2 Oi| _1 2 = _1 3j|
L 3 O_ L
'1—1040_'—120
[T1°T2]=[T1][T2]= -1 2 L 20 =2 00
| 3 0 - L 0 12 0

Ty (T (%0 %503 )) = (=% +2%,,2%,12%, ) 5 T (T, (%0, X, ) = (4%, +8X,,—X, +3X, )

X, +2X, +3X, 1
In vector form, T, (X,,X,,X;,X, ) = P

X, — X,

so that [Tl]z{l 23 O}

0 10 -1|

Xl
2 3 0] x
10—1}x3
X

4
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(b)

(©)

15. (a)

(b)

(©)
(d)

16. (a)

1.9 Compositions of Matrix Transformations

—X, -1 0 -10
0 0 0f x| 0
Likewise, T, (X;,X,)= = ' | so that [Tz] = .
X, + X, 1 1) x| 1
3X, 0 3 0 3
-1 0 -1 -2 3 0
[T, oT,]=[T,][T.] = 0 0123 0[]0 0 0 O
2t 24l 1{0 1 0 -1 1 3 3 -1
i 3 10 3 0 -3
-1 0]
12 3 0]j0 0| [2 3
ToT|=[T||T,|= =
LRARIA AR A I S
0 3]
T,(T, (%%, )) =(2x, +3x,,-3x,)
T, (T (% %50 X3, X, ) ) = (=%, = 2%, =3%, ,0,%, +3X, +3X, —X,,3%, =3X,)
y | [o 1 0 1
X 1 0fx 1 0
In vector form, T,(X,y) = = so that [T,]=
X+Y 1 1y 1 1
x=y| [1 -1 1 -1
- X
X+W 1001 1001
Likewise, T,(x,y,z,w)=|y+w|=|0 1 0 1 32/ sothat [T,]=/0 1 0 1
z+w| |0 0 11 00 11
-t w
0 1
1001 - 1 0
[T,oT,]=[T,][T.]=|0 1 0 1 L 17 2 -1
0011 2 0
1 -1
T, oT, is not defined because the outputs from T, are vectors in R® but the inputs for T, are vectors in R?.

T,(T.(xY))=(x .2x-y,2X)

X+2y 1 2 1 2
In vector form, T, (x,y)=| 0 |=0 0 { } so that [T,]=/0 0
ox+y| |2 1|V 2 1
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(©
(d)

17. ()
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3z i 0 3 y 0 0 3
o X—y -10 1 -0
Likewise, T,(x,y,z)= 5 |° 0 3 32/ so that [T,]= 0 3l
—-X+Yy -1 0 -1 0
HEIR
[T, T ]=[T.][T.]= 0 3 0 0= 3
2 1
-1 1 0]~ -1 -2

T, oT, is not defined because the outputs from T, are vectorsin R* but the inputs for T, are vectors in R?.

T, (Tl(Xl,Xz)) =(6X+3y,X+2y,6X+3y,—X—2y)

W, 8x, +4x 8 4| x 8 4
[ 1} :{ 1 2} :[ }{ 1} the standard matrix is {2 J. Using Theorem 1.5.3(c), we attempt to find

W, 2X, + X, 2 1]x%,
the inverse:
8 41 0]
> 1lo 1 <«+——— The identity matrix was adjoined to the coefficient matrix.
0 0|1 -4
2 10 1 <+— 4 times the second row was subtracted from the first row.

Since we obtained a row of zeros on the left side, the operator is not one-to-one.

w, | [-x+3x,+2%, | [-1 3 2][x -1 3 2
W, [=| 2% +4X, |=| 2 0 4] x,|;thestandard matrixis| 2 0 4 |. Using Theorem 1.5.3(c), we
Wy | | X+ 3X, +6X, 1 3 6| X 1 36
attempt to find the inverse:
(-1 3 2]11 0 O]
2 0 4010 <+——— The identity matrix was adjoined to the coefficient matrix.
3 6/0 0 1_
-1 3210 0]
0 6 8 0 2 times the first row was added to the second row and the
first row was added to the third row.
0O 6 8 0 |
-1 321 0 0]
0 6 8|2 10 <«+— The second row was subtracted from the third row.
0 0 0]-1 -1 1

Since we obtained a row of zeros on the left side, the operator is not one-to-one.



W, 2%, —3X,
18 @ w, | | 5x +x
2 1 2
find the inverse:

2 -3]1 0]

5 110 1

17 0|1 3]

5 110 1

10L& 2]
5 1]0

1 0] & 2]
0152

17

|

5

2

—

1.9 Compositions of Matrix Transformations 132

2 3| x 2 -3
J{Xl} ; the standard matrix is [5 J . Using Theorem 1.5.3(c), we attempt to

The identity matrix was adjoined to the coefficient matrix.

3 times the second row was added to the first row.

The first row was multiplied by .

5 times the first row was subtracted from the second row.

Since the reduced row echelon form of the operator’s standard matrix is the identity, the operator is invertible.

Wl
() w,
W, X, +8X%,

X, +2X, +3X,
=| 2%, +5X, +3X,

12
=2 5
10

o W w

<

o o1 N
O W w

1
, | ; the standard matrix is | 2
1

x X

3

Using Theorem 1.5.3(c), we attempt to find the inverse:

1 2 3|1
2 5 3|0
1 0 8|0

0
1

0]
0 <+—— The identity matrix was adjoined to the matrix A .
1
0]
0 <+— -2 times the first row was added to the second row and
the first row was subtracted from the third row.
0]
0 <+— 2 times the second row was added to the third row.
0]
0 <«—— The second row was multiplied by —1.
-1
3]
-3 <«—— 3 times the third row added to the second row and 3
-1 times the third row was subtracted from the first row.
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1 0 0|40 16 9
0 10 13 -5 3 <— 2 times the second row was subtracted from the first
0 0 1l 5 -2 -1 row.

Since the reduced row echelon form of the operator’s standard matrix is the identity, the operator is invertible.

W, X, +2X, 1 2 x .12
= = ; the standard matrix is ; since
W, | |-x +x% | -1 1] x, -1 1

Theorem 1.4.5 that the operator is invertible;

2
1‘ =30, it follows from

W= wln

1 1

‘w, | | 4x, —6x 4 -6 x 4 -6
L= ! 2 = ! | the standard matrix is ; since
W, | | —2X% +3X, -2 3] X -2 3

Theorem 1.4.5 that the operator is not invertible.

1
the standard matrix of T is & 1 =2 —|3 ST (w,w, )= (2w, —2w,, tw, + 1w
3 1 ’ (1’2)(3132’3132)
3

-6
‘ =0, it follows from

w, | [x=2x+2x | [1 -2 2][x 1 -2 2

W, |=| 2X +X,+X, |=[2 1 1| X, |;thestandard matrixis (2 1 1};

| W, | X, + X, 1 1 0| x 1 10
1 -2 2100 1001 -2 4

since the reduced row echelon form of the matrix |2 1 10 1 O|is|0 1 0}-1 2 -3/, itfollows
1 100 01 0 0 1-1 3 -5

from Theorem 1.5.3(c) that the operator T is invertible. Therefore, the standard matrix of T is
1 -2 4

-1 2 -3

-1 3 -5

T7H(Wg, Wy, Wy ) = (W, — 2W, + 4w, —W, + 2w, —3W,,—W, + 3w, —5w;,)

fw, | [%, —3x, +4X, 1 -3 4|[x, 1 -3 4
W, |=| =X, +X,+X; |=|-1 1 1| X, |;thestandard matrixis|-1 1 1};
| W, —2X, +5X, 0 -2 5| x 0 -2 5

Adding row 1 to row 2 followed by adding row 2 to row 3 in the reduced row echelon form of the matrix

1 -3 4100 1 -3 41 0 0

-1 1 10 1 O produces|0 -2 51 1 0]/, itfollowsfrom Theorem 1.5.3(c) that the operator T
0 -2 50 0 1 0 0 01 0 1

is not invertible.
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(@)

(b)

(©

(@)

(b)

(©

(@)

(b)

(@)

(b)
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. . .1 o] .
From Table 1 in Section 1.8, the standard matrix is 0 1};smce

0 . .
1‘ =-1+0, the matrix operator is

invertible. The inverse is also a reflection about the x -axis.

=1+0,

. . . [cos60° —sin60° 1B
From Table 5 in Section 1.8, the standard matrix is | =| 2 2 1. Since
| Sin60°  cos60°] |& 1

sie [

mla‘ N

2

the matrix operator is invertible. The inverse is a rotation of —60° (equivalent to 300°) about the origin.

. . . 0| . 10 . .
From Table 3 in Section 1.8, the standard matrix is 0 ; since 0 o 0, the matrix operator is not

invertible.

. . o 1 . 0 1
From Table 1 in Section 1.8, the standard matrix is 0 : since 10 =-1+0, the

matrix operator is invertible. The inverse is also a reflection about the line y=X.

00
From Table 3 in Section 1.8, the standard matrix is {0 J : since

0 . .
1‘ =0, the matrix operator is not

invertible.

.. |-1 o] .
The standard matrix is { 0 J ; since

0 . . . . .
‘ =1+ 0, the matrix operator is invertible. The inverse is also a

reflection about the origin.

1
Since

2
1‘ =-1#0, it follows from Theorem 1.4.5 that the operator T, is invertible;

el e[ ]

11

Since A 1‘ =0, it follows from Theorem 1.4.5 that the operator T, is not invertible.
120100 [1001 00

Since the reduced row echelon form of the matrix | 1 1 1 is|/0 1 00 1 Of,itfollows
2 3 10 1 0 0 0-1 -11

from Theorem 1.5.3 that the operator T, is not invertible.
‘1 101 00| [100L -2 1

Since the reduced row echelon form of thematrix |0 1 10 1 O0|is|0 1 0| + $ -1/, itfollows
|10 10 1] 0 1-4 3§ 3

from Theorem 1.5.3 that the operator T, is invertible.
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1 1 1 1 1 1
2 77 2 7 77 2| 1] |1
At=| 1 1 -1 Therefore, T,"(x)=| £ 1 -1|/2|=|0]
1 1 1 1 1 1
2 7 2 -2z 2J13] [2

-1 0]y

0 -1 -
(@ Invector form, T, (x,y) ={ }[X} :{ y}. The geometric effect of applying

this transformation to x is to reflect x about Y =X and then to reflect the result about the

origin.

. . 0 1 . .
(b) For instance, if B = [1 0} (the standard matrix of the reflection about y=X) and

-1 0
C ={ 0 J (the standard matrix of the reflection about the origin) then T, =T, o T;.

(a) Since cos’ #—sin* @ =cos(26) and 2sin&cosd =sin(26), we have

A cos(20) —sin(20)

~|sin(260)  cos(26)
through the angle 26 .

} . The geometric effect of applying this transformation to x is to rotate the vector

cos@d -sind

(b) Forinstance, if B=| |
sind cosd

} (the standard matrix of the rotation through an angle &) then T, =T, oT;.

True-False Exercises

(@)
(b)
(©)
(d)

(€)

(f)
(9)

False. For instance, Example 2 shows two matrix operators on R* whose composition is not commutative.
True. This is stated as Theorem 1.9.1.

True. This was established in Example 3.

False. For instance, composition of any reflection operator with itself is the identity operator, which is not a
reflection.

X

True. The reflection of a vector {
y

}about the line y=X is {y

} so a second reflection yields [X}
X y

False. This follows from Example 6.

True. The reflection about the origin is given by the transformation T (x) =—x sothat T is its own inverse.

1.10 Applications of Linear Systems
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1.  There are four nodes, which we denote by A, B, C,and D (see the figure on the left).
We determine the unknown flow rates X, , X,, and X, assuming the counterclockwise direction (if any of these

quantities are found to be negative then the flow direction along the corresponding branch will be reversed).

Network node Flow In Flow Out
A X, +50 = X,
B X, = X;+30
C 50 = X,+60
D X, +40 = 50

This system can be rearranged as follows

-X, + X = 50
X, - X = 30
- X = 10

X = 10

By inspection, this system has a unique solution x, =40, x, =-10, x, =10 . This yields the flow rates and

directions shown in the figure on the right.

2. (a) There are five nodes — each of them corresponds to an equation.

Network node Flow In Flow Out
top left 200 = X +X
top right X;+150 = X, +X
bottom left X, +25 = X,
bottom middle x,+X, = X,+175
bottom right X, +Xx, = 200

This system can be rearranged as follows
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. If we assign X, and X, the arbitrary values s and t, respectively, the general

0
-1
0
1

100

-500

has the reduced row
300

100

. If we assign x, the arbitrary value s, the general solution is given by

X, + X = 200
- X+ X, X = 150
-X, o+ X = 25
X, + X, - X = 175
Xs + X, = 200
(b) The augmented matrix of the linear system obtained in part (a) has the reduced row echelon form
[1 00 10 -1 150]
010 10 -1 175
001 -10 1 50
000 01 1 200
1000 00 O 0]
solution is given by the formulas
X, =150-s+t, X, =175-s+t, x,=50+s—-t, X, =S, X, =200—-t, X, =t
(c) When x, =50 and x, =0, the remaining flow rates become x, =100, x, =125, x, =100, and x, =200.
The directions of the flow agree with the arrow orientations in the diagram.
(@) There are four nodes — each of them corresponds to an equation.
Network node  Flow In Flow Out
top left X, +300 = x,+400
topright (A) X, +750 = x,+250
bottom left X, +100 = x,+400
bottom right (B) x,+200 = x,+300
This system can be rearranged as follows
X, — X = 100
X, — X, = -500
X\, — X = 300
—X, + X, = 100
0 1 -1
. . . 0 1
(b) The augmented matrix of the linear system obtained in part (a) L o
-1 0 O
10 0 -1 -100
0 1 0 -1 -400
echelon form
0 0 1 -1 -500
0 00 O 0

the formulas

X, =—100+s, X, =—400+s, x, =-500+s, X, =S



5.

1.10 Applications of Linear Systems 138

(c) Inorder for all x; values to remain positive, we must have s >500 . Therefore, to keep the traffic flowing on
all roads, the flow from A to B must exceed 500 vehicles per hour.

(@) There are six intersections — each of them corresponds to an equation.

Intersection Flow In Flow Out
top left 500+300 = X +X,
top middle X, +X, = X, +200
top right X,+100 = x,+600
bottom left X;+X%X, = 400+350
bottom middle x,+600 = X, +X,
bottom right X, +450 = X, +400
We rewrite the system as follows
X, + X = 800
X o+ X - X, = =200
- X, + X = =500
X, + X = 750
X, + X - X, = 600
Xs + X = 50
(b) The augmented matrix of the linear system obtained in part (a) has the reduced row echelon form
1 000 0 -1 0 50] ° o
01000 0 -1 45 T
00100 1 0 75 _ 8 3 o
. If we assign x, t A NP
00010 1 -1 600 QQ/%X“
00001 0 -1 50 MY
100000 O 0 0]
and x, the arbitrary values s and t, respectively, the
150 | —50+1t>0
general solution is given by the formulas 50 50410
X, =50+s, X, =450+t, x, =750 -5, 600 750 &

X,=600-s+t, x,=-50+t, x; =5, X, =t subject
to the restriction that all seven values must be nonnegative. Obviously, we need both s=x,>0 and t=x, >0,
which in turn imply x, >0 and x, >0. Additionally imposing the three inequalities x, =750-s>0,
X, =600-s+t>0,and x, =-50+t >0 results in the set of allowable s and t values depicted in the grey
region on the graph.

(c) Setting x, =0 in the general solution obtained in part (b) would result in the negative value s = x; =-50

which is not allowed (the traffic would flow in a wrong way along the street marked as x .)

From Kirchhoff's current law at each node, we have I, +1, — 1, =0. Kirchhoff's voltage law yields
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Voltage Rises Voltage Drops
21, = 21,+6
21, +41, = 8

Left Loop (clockwise)
Right Loop (clockwise)

(An equation corresponding to the outer loop is a combination of these two equations.)
The linear system can be rewritten as

=
w

O - O
= O O
|

1
Its augmented matrix has the reduced row echelon form | 0
0

U"l»': gl 9

The solutionis I, =2.6A, |, =-0.4A,and I, =2.2A.

Since 1, is negative, this current is opposite to the direction shown in the diagram.

From Kirchhoff's current law at each node, we have I, -1, + 1, =0. Kirchhoff's voltage law yields

Voltage Rises Voltage Drops
41, +61, = 1
21, = 2+41,

Left Inside Loop (clockwise)
Right Inside Loop (clockwise)

(An equation corresponding to the outer loop is a combination of these two equations.)
The linear system can be rewritten as

I, , + 1, =
a1, + 6l, =
—41, + 21, =
100 —
Its augmented matrix has the reduced row echelon form [0 1 0 L |.
o01 £
The solution is Ilz—iA, IzzlA,and |3=£A.
22 22 11

Since 1, is negative, this current is opposite to the direction shown in the diagram.

From Kirchhoff's current law, we have

Current In Currrent Out
Top Left Node I, = L, +1,
Top Right Node l, = I, +1
Bottom Left Node L+, = I,

Bottom Right Node I, + 1

ls

Kirchhoff's voltage law yields

139
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Voltage Rises Voltage Drops

Left Loop (clockwise) 10 = 201, +20I,
Middle Loop (clockwise) 201, = 201,
Right Loop (clockwise) 201, +10 = 201,

(Equations corresponding to the other loops are combinations of these three equations.)

The linear system can be rewritten as

L, - 1, -1, = 0
L PR = 0
-1, + l, + 1, = 0
I + 1, -1, = 0
-201, - 201, = -10
201, — 20I, = 0
201, - 201, = -10
1 0000 0 &
0100000
0010000
Its augmented matrix has the reduced row echelonform |0 0 0 1 0 0 %
000O0T1O0 5
000O0GO0CT1 3
10 000 00 O

The solutionis 1, =1, =1,=1,=05A, I, =1, =0A.
From Kirchhoff's current law at each node, we have I, — 1, — 1, =0. Kirchhoff's voltage law yields

Voltage Rises Voltage Drops
Top Inside Loop (clockwise) 3l +41, 5+4
Bottom Inside Loop (clockwise) 4+5l, 3+4l,

The corresponding linear system can be rewritten as

L, - 1, — 1, = 0
3, + 4l -
~ 4

1
47
48
47 | *
2
47

o = O
= O O

1
Its augmented matrix has the reduced row echelon form | 0
0

The solutionis I, =ZA, 1,=%A and |, =2A.

We are looking for positive integers x;,X,,X,, and X, such that

140
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¥ (C3Hg )+ %,(0,) = X, (CO, )+ x, (H,0)

The number of atoms of carbon, hydrogen, and oxygen on both sides must equal:

The linear system

has the augmented matrix whose reduced row echelon formis [0 1 0

Left Side
Carbon 3x,
Hydrogen 8x,
Oxygen 2X,
3X, - X
8x%,
2X, — 2%,

Right Side
X3
2X,
2%, + X,

10

0 0

0

1

|
Mlw Ko A=
o O o

The general solution is x, =+t, x, =2t, x, =2t, X, =t where t is arbitrary. The smallest positive integer values

for the unknowns occur when t =4, which yields the solution
X, =1, X,=5, x, =3, X, =4. The balanced equation is

C,H, +50, —>3CO0, +4H,0

We are looking for positive integers x,X,, and x, such that

X, (C6H1206 ) — X, (CO2 ) + X, (CZHSOH)

The number of atoms of carbon, hydrogen, and oxygen on both sides must equal:

The linear system

Left Side
Carbon 6x,
Hydrogen 12x,
Oxygen 6x,
6x, - X, -
12x, -
6x, — 2X, -

2X,
6X,

Right Side
X, +2X,
6x,
2X, + X,

10

has the augmented matrix whose reduced row echelon formis |0 1

0 0
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The general solution is x, =+t, X, =t, x, =t where t is arbitrary. The smallest positive integer values for the

unknowns occur when t =2, which yields the solution x, =1, X, =2, X, =2. The balanced equation is
C,H,,0, — 2CO, +2C,HOH
We are looking for positive integers x;,X,,X,, and X, such that
x, (CH,COF)+x, (H,0) — X, (CH,COOH) + x, (HF)

The number of atoms of carbon, hydrogen, oxygen, and fluorine on both sides must equal:

Left Side Right Side

Carbon 2X, = 2X,
Hydrogen 3x,+2x, = 4X,+X,
Oxygen X +X, = 2X,
Fluorine X, = X,
The linear system
2X, - 2X, =0
3% + 2%, — 4x;, - x, = 0
X, + X, = 2% =0
X, - X =0
100 -10
) .0 10 -1 0
has the augmented matrix whose reduced row echelon form is 00 1 1ol
000 00O

The general solution is x, =t, X, =t, x, =t, X, =t where t is arbitrary. The smallest positive integer values for the
unknowns occur when t =1, which yields the solution x, =1, X, =1 X, =1, X, =1. The balanced equation is

CH,COF +H,0 — CH,COOH + HF

We are looking for positive integers x;,X,,X;, and X, such that
% (CO,)+X,(H,0)— x;(C;H,0,) +x,(0,)

The number of atoms of carbon, hydrogen, and oxygen on both sides must equal:

Left Side Right Side
Carbon X, = 6X,
Hydrogen 2X, = 12x,
Oxygen 2%, + X, 6X, +2X,
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The linear system

X - 6X, =
2%, — 12x, = 0
2X, + X, - 6, - 2x, = 0
100 -1 0
has the augmented matrix whose reduced row echelon formis |0 1 0 -1 0.
001 -%+o0

6

The general solution is x, =t, X, =t, x; =¢t, X, =t where t is arbitrary. The smallest positive integer values for

the unknowns occur when t =6, which yields the solution x, =6, X, =6, x, =1, X, =6. The balanced equation is

6CO, +6H,0 — C,H,,0, +60,

We are looking for a polynomial of the form p(x)=a, +a,x+a,x* suchthat p(1)=1, p(2)=2,and p(3)=5.We

obtain a linear system

a, + a + a =1

a, + 28 + 4a, = 2

a + 33 + 93, = 5
100 2
Its augmented matrix has the reduced row echelonform |0 1 0 -2].
001 1

There is a unique solution a, =2, a, =-2, a, =1.

The quadratic polynomial is p(x)=2-2x+ X*.

We are looking for a polynomial of the form p(x)=a, +a,x+a,x* such that p(0)=0, p(-1)=1,and p(1)=1.

We obtain a linear system

0 =0
a, — a + a, =1
a, + a + a, =
1 000
Its augmented matrix has the reduced row echelonform |0 1 0 0
0 011

There is a unique solution a, =0, a, =0, a, =1. The quadratic polynomial is p(x)=x’.

We are looking for a polynomial of the form p(x)=a, +a,x+a,x* + a,x> such that p(-1)=-1, p(0)=1, p(1)=3
and p(4)=—1. We obtain a linear system
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a, — a + a, -— a, = -1
a, =
a, + a + a, + a = 3
a, + 4a + 16a, + 64a, = -1
1000 1
i 0100 &
Its augmented matrix has the reduced row echelon form .
0010 O
0 00 1 —%

1 1 1 — _ 13 — —__1
There is a unique solution a, =1, a, =%, a,=0, a, =—¢.
- - - 3
The cubic polynomial is p(x)=1+2x-1x°.

We are looking for a polynomial of the form p(x)=a, +a,x+a,x* +a,x> such that p(0)=0, p(2)=5, p(4)=8
and p(6)=3. We obtain a linear system

a, =0
a, + 2a + 4a, + 8a, = 5
a, + 4a + 16a, + 64a, = 8
a, + 6a + 36a, + 2l6a, = 3
1 000 O
. 0100 2
Its augmented matrix has the reduced row echelon form 00 10 .
2
000 1 -3

There is a unique solution a, =0, a, =2, a, =%, a, =—3.

The cubic polynomial is p(x)=2x+1x*—4x°.

(a)  We are looking for a polynomial of the form p(x)=a, +a,x+a,x* suchthat p(0)=1and p(1)=2.We
obtain a linear system

a0
a, + a + a, = 2

1001
Its augmented matrix has the reduced row echelon form {0 11 J.

The general solution of the linear system is a, =1, a, =1-t, a, =t where t is arbitrary.
Consequently, the family of all second-degree polynomials that pass through (0,1) and (1,2) can be

represented by p(x)=1+(1—t)x+tx* where t is an arbitrary real number.



1.10 Applications of Linear Systems 145
(b)
N
Y I ,7
AN
2+ e
e 1\ N
LU
1o X

True-False Exercises

(@)

(b)
(©)
(d)

(€)

False. In general, networks may or may not satisfy the property of flow conservation at each node (although the ones
discussed in this section do).

False. When a current passes through a resistor, there is a drop in the electrical potential in a circuit.
True.

False. A chemical equation is said to be balanced if for each type of atom in the reaction, the same number of atoms
appears on each side of the equation.

False. By Theorem 1.10.1, this is true if the points have distinct x -coordinates.

1.11 Leontief Input-Output Models

@ c- 050 0.25
1025 0.10

10 0.50 0.25 0.50
(b)  The Leontief matrixis | —C :{ }_[ } :{

-0.25|
0 1| |025 0.10]| |-0.25 ’

0.90

7,000
the outside demand vector is d { ' }

14,000

The Leontief equation (I —C)x =d leads to the linear system with the augmented matrix
0.50 re |1 0 25290.32
-0.25 '

1 9% 710 1 22,580.65
To meet the consumer demand, M must produce approximately $25,290.32 worth of mechanical work and B
must produce approximately $22,580.65 worth of body work.

@ c- 0.30 0.20
~10.10 0.60

. o 1 0| [0.30 0.20 0.70
(b)  The Leontief matrixis | -C = - =
0 1| |0.10 0.60 -0.10

-0.25 7,000

. Its reduced row echelon form is
0.90 14,000 0

-0.20
0.40
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130,000
the outside demand vector is d = ' )
130,000

The Leontief equation (I —C)x =d leads to the linear system with the augmented matrix

{0.70 —0.20 130,000 10 300,000}

. Its reduced row echelon form is
-0.10 0.40 130,000 1 400,000

To meet the consumer demand, the economy must produce $300,000 worth of food and $400,000 worth of
housing.

0.10 0.60 0.40
C=/0.30 0.20 0.30
0.40 0.10 0.20

1 00 0.10 0.60 0.40 0.90 -0.60 -0.40
The Leontief matrixis | -C=|{0 1 0|-|0.30 0.20 0.30|=|-0.30 0.80 -0.30 |;
0 01 0.40 0.10 0.20 -0.40 -0.10 0.80

1930
the outside demand vector is d =| 3860 |.
5790

The Leontief equation (I —C)x =d leads to the linear system with the augmented matrix
090 -0.60 -0.40 1930

-0.30 0.80 -0.30 3860 |.
-040 -0.10 0.80 5790

1 0 0 31,500
Its reduced row echelon formis [0 1 0 26,500 |.
0 0 1 26,300
$31,500
The production vector that will meet the given demand is x =| $26,500 |.
$26,300

0.40 0.20 0.45
C=/0.30 0.35 0.30
0.15 0.10 0.20

1 00 0.40 0.20 0.45 0.60 -0.20 -0.45
The Leontief matrixis | -C=|{0 1 0|-|0.30 0.35 0.30|=|-0.30 0.65 -0.30 |;
0 01 0.15 0.10 0.20 -0.15 -0.10 0.80

5400
the outside demand vector is d =| 2700 |.
900
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The Leontief equation (I —C)x =d leads to the linear system with the augmented matrix

0.60 -0.20 -0.45 5400
-0.30 0.65 -0.30 2700 .
-0.15 -0.10 0.80 900

1 0 0 =0 1 0 0 19578.29
Its reduced row echelon formis ([0 1 0 %% 1~/ 0 1 0 16346.56 |.
0 0 1 &) 10 0 1 683925
$19578.29
The production vector that will meet the given demand is x ~| $16346.56 |.
$6839.25
09 -03 - 06 03| |& L
I—C: 1 (I—C)J-:@ — 13 13
-05 06 39105 09] (¥ %

x=(I _C)-leE %Mso(z(ﬁ(z[u&oa(
% 1360 S 202.56

0.7 -01 ] 03 0.1
|-C-= : (|_c)1=@ _
03 03 18|03 0.7

x=(|—c)1d=(

(b)

cola oo
1

wlon wlo

©o|n

w

22] [4] [44.44
14| |2 |7 9111
0
ol

. . 2 . . .
The Leontief equation (I —C)x = [O} leads to the linear system with the augmented matrix {

wlo wl;
©

O N

The Leontief matrix is 1 —C :{

2
lts
0}

0
00
.11 0 4 . 4
reduced row echelon form is therefore a production vector can be found (namely, ) for an

arbitrary nonnegative t) to meet the demand.

. . 2 . . .
On the other hand, the Leontief equation (I —C)x = [1 leads to the linear system with the augmented matrix

L 0 2 .11 0 0 . . .
Lz) 0 (.Its reduced row echelon form is {0 0 J;the system is inconsistent, therefore a production

vector cannot be found to meet the demand.

. . 0 d . 1 d
Mathematically, the linear system represented by { 0({)(1( = {dl} can be rewritten as {Zgl( = {dl} .
2 2

O N

X

Clearly, if d, =0 the system has infinitely many solutions: x, =2d,; x, =t where t is an arbitrary

nonnegative number.
If d, #0 the system is inconsistent. (Note that the Leontief matrix is not invertible.)
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. . . . 0
An economic explanation of the result in part (a) is that c, = L} therefore the second sector consumes all of

its own output, making it impossible to meet any outside demand for its products.

(0e]
|
Il
|
N N N

EN - NI NI SN
|
(=) NI N N N

If the open sector demands k dollars worth from each product-producing sector, i.e. the outside demand vector is

k
d=| k |. The Leontief equation (I—C)x=d leads to the linear system with the augmented matrix
k
T -+ -+ k 1 0 0 18k
-+ & —-% k. Itsreduced row echelonformis |0 1 0 16k|.
- -+ Ik 0 0 1 16k

We conclude that the first sector must produce the greatest dollar value to meet the specified open sector demand.

9.  From the assumption c,cC,, <1-c,, it follows that the determinant of

l-c,

det (1 —C):detﬂ .

—C . . oL . .
2 D =1-c, —C,C,, is nonzero. Consequently, the Leontief matrix is invertible; its
21

. . 1 1 C . . . . .
Inverse IS (| —C) = 1%1%%[ 1 12 . Since the consumption matrix C has nonnegative entries and
Cx —Cy

1-c, >c,,c, =0, we conclude that all entries of (I —C)f1 are nonnegative as well. This economy is productive (see
the discussion above Theorem 1.10.1) - the equation x —Cx =d has a unique solution X =(I —C)fld for every
demand vector d.

True-False Exercises

(a) False. Sectors that do not produce outputs are called open sectors.

(b) True.

(c) False. The ith row vector of a consumption matrix contains the monetary values required of the i th sector by the
other sectors for each of them to produce one monetary unit of output.

(d)  True. This follows from Theorem 1.11.1.
(e) True.

Chapter 1 Supplementary Exercises

1. The corresponding system of linear equations is
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3Xl - X2 + 4X4 = 1

2%, + 3%, + 3, = -1
3 -10 4 1] N _
2 03 3 -1 <+—— The original augmented matrix.

<+— -1 times the second row was added to the first row.

<+—— -2 times the first row was added to the second row.

1
O
|
N =
|
© w
-
|
a N

<«——— The second row was multiplied by .

o
[EEN
Njo
N
|
|on

1
[EEN
|
[EEN
|
w
[EEN
i ]

X, = X = 3X + X, = 2
9 1 5
X2 + EXS + EXA' = —E

Solve the equations for the leading variables

X, =X, +3X; — X, +2

wo 9, 1. 3

227 27 2
then substitute the second equation into the first

o338 1

o2 2™ 2

wo 9, 1. 3

227 27 2

If we assign x, and X, the arbitrary values s and t, respectively, the general solution is given by the formulas

3 3 1 9 1 5
X1=_Es_5t_§! Xzz_ES_Et_E’ X3 =S5, X4=t

The corresponding system of linear equations is

X, + 4x, = -1
-2x, - 8x, = 2
3x, + 12x, = -3
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1 4 -1
-2 -8 2 o _

3 12 -3 <+——— The original augmented matrix.

0 0 0
1 4 -1]
0 0 O
00 0 <«— 2 times the first row was added to the second row and -3

times the first row was added to the third row.

00 O

This matrix is both in row echelon form and in reduced row echelon form. It corresponds to the system of equations

X + 4x, = -1
0 = 0
0 = 0
0 = 0

If we assign X, an arbitrary value t, the general solution is given by the formulas
X, =-1-4t, x,=t

3. The corresponding system of linear equations is

2Xx, — 4%, + X = 6
—4x, + 3%, = -1
X, — X = 3
2 -4 1 6]
-4 0 3 -1 <«——— The original augmented matrix.
| 0 -1 3]
1 -2 1 3]
-4 0 3 -1 <«——— The first row was multiplied by <.
0 -1 3]
1 -2 + 3
-8 5 11 <«——— 4 times the first row was added to the second row.
o 1 -1 3
1 -2 1 3
1 -1 3 <+— The second and third rows were interchanged.
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1 -2 1 3
1 -1 3 <+— 8 times the second row was added to the third row.
0 0 -3 35_
-2 1 3]
0o 1 -1 3 <«——— The third row was multiplied by —%.
0O 0 1 —%_

X, — 2%, + %xs = 3
X, — X3 = 3

35

X3 = —?

Solve the equations for the leading variables

X, =2X, —%xa +3

X, =X3+3
%, =2
3

then finish back-substituting to obtain the unique solution

The corresponding system of linear equations is

33X, + X, = 2
-9x, - 3, = 6
6x, + 2x, =
3 1 -2
9 -3 6 <«——— The original augmented matrix.
6 2 |
3 1 2]
00 O <«—— 3 times the first row was added to the second row and
00 65 —2 times the first row was added to the third row.

Although this matrix is not in row echelon form yet, clearly it corresponds to an inconsistent linear system



Supplementary Exercises 152
3, + X, = -2
0 = 0
0 = 5

since the third equation is contradictory. (We could have performed additional elementary row operations to obtain a

1
matrix in row echelon form | 0
0

inne v 3 4
The system has exactly one solution: x'=2x+2y

6.

1 -3 2X

0 3 —$x+Vy]

1 -3 2X
1 —$X+3y]

{1 0 3x+iy
0 1 —gx+iy)

Case I: cos@#0 and sin@ =0

|

1

|

E

__sing
cosé

10
01

cosd -singd x|
sing  cos@ |
1 %5 =7
sing cosé |
_sing x|

cosé cosé

1 __ysing
cos@ y Xcos&_

X
cosé

ycosé& —xsiné |

XC0s 6 + ysind |

ycoséd —xsiné |

O O w
O I w
N

The augmented matrix corresponding to the system.

The first row was multiplied by % .

7% times the first row was added to the second row.

The second row was multiplied by % .

% times the second row was added to the first row.

and y'=-4x+3y.

We break up the solution into three cases:

The augmented matrix corresponding to the system.

1
cosé *

The first row was multiplied by

—sin @ times the first row was added to the second

sin 6
cosé

cos’¢ _ 1
cosé cosd 7*

The second row was multiplied by cos@ .

E%Z times the second row was added to the first row

_ xcos’6 _

( _ xsin%4 X
coséd

cosé cosd

XC0s8).
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The system has exactly one solution: X' =xcos@+ysing and y'=-xsind+ycosé.

Case II: cos@ =0 which implies sin’ @=1. The original system becomes x =-y’sin@, y=x'sin@. Multiplying

both sides of the each equation by sin@ yields x'=ysing, y' =-xsiné.

Case I11: sin@=0, which implies cos® 8 =1. The original system becomes x =X'cosé@, y=Yy'cosd. Multiplying

both sides of each equation by cos@ yields x'=xcos@, y' =ycosé.

Notice that the solution found in case |

X'=xcos@+ysing and y' =-xsin@+ycoso.

actually applies to all three cases.

11 1 9]
L 5 10 44 <+——— The original augmented matrix.
111 9]
0 4 9 35 <«— -1 times the first row was added to the second row.
111 9]
01 & 3 <4——— The second row was multiplied by % )
4 4
L0 =5 g
0 1 9 35 <+—— -1 times the second row was added to the first row.
T 1

If we assign z an arbitrary value t, the general solution is given by the formulas

x=%+%t, yZI_Zt’ z=t
The positivity of the three variables requires that ++3t>0, £-2t>0, and t>0. The first inequality can be
rewritten as t > -+, while the second inequality is equivalent to t <2 . All three unknowns are positive whenever
0<t<%. There are three integer values of t =z inthisinterval: 1, 2, and 3. Of those, only z=t =3 yields integer

values for the remaining variables: x=4, y=2.

Let X, Y, and z denote the number of pennies, nickels, and dimes, respectively. Since there are 13 coins, we must

have

X+y+z=13.

On the other hand, the total value of the coins is 83 cents so that

X+5y+10z=83.
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1 13

. . |1
The resulting system of equations has the augmented matrix L 10 83

10 -5 -2
01 3 3

If we assign z an arbitrary value t, the general solution is given by the formulas

} whose reduced row echelon form is

9,5, ,_ 3.9

X=——t= —>t, z=t
2 a0 YT

However, all three unknowns must be nonnegative integers.

The nonnegativity of x requires the inequality —2+2t>0,i.e., t>%£.

Likewise for y, £ -2t >0 yields t<2.

When %s t <2 all three variables are nonnegative. Of the four integer t = z values inside this interval (4, 5, 6,
and 7), only t=z =6 yields integer values for x and Y.

We conclude that the box has to contain 3 pennies, 4 nickels, and 6 dimes.

0 b 2]
a a4 4 <«——— The augmented matrix for the system.
0 a 2 b
a b 2]
0 a 4-b 2 <+—— -1 times the first row was added to the second row.
0 a 2 ]
a 0 b 2
0 a 4-b 2 <+— -1 times the second row was added to the third row.
0 0 b-2 b- 2_

(a) the system has a unique solution if a=0 and b=2 (multiplying the rows by <, L, and %, respectively,

b2
10 & 2
yields a row echelon form of the augmented matrix |0 1 +& 21)
00 1 1

(b) the system has a one-parameter solution if a=0 and b=2 (multiplying the first two rows by i yields a

10 2 2
reduced row echelon form of the augmented matrix |0 1 2 21)
0000
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(c) the system has a two-parameter solution if a=0 and b=2

[0 0 1 1]
(the reduced row echelon form of the augmented matrixis [0 0 0 0 ).
00 0]
(d) the system has no solution if a=0 and b =2
[0 0 1 O]
(the reduced row echelon form of the augmented matrixis [0 0 0 1).
_0 0 -
11 1 4
10. 00 1 2 | <+—— The augmented matrix for the system.
0 0 a®°-4 a-2
111 4
001 2 <+—— —a’ +4 times the second row was added to the third.
0 0 0 2a°+a+6

From quadratic formula we have —2a” +a+6=-2(a+32)(a-2).

155

The system has no solutions when a =2 and a=—2 (since the third row of our last matrix would then correspond to

a contradictory equation).

The system has infinitely many solutions when a=2 or a=-%.

No values of a result in a system with exactly one solution.

11.  For the product AKB to be defined, K must be a 2x2 matrix. Letting K :{a
c

b .
d} we can write

L4l s 0 or [ 2 Yl g | 22%8  brdd -b-4d

ABC=|-—2 3|2 |2 3||*® ° P|.|_4a+6c —2b+3d 2b-3d|.
c d|f|0 1 1 2c d —d

1 -2 1 -2 2a—4c  b-2d —b+2d

The matrix equation AKB =C can be rewritten as a system of nine linear equations



12.

13.
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2a + 8¢ = 8
b + 4d =

- b - 4d = -6

—4a + 6cC = 6

- 2b + 3d = -1

2b - 3d = 1

2a - 4c = -4

- 2d = 0

- b + 2d = 0

which has a unique solution a=0, b=2, c=1, d=1. (An easy way to solve this system is to first split it into two

smaller systems. The system 2a+8c=8, -4a+6¢c=6, 2a—4c=-4 involves a and c only, whereas the

s . i 0 2
remaining six equations involve just b and d.) We conclude that K =L J.

Substituting the values x=1, y=-1, and z=2 into the original system yields a system of three equations in the

unknowns a,b, and c:

a - b - (32 = -3
(-2)(1) + b + 2 = -1
+ (3)(-1) - 2 = -3
that can be rewritten as
a - =
+ 2c =1
a - 2c =
100 2
The augmented matrix of this system has the reduced row echelon form |0 1 0 -1|.We conclude that for the
00 1 1

original system to have x=1, y=-1,and z=2 as its solution, we must let a=2, b=-1,and c=1.
(Note that it can also be shown that the system with a=2, b=-1,and c=1 has x=1, y=-1,and z=2 as its only

solution. One way to do that would be to verify that the reduced row echelon form of the coefficient matrix of the

original system with these specific values of a,b and ¢ is the identity matrix.)
. . a b c .
(@ X mustbea 2x3 matrix. Letting X = d ¢ we can write
e

-1

0 1 -1 0 1
a b c -a+b+3c b+c a-c
X1 1 0= 1 1 0f=
d e f -d+e+3f e+f d-f
-1 31 1
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therefore the given matrix equation can be rewritten as a system of linear equations:

-a + b + 3c = 1
b + ¢ = 2
a - C = 0
- d + e + 3f = -3
e + f = 1
d - f =5
(1 0 00 0 0 -1
0 1000O0O0 3
The augmented matrix of this system has the reduced row echelon form 001000
000100 6
000010 O
|10 0000 1 1]

so the system has a unique solution

a=-1,b=3,c=-1,d=6,e=0, f=1and X= -l -
6 0 1

(An alternative to dealing with this large system is to split it into two smaller systems instead: the first three
equations involve a, b, and ¢ only, whereas the remaining three equations involve just d, e ,and f .

Since the coefficient matrix for both systems is the same, we can follow the procedure of Example 2 in
Section 1.6; the

-1 1 3/1|-3 1 0 0|-1|6
reduced row echelon formof thematrix | 0 1 1|2| 1|is|0 1 0| 3|0 (.
0 -1{0| 5 0 0 1|-1|1

Yet another way of solving this problem would be to determine the inverse
1

-1 0 1| 1 -1 -1
1 1 0| ={-1 2 -1] usingthe method introduced in Section 1.5, then multiply both sides of the
31 -1 2 -1 1

given matrix equation on the right by this inverse to determine X :

1 -1 -1
120 -1 3 -1
X= -1 2 -1|=
-3 15 6 0 1
2 -1 1

(b) X mustbea 2x2 matrix. Letting X :{a
c

X1—12_ab 1—12_a+3b —-a 2a+b
3 0 1| |c d||3 0 1| |c+3d —-c 2c+d

therefore the given matrix equation can be rewritten as a system of linear equations:

b .
d} we can write
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a + 3b = -5
—-a = -1
2a + b = 0
c + 3d = 6
- C = -3
2c + d = 7

10 0 0 1]

0 100 -2

The augmented matrix of this system has the reduced row echelon form 8 8 ; i i so the system has
0000 O
0 0 0 0 O

. . 1 -2
a unique solution a=1, b=-2, ¢=3, d=1. We conclude that X:{3 J.

(An alternative to dealing with this large system is to split it into two smaller systems instead: the first three
equations involve a and b only, whereas the remaining three equations involve just ¢ and d. Since the
coefficient matrix for both systems is the same, we can follow the procedure of Example 2 in Section 1.6;

1 3/-5| 6 1 0/ 13
the reduced row echelon form of the matrix | -1 0| -1 |{-3|is| 0 1|-2|1].)
2 1, 0| 7 0 0] 0|0

() X mustbea 2x2 matrix. Letting X :[a
c

[ O S O R P

{3a+c 3b+d} {a+2b 4a}

b .
d} we can write

-a+2c -b+2d c+2d 4c

B 2a—-2b+c -4a+3b+d
“|-a+c-2d -b-4c+2d

therefore the given matrix equation can be rewritten as a system of linear equations:

2a — 2b + ¢ = 2
-4a + 3b + d = =2
-a + ¢ — 2d = 5

- b - 4c + 2d = 4
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15.

16.
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1000 -
. . 0100 -
The augmented matrix of this system has the reduced row echelon form so the
0010 -2
000 1 -%

d=—4.

system has a unique solution a=-%2, b=-12 c=-2 =

37 ! 37 ! 37

_20  _4
37 37

3 _160
We conclude that X ={ 3 3 } .

(@) By Theorem 1.4.1, the properties Al = 1A= A (Section 1.4) and the assumption A* =0, we have

I+ 1A+ 1A% + 1A% — Al — AA— AA? — AA®
I+ A+ A+ A —A—A? A _A*
I

(1-A)(1+A+ A+ A%)

This shows that (1 — A)_1 =1+ A+ A+ A%
(b) By Theorem 1.4.1, the properties Al = 1A= A (Section 1.4) and the assumption A" =0, we have
(1=A)(1+A+ A+ 4 AT A7)
=1+ 1A+ 1A+ + 1A A" — Al — AA— AAZ —.. — AA™! — AA"
=+ A+A o AT AT A A A A AT
=1
We are looking for a polynomial of the form

p(x)=ax’ +bx+c

such that p(1)=2, p(-1)=6,and p(2)=3. We obtain a linear system

a + b + c¢c =2
a — b + c¢c =6
4da + 2b + ¢ =
100 1
Its augmented matrix has the reduced row echelonform |0 1 0 -2].
001 3

There is a unique solution a=1, b=-2, c=3.

Since p(-1)=0 and p(2)=-9 we have the equations a—b+c=0 and 4a+2b+c=-9.

From calculus, the derivative of p(x)=ax*+bx+c is p’(x)=2ax+b.

For the tangent to be horizontal, the derivative p’(2) =4a+b must equal zero. This leads to the equation 4a+b=0.

We proceed to solve the resulting system of two equations:



a —

b + ¢

4da + 2b + ¢

4da +

b
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100 1

The reduced row echelon form of the augmented matrix of this systemis |0 1 0 -4 |. Therefore, the values

0 01 -5

a=1, b=-4,and c=-5 result in a polynomial that satisfies the conditions specified.

17.  When multiplying the matrix J, by itself, each entry in the product equals n. Therefore, J,J, =nJ,.

(1-3,)(1 -+

=17-1L)

n-1-n

43, -3, +J

1
n-1

__J)

n-1-n

-J.1+J

L3

nn-1-n

=+

nn-1-n

1

J, -J, +——=J3.J,
n-1

Theorem 1.4.1(f) and (g)

Property Al =1A= A in Section 1.4
Theorem 1.4.1(m)

3.3 =nd,

n-n

Theorem 1.4.1(j) and (k)
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