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1.1 Introduction to Systems of Linear Equations 

1. (a) This is a linear equation in 1x , 2x , and 3x . 

 (b) This is not a linear equation in 1x , 2x , and 3x  because of the term 1 3x x . 

 (c) We can rewrite this equation in the form   1 2 37 3 0x x x  therefore it is a linear equation in 1x , 2x , and 3x . 

 (d) This is not a linear equation in 1x , 2x , and 3x  because of the term 2
1x . 

 (e) This is not a linear equation in 1x , 2x , and 3x  because of the term 3/5
1x . 

 (f) This is a linear equation in 1x , 2x , and 3x . 

2. (a) This is a linear equation in x  and y . 

 (b) This is not a linear equation in x  and y  because of the terms 1/32x  and 3 y . 

 (c) This is a linear equation in x  and y . 

 (d) This is not a linear equation in x  and y  because of the term 
7 cos x . 

 (e) This is not a linear equation in x  and y  because of the term xy . 

 (f) We can rewrite this equation in the form    7x y  thus it is a linear equation in x  and y . 

3. (a)  
 

11 1 12 2 1

21 1 22 2 2

a x a x b

a x a x b

 

 (b)   
  
  

11 1 12 2 13 3 1

21 1 22 2 23 3 2

31 1 32 2 33 3 3

a x a x a x b

a x a x a x b

a x a x a x b

 

 (c)    
   

11 1 12 2 13 3 14 4 1

21 1 22 2 23 3 24 4 2

a x a x a x a x b

a x a x a x a x b

 

 

4. (a) 

 
 
 
 

11 12 1

21 22 2

a a b

a a b
 

 (b)          

 

 
 
 
  

11 12 13 1

21 22 23 2

31 32 33 3

a a a b

a a a b

a a a b

 

(c)            

 
 
 
 

11 12 13 14 1

21 22 23 24 2

a a a a b

a a a a b
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5.      (a) 

 


 



1

1 2

2

2   0

3 4 0

  1

x

x x

x

 

        (b)  

 

 
   
  

1 3

1 2 3

2 3

3   2 5

7 4 3

2 7

x x

x x x

x x

 

 

 

6.        (a) 

 
   

   
2 3 4

1 2 4

  3 1

5 2   3 6

x x x

x x x
 

        (b)  

 

  
    
    

  

1 3 4

1 3 4

1 2 4

4

3   4 3

4   4 3

3   2 9

    2

x x x

x x x

x x x

x

 

 

7.  (a) 

 

 
 
 
  

2 6

3 8

9 3

 

  (b)  

 
 

  

6 1 3 4

0 5 1 1
 

(c) 

 

 
    
   

0 2 0 3 1 0

3 1 1 0 0 1

6 2 1 2 3 6

 

 

8.     (a) 

 

  
 
 
  

3 2 1

4 5 3

7 3 2

 

      (b)  

 

 
  
  

2 0 2 1

3 1 4 7

6 1 1 0

 

   (c) 

 

 
 
 
  

1 0 0 1

0 1 0 2

0 0 1 3

 

 

9. The values in (a), (d), and (e) satisfy all three equations – these 3-tuples are solutions of the system. 
The 3-tuples in (b) and (c) are not solutions of the system. 

10. The values in (b), (d), and (e) satisfy all three equations – these 3-tuples are solutions of the system. 
The 3-tuples in (a) and (c) are not solutions of the system. 

11. (a) We can eliminate x  from the second equation by adding 2  times the first equation to the second. This yields 

the system 

 
 


3 2 4

 0 1

x y
 

  The second equation is contradictory, so the original system has no solutions. The lines represented by the 
equations in that system have no points of intersection (the lines are parallel and distinct). 

 (b) We can eliminate x  from the second equation by adding 2  times the first equation to the second. This yields 

the system 

 
 


2 4 1

 0 0

x y
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  The second equation does not impose any restriction on x  and y  therefore we can omit it. The lines 

represented by the original system have infinitely many points of intersection. Solving the first equation for x  

we obtain  1
2 2x y . This allows us to represent the solution using parametric equations 

   
1

2 ,        
2

x t y t  

  where the parameter t  is an arbitrary real number. 

 (c) We can eliminate x  from the second equation by adding 1 times the first equation to the second. This yields 

the system 

 
 
 

2 0

2 8

x y

y
 

  From the second equation we obtain  4y . Substituting 4 for y  into the first equation results in  8x . 

Therefore, the original system has the unique solution 

    8,      4x y  

  The represented by the equations in that system have one point of intersection:   8, 4 . 

12.  We can eliminate x  from the second equation by adding 2 times the first equation to the second. This yields 

the system 

 
 

 
2 3

  0 2

x y a

b a
 

  If  2 0b a  (i.e.,  2b a ) then the second equation imposes no restriction on x  and y ; consequently, the 

system has infinitely many solutions. 

   If  2 0b a  (i.e.,  2b a ) then the second equation becomes contradictory thus the system has no solutions. 

   There are no values of a  and b  for which the system has one solution. 

13. (a) Solving the equation for x  we obtain  3 5
7 7x y  therefore the solution set of the original equation can be 

described by the parametric equations 

   
3 5

,        
7 7

x t y t  

  where the parameter t  is an arbitrary real number. 

 (b) Solving the equation for 1x  we obtain   7 5 4
1 2 33 3 3x x x  therefore the solution set of the original equation can 

be described by the parametric equations 

     1 2 3

7 5 4
,        ,        

3 3 3
x r s x r x s  

  where the parameters r  and s  are arbitrary real numbers. 
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 (c) Solving the equation for 1x  we obtain     5 31 1
1 2 3 48 4 8 4x x x x  therefore the solution set of the original 

equation can be described by the parametric equations 

        1 2 3 4

1 1 5 3
,      ,      ,      

8 4 8 4
x r s t x r x s x t  

  where the parameters r , s , and t  are arbitrary real numbers. 

 (d) Solving the equation for v  we obtain    8 2 1 4
3 3 3 3v w x y z  therefore the solution set of the original equation 

can be described by the parametric equations 

        1 2 3 4 1 2 3 4

8 2 1 4
,      ,     ,      ,      

3 3 3 3
v t t t t w t x t y t z t  

  where the parameters 1t , 2t , 3t , and 4t  are arbitrary real numbers. 

14. (a) Solving the equation for x  we obtain  2 10x y  therefore the solution set of the original equation can be 

described by the parametric equations 

   2 10 ,      x t y t  

  where the parameter t  is an arbitrary real number. 

 (b) Solving the equation for 1x  we obtain   1 2 33 3 12x x x  therefore the solution set of the original equation can 

be described by the parametric equations 

     1 2 33 3 12 ,      ,      x r s x r x s  

  where the parameters r  and s  are arbitrary real numbers. 

 (c) Solving the equation for 1x  we obtain    31 1
1 2 3 42 4 45x x x x  therefore the solution set of the original 

equation can be described by the parametric equations 

       1 2

1 3 1
5 ,      ,      ,      

2 4 4
x r s t x r y s z t  

  where the parameters r , s , and t  are arbitrary real numbers. 

 (d) Solving the equation for v  we obtain     5 7v w x y z  therefore the solution set of the original equation 

can be described by the parametric equations 

         1 2 3 4 1 2 3 45 7 ,      ,      ,      ,      v t t t t w t x t y t z t  

  where the parameters 1t , 2t , 3t , and 4t  are arbitrary real numbers. 

15. (a) We can eliminate x  from the second equation by adding 3  times the first equation to the second. This yields 

the system 

 
 


2 3 1

 0 0

x y
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  The second equation does not impose any restriction on x  and y  therefore we can omit it. Solving the first 

equation for x  we obtain   31
2 2x y . This allows us to represent the solution using parametric equations 

   
1 3

,        
2 2

x t y t  

  where the parameter t  is an arbitrary real number. 

 (b) We can see that the second and the third equation are multiples of the first: adding 3  times the first equation 

to the second, then adding the first equation to the third yields the system 

   




1 2 33 4

0 0

0 0

x x x

 

  The last two equations do not impose any restriction on the unknowns therefore we can omit them. Solving the 

first equation for 1x  we obtain    1 2 34 3x x x . This allows us to represent the solution using parametric 

equations 

      1 2 34 3 ,     ,     x r s x r x s  

  where the parameters r  and s  are arbitrary real numbers. 

16. (a) We can eliminate 1x  from the first equation by adding 2 times the second equation to the first. This yields 

the system 

 0 0   

   1 23 4x x  

  The first equation does not impose any restriction on 1x  and 2x  therefore we can omit it. Solving the second 

equation for 1x  we obtain   4 1
1 23 3x x . This allows us to represent the solution using parametric equations 

    1 2

4 1
,      

3 3
x t x t  

  where the parameter t  is an arbitrary real number. 

 (b) We can see that the second and the third equation are multiples of the first: adding 3  times the first equation 

to the second, then adding 2  times the first equation to the third yields the system 

   2 2 4x y z  

    0 0  

    0 0  

  The last two equations do not impose any restriction on the unknowns therefore we can omit them. Solving the 

first equation for x  we obtain    1
22x y z . This allows us to represent the solution using parametric 

equations 
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1

2 ,      ,      
2

x r s y r z s  

  where the parameters r  and s  are arbitrary real numbers. 

17. (a) Add 2  times the second row to the first to obtain 

 
  
  

1 7 8 8

2 3 3 2

0 2 3 1

. 

 (b) Add the third row to the first to obtain 

 
  
  

1 3 8 3

2 9 3 2

1 4 3 3

 

  (another solution: interchange the first row and the third row to obtain 

 
  
   

1 4 3 3

2 9 3 2

0 1 5 0

). 

18. (a) Multiply the first row by 1
2  to obtain 

 
 
 
  

1 2 3 4

7 1 4 3

5 4 2 7

. 

 (b) Add the third row to the first to obtain 

  
  
   

1 1 3 6

3 1 8 1

6 3 1 4

 

  (another solution: add 2 times the second row to the first to obtain 

  
  
   

1 2 18 0

3 1 8 1

6 3 1 4

). 

19. (a) Add 4 times the first row to the second to obtain 
 

  

1 4

0 8 4 18

k

k
 which corresponds to the system 

              4x ky   

   8 4 18k y     

  If  2k  then the second equation becomes 0 18 , which is contradictory thus the system becomes 

inconsistent. 

  If  2k  then we can solve the second equation for y  and proceed to substitute this value into the first equation 

and solve for x .  

  Consequently, for all values of  2k  the given augmented matrix corresponds to a consistent linear system. 

 (b) Add 4 times the first row to the second to obtain 
 

  

1 1

0 8 4 0

k

k
 which corresponds to the system 
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                1x ky   

   8 4 0k y    

  If  2k  then the second equation becomes 0 0 , which does not impose any restriction on x  and y  therefore 

we can omit it and proceed to determine the solution set using the first equation. There are infinitely many 
solutions in this set. 

  If  2k  then the second equation yields  0y  and the first equation becomes  1x . 

  Consequently, for all values of k  the given augmented matrix corresponds to a consistent linear system. 

20. (a) Add 2  times the first row to the second to obtain 
 

  

3 4

0 0 2 5

k

k
 which corresponds to the system 

 3 4x y k  

   0 2 5k   

  If   5
2k  then the second equation becomes 0 0 , which does not impose any restriction on x  and y  

therefore we can omit it and proceed to determine the solution set using the first equation. There are infinitely 
many solutions in this set. 

  If   5
2k  then the second equation is contradictory thus the system becomes inconsistent. 

  Consequently, the given augmented matrix corresponds to a consistent linear system only when   5
2k . 

 (b) Add the first row to the second to obtain 
 

  

1 2

4 0 0

k

k
 which corresponds to the system 

  
  

 
2

4   0

kx y

k x
 

  If  4k  then the second equation becomes 0 0 , which does not impose any restriction on x  and y  

therefore we can omit it and proceed to determine the solution set using the first equation. There are infinitely 
many solutions in this set. 

  If  4k  then the second equation yields  0x  and the first equation becomes  2y . 

  Consequently, for all values of k  the given augmented matrix corresponds to a consistent linear system. 

21. Substituting the coordinates of the first point into the equation of the curve we obtain 

   2
1 1 1y ax bx c  

 Repeating this for the other two points and rearranging the three equations yields 

  2
1 1 1x a x b c y  

  2
2 2 2x a x b c y  

  2
3 3 3x a x b c y  
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 This is a linear system in the unknowns a , b , and c . Its augmented matrix is 

 
 
 
  

2
1 1 1
2
2 2 2
2
3 3 3

1

1

1

x x y

x x y

x x y

. 

23. Solving the first equation for 1x  we obtain  1 2x c kx  therefore the solution set of the original equation can be 

described by the parametric equations 

   1 2,        x c kt x t  

 where the parameter t  is an arbitrary real number. 

 Substituting these into the second equation yields 

   c kt lt d  

 which can be rewritten as 

   c kt d lt  

 This equation must hold true for all real values t , which requires that the coefficients associated with the same power 

of t  on both sides must be equal. Consequently, c d  and k l . 

24. (a) The system has no solutions if either 

 at least two of the three lines are parallel and distinct or 

 each pair of lines intersects at a different point (without any lines being parallel) 

 (b) The system has exactly one solution if either 

 two lines coincide and the third one intersects them or 

 all three lines intersect at a single point (without any lines being parallel) 

 (c) The system has infinitely many solutions if all three lines coincide. 

25.   
  
  

2 3 7

2 3 9

4 2 5 16

x y z

x y z

x y z

 

26. We set up the linear system as discussed in Exercise 21: 

 

 

  
  

   

2

2

2

1 1 1

2 2 4

1 1 1

a b c

a b c

a b c

  i.e.  
  
  
  

1

4 2 4

1

a b c

a b c

a b c

 

 One solution is expected, since exactly one parabola passes through any three given points  1 1,x y ,  2 2,x y ,  3 3,x y  

if 1x , 2x , and 3x  are distinct. 

27.    
  

  

12

2 2 5

  1

x y z

x y z

x z  
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True-False Exercises 

(a) True.  0,0, ,0  is a solution. 

(b) False. Only multiplication by a nonzero constant is a valid elementary row operation. 

(c) True. If  6k  then the system has infinitely many solutions; otherwise the system is inconsistent. 

(d) True. According to the definition,    1 1 2 2 n na x a x a x b  is a linear equation if the a's are not all zero. Let us 

assume  0ja . The values of all x's except for jx  can be set to be arbitrary parameters, and the equation can be used 

to express jx  in terms of those parameters. 

(e) False. E.g. if the equations are all homogeneous then the system must be consistent. (See True-False Exercise (a) 
above.) 

(f) False. If  0c  then the new system has the same solution set as the original one. 

(g) True. Adding 1 times one row to another amounts to the same thing as subtracting one row from another. 

(h) False. The second row corresponds to the equation  0 1 , which is contradictory. 

 

1.2 Gaussian Elimination 

1. (a) This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form. 

 (b) This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form. 

 (c) This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form. 

 (d) This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form. 

 (e) This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form. 

 (f) This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form. 

 (g) This matrix has properties 1-3 but does not have property 4: the second column contains a leading 1 and a 

nonzero number ( 7 ) above it. The matrix is in row echelon form but not reduced row echelon form. 

2. (a) This matrix has properties 1-3 but does not have property 4: the second column contains a leading 1 and a 
nonzero number (2) above it. The matrix is in row echelon form but not reduced row echelon form. 

 (b) This matrix does not have property 1 since its first nonzero number in the third row (2) is not a 1. The matrix is 
not in row echelon form, therefore it is not in reduced row echelon form either. 

 (c) This matrix has properties 1-3 but does not have property 4: the third column contains a leading 1 and a 
nonzero number (4) above it. The matrix is in row echelon form but not reduced row echelon form. 

 (d) This matrix has properties 1-3 but does not have property 4: the second column contains a leading 1 and a 
nonzero number (5) above it. The matrix is in row echelon form but not reduced row echelon form. 
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 (e) This matrix does not have property 2 since the row that consists entirely of zeros is not at the bottom of the 
matrix. The matrix is not in row echelon form, therefore it is not in reduced row echelon form either. 

 (f) This matrix does not have property 3 since the leading 1 in the second row is directly below the leading 1 in 
the first (instead of being farther to the right). The matrix is not in row echelon form, therefore it is not in 
reduced row echelon form either. 

 (g) This matrix has properties 1-4. It is in reduced row echelon form, therefore it is also in row echelon form. 

3. (a) The first three columns are pivot columns and all three rows are pivot rows. The linear system 

  
 



3 4 7

  2 2

    5

x y z

y z

z

  can be rewritten as  
  
 


7 3 4

2 2

5

x y z

y z

z

 

  and solved by back-substitution: 

 
   


   
     

5

2 2 5 8

7 3 8 4 5 37

z

y

x
 

  therefore the original linear system has a unique solution:  37x ,  8y ,  5z . 

 (b) The first three columns are pivot columns and all three rows are pivot rows. The linear system 

  
  

 

  8 5 6

  4 9 3

    2

w y z

x y z

y z

 can be rewritten as 
  
  
 

6 8 5

3 4 9

2

w y z

x y z

y z   

  

Let z t . Then 

 
 

 
      
      

2

3 4 2 9 5 13

6 8 2 5 10 13

y t

x t t t

w t t t
 

  therefore the original linear system has infinitely many solutions:  

   10 13w t ,   5 13x t ,  2y t , z t  

  where t  is an arbitrary value. 

 (c) Columns 1, 3, and 4 are pivot columns. The first three rows are pivot rows. The linear system 

    
  

 


1 2 3 5

3 4 5

4 5

7 2   8 3

    6 5

      3 9

        0 0

x x x x

x x x

x x
 

  can be rewritten:     1 2 3 53 7 2 8x x x x ,   3 4 55 6x x x ,  4 59 3x x .  

  Let 2x s  and 5x t . Then 



1.2 Gaussian Elimination          11 
 

 
 

 
      
          

4

3

1

9 3

5 9 3 6 4 3

3 7 2 4 3 8 11 7 2

x t

x t t t

x s t t s t
 

  therefore the original linear system has infinitely many solutions:  

           1 2 3 4 511 7 2 ,    ,    4 3 ,    9 3 ,    x s t x s x t x t x t  

  where s  and t  are arbitrary values. 

 (d) The first two columns are pivot columns and the first two rows are pivot rows. The system is inconsistent since 
the third row of the augmented matrix corresponds to the equation 

  0 0 0 1.x y z  

4. (a) The first three columns are pivot columns and all three rows are pivot rows. A unique solution:  3x ,  0y , 

 7z . 

 (b) The first three columns are pivot columns and all three rows are pivot rows. Infinitely many solutions: 

 8 7w t ,  2 3x t ,   5y t , z t  where t  is an arbitrary value.  

 (c) Columns 1, 3, and 4 are pivot columns. The first three rows are pivot rows. Infinitely many solutions: 

   2 6 3v s t , w s ,  7 4x t ,  8 5y t , z t  where s  and t  are arbitrary values. 

 (d) Columns 1 and 3 are pivot columns. The first two rows are pivot rows. The system is inconsistent since the 
third row of the augmented matrix corresponds to the equation 

  0 0 0 1.x y z  

5. 
 
   
  

1 1 2 8

1 2 3 1

3 7 4 10

   
 

 

  
The augmented matrix for the system. 
 

 
 
  
  

1 1 2 8

0 1 5 9

3 7 4 10

   
 

 
The first row was added to the second row. 

 
 
  
    

1 1 2 8

0 1 5 9

0 10 2 14

   
 

 
3  times the first row was added to the third row. 

 
 
   
    

1 1 2 8

0 1 5 9

0 10 2 14

   
 

 
The second row was multiplied by 1 . 

 
 
   
   

1 1 2 8

0 1 5 9

0 0 52 104

   
 

 
10 times the second row was added to the third row. 
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1 1 2 8

0 1 5 9

0 0 1 2

   
 

 

The third row was multiplied by  1
52

. 

  
 The system of equations corresponding to this augmented matrix in row echelon form is 

   

  
  



1 2 3

2 3

3

2 8

  5 9

    2

x x x

x x

x

  and can be rewritten as  
  
  


1 2 3

2 3

3

8 2

9 5

2

x x x

x x

x

 

 Back-substitution yields 

 
 


   
   

3

2

1

2

9 5 2 1

8 1 2 2 3

x

x

x
 

 The linear system has a unique solution: 1 3x , 2 1x , 3 2x . 

 

6. 
 
  
  

2 2 2 0

2 5 2 1

8 1 4 1

   
 

 

  
The augmented matrix for the system. 
 

 
 
  
  

1 1 1 0

2 5 2 1

8 1 4 1

   
 

 

The first row was multiplied by 1
2

. 

 
 
 
 
  

1 1 1 0

0 7 4 1

8 1 4 1

   
 

 
2  times the first row was added to the second row. 

 
 
 
 
    

1 1 1 0

0 7 4 1

0 7 4 1

   
 

 
8  times the first row was added to the third row. 

 
 
 
 
    

4 1
7 7

1 1 1 0

0 1

0 7 4 1

   
 

 

The second row was multiplied by 1
7

. 

 
 
 
 
  

4 1
7 7

1 1 1 0

0 1

0 0 0 0

   
 

 
7 times the second row was added to the third row. 

  
 The system of equations corresponding to this augmented matrix in row echelon form is 
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1 2 3

2 3

0

4 1
  

7 7
    0 0

x x x

x x  

 Solve the equations for the leading variables 

  1 2 3x x x  

 2 3

1 4

7 7
x x  

 then substitute the second equation into the first 

  

 

1 3

2 3

1 3

7 7
1 4

7 7

x x

x x  

 If we assign 3x  an arbitrary value t , the general solution is given by the formulas 

     1 2 3

1 3 1 4
,   ,        

7 7 7 7
x t x t x t  

7. 

   
    
  
 

  

1 1 2 1 1

2 1 2 2 2

1 2 4 1 1

3 0 0 3 3

   
 

 

  
The augmented matrix for the system. 
 

 

   
  
  
 

  

1 1 2 1 1

0 3 6 0 0

1 2 4 1 1

3 0 0 3 3

   
 

 
2  times the first row was added to the second row. 

 

   
  
 
 

  

1 1 2 1 1

0 3 6 0 0

0 1 2 0 0

3 0 0 3 3

   
 

 
The first row was added to the third row. 

 

   
  
 
 

 

1 1 2 1 1

0 3 6 0 0

0 1 2 0 0

0 3 6 0 0

   
 

 
3  times the first row was added to the fourth row. 
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1 1 2 1 1

0 1 2 0 0

0 1 2 0 0

0 3 6 0 0

   
 

 

The second row was multiplied by 1
3

. 

 

   
  
 
 

 

1 1 2 1 1

0 1 2 0 0

0 0 0 0 0

0 3 6 0 0

   
 

 
1  times the second row was added to the third row. 

  

   
  
 
 
 

1 1 2 1 1

0 1 2 0 0

0 0 0 0 0

0 0 0 0 0

   
 

 
3  times the second row was added to the fourth row. 

  
 The system of equations corresponding to this augmented matrix in row echelon form is 

 

    
 




2 1

  2   0

      0 0

      0 0

x y z w

y z
 

 Solve the equations for the leading variables 

    


1 2

2

x y z w

y z  

 then substitute the second equation into the first 

       


1 2 2 1

2

x z z w w

y z  

 If we assign z  and w  the arbitrary values s  and t , respectively, the general solution is given by the formulas 

     1 ,   2 ,        ,        x t y s z s w t  

8. 
 

   
  

0 2 3 1

3 6 3 2

6 6 3 5

   
 

 

  
The augmented matrix for the system. 
 

 
  

  
  

3 6 3 2

0 2 3 1

6 6 3 5

   
 

 
The first and second rows were interchanged. 
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2
31 2 1

0 2 3 1

6 6 3 5

   
 

 

The first row was multiplied by 1
3

. 

 
  

  
  

2
31 2 1

0 2 3 1

0 6 9 9

   
 

 
6  times the first row was added to the third row. 

 
  

   
  

2
3

3 1
2 2

1 2 1

0 1

0 6 9 9

   
 

 

The second row was multiplied by  1
2 . 

 
  

   
  

2
3

3 1
2 2

1 2 1

0 1

0 0 0 6

   
 

 
6  times the second row was added to the third row. 

 
  

   
  

2
3

3 1
2 2

1 2 1

0 1

0 0 0 1

   
 

 

The third row was multiplied by 1
6 . 

  
 The system of equations corresponding to this augmented matrix in row echelon form 

 

   

  



2
2

3
3 1

  
2 2

    0 1

a b c

b c  

 is clearly inconsistent. 

9. 
 
   
  

1 1 2 8

1 2 3 1

3 7 4 10

   
 

 

  
The augmented matrix for the system. 
 

 
 
  
  

1 1 2 8

0 1 5 9

3 7 4 10

   
 

 
The first row was added to the second row. 

 
 
  
    

1 1 2 8

0 1 5 9

0 10 2 14

   
 

 
3  times the first row was added to the third row. 

 
 
   
    

1 1 2 8

0 1 5 9

0 10 2 14

   
 

 
The second row was multiplied by 1 . 
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1 1 2 8

0 1 5 9

0 0 52 104

   
 

 
10 times the second row was added to the third row. 

 
 
   
  

1 1 2 8

0 1 5 9

0 0 1 2

   
 

 

The third row was multiplied by  1
52 . 

 
 
 
 
  

1 1 2 8

0 1 0 1

0 0 1 2

   
 

 
5 times the third row was added to the second row. 

 
 
 
 
  

1 1 0 4

0 1 0 1

0 0 1 2

   
 

 
2  times the third row was added to the first row. 

 
 
 
 
  

1 0 0 3

0 1 0 1

0 0 1 2

   
 

 
1  times the second row was added to the first row. 

  

 The linear system has a unique solution: 1 3x , 2 1x , 3 2x . 

 

10. 
 
  
  

2 2 2 0

2 5 2 1

8 1 4 1

   
 

 

  
The augmented matrix for the system. 
 

 
 
  
  

1 1 1 0

2 5 2 1

8 1 4 1

   
 

 

The first row was multiplied by 1
2 . 

 
 
 
 
  

1 1 1 0

0 7 4 1

8 1 4 1

   
 

 
2  times the first row was added to the second row. 

 
 
 
 
    

1 1 1 0

0 7 4 1

0 7 4 1

   
 

 
8  times the first row was added to the third row. 

 
 
 
 
    

4 1
7 7

1 1 1 0

0 1

0 7 4 1

   
 

 

The second row was multiplied by 1
7 . 
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4 1
7 7

1 1 1 0

0 1

0 0 0 0

   
 

 
7 times the second row was added to the third row. 

 
 

 
 
  

3 1
7 7

4 1
7 7

1 0

0 1

0 0 0 0

   
 

 
1  times the second row was added to the first row. 

  

 Infinitely many solutions:    31
1 7 7x t ,  1 4

2 7 7x t , 3x t  where t  is an arbitrary value. 

11. 

   
    
  
 

  

1 1 2 1 1

2 1 2 2 2

1 2 4 1 1

3 0 0 3 3

   
 

 

  
The augmented matrix for the system. 
 

 

   
  
  
 

  

1 1 2 1 1

0 3 6 0 0

1 2 4 1 1

3 0 0 3 3

   
 

 
2  times the first row was added to the second row. 

 

   
  
 
 

  

1 1 2 1 1

0 3 6 0 0

0 1 2 0 0

3 0 0 3 3

   
 

 
the first row was added to the third row. 

 

   
  
 
 

 

1 1 2 1 1

0 3 6 0 0

0 1 2 0 0

0 3 6 0 0

   
 

 
3  times the first row was added to the fourth row. 

 

   
  
 
 

 

1 1 2 1 1

0 1 2 0 0

0 1 2 0 0

0 3 6 0 0

   
 

 

The second row was multiplied by 1
3 . 

 

   
  
 
 

 

1 1 2 1 1

0 1 2 0 0

0 0 0 0 0

0 3 6 0 0

   
 

 
1  times the second row was added to the third row. 

  

   
  
 
 
 

1 1 2 1 1

0 1 2 0 0

0 0 0 0 0

0 0 0 0 0

   
 

 
3  times the second row was added to the fourth row. 
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1 0 0 1 1

0 1 2 0 0

0 0 0 0 0

0 0 0 0 0

   
 

 
the second row was added to the first row. 

  
 The system of equations corresponding to this augmented matrix in row echelon form is 

 

  
 




    1

  2   0

      0 0

      0 0

x w

y z
 

 Solve the equations for the leading variables 

  1x w   

 2y z    

 If we assign z  and w  the arbitrary values s  and t , respectively, the general solution is given by the formulas 

     1 ,        2 ,        ,        x t y s z s w t  

12. 
 

   
  

0 2 3 1

3 6 3 2

6 6 3 5

   
 

 

  
The augmented matrix for the system. 
 

 
  

  
  

3 6 3 2

0 2 3 1

6 6 3 5

   
 

 
The first and second rows were interchanged. 

 
  

  
  

2
31 2 1

0 2 3 1

6 6 3 5

   
 

 

The first row was multiplied by 1
3 . 

 
  

  
  

2
31 2 1

0 2 3 1

0 6 9 9

   
 

 
6  times the first row was added to the third row. 

 
  

   
  

2
3

3 1
2 2

1 2 1

0 1

0 6 9 9

   
 

 

The second row was multiplied by  1
2 . 

 
  

   
  

2
3

3 1
2 2

1 2 1

0 1

0 0 0 6

   
 

 
6  times the second row was added to the third row. 
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2
3

3 1
2 2

1 2 1

0 1

0 0 0 1

   
 

 

The third row was multiplied by 1
6 . 

 
  

  
  

2
3

3
2

1 2 1

0 1 0

0 0 0 1

   
 

 

1
2  times the third row was added to the second row. 

 
 

  
  

3
2

1 2 1 0

0 1 0

0 0 0 1

   
 

 

2
3  times the third row was added to the first row. 

 
 
  
  

3
2

1 0 2 0

0 1 0

0 0 0 1

   
 

 
2  times the second row was added to the first row. 

  
 The last row corresponds to the equation 

  0 0 0 1a b c  

 therefore the system is inconsistent. 

 (Note: this was already evident after the fifth elementary row operation.) 

13. Since the number of unknowns (4) exceeds the number of equations (3), it follows from Theorem 1.2.2 that this 
system has infinitely many solutions. Those include the trivial solution and infinitely many nontrivial solutions. 

14. The system does not have nontrivial solutions. 

(The third equation requires 3 0x , which substituted into the second equation yields 2 0.x  Both of these 

substituted into the first equation result in 1 0x .) 

15. We present two different solutions. 

 Solution I uses Gauss-Jordan elimination 

 
 
 
 
  

2 1 3 0

1 2 0 0

0 1 1 0

   
 

 

  
The augmented matrix for the system. 
 

 
 
 
 
  

31
2 21 0

1 2 0 0

0 1 1 0

   
 

 
The first row was multiplied by 1

2 . 

 
 
  
  

31
2 2

3 3
2 2

1 0

0 0

0 1 1 0

   
 

 
1  times the first row was added to the second row. 
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31
2 21 0

0 1 1 0

0 1 1 0

   
 

 
The second row was multiplied by 2

3 . 

 
 
  
  

31
2 21 0

0 1 1 0

0 0 2 0

   
 

 
1  times the second row was added to the third row. 

 
 
  
  

31
2 21 0

0 1 1 0

0 0 1 0

   
 

 
The third row was multiplied by 1

2 . 

 
 
 
 
  

1
21 0 0

0 1 0 0

0 0 1 0

   
 

 

 
 
The third row was added to the second row 
and  3

2  times the third row was added to the first row 

 
 
 
 
  

1 0 0 0

0 1 0 0

0 0 1 0

   
 

 
 1

2  times the second row was added to the first row. 

 

 Unique solution: 1 0x , 2 0x , 3 0x . 

 Solution II. This time, we shall choose the order of the elementary row operations differently in order to avoid 
introducing fractions into the computation. (Since every matrix has a unique reduced row echelon form, the exact 
sequence of elementary row operations being used does not matter – see part 1 of the discussion “Some Facts About 
Echelon Forms” in Section 1.2) 

 
 
 
 
  

2 1 3 0

1 2 0 0

0 1 1 0

   
 

 

  
The augmented matrix for the system. 
 

 
 
 
 
  

1 2 0 0

2 1 3 0

0 1 1 0

   
 

 

 
The first and second rows were interchanged 
(to avoid introducing fractions into the first row). 

 
 
  
  

1 2 0 0

0 3 3 0

0 1 1 0

   
 

 
2  times the first row was added to the second row. 

 
 
  
  

1 2 0 0

0 1 1 0

0 1 1 0

   
 

 
The second row was multiplied by  1

3 . 
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1 2 0 0

0 1 1 0

0 0 2 0

   
 

 
1  times the second row was added to the third row. 

 
 
  
  

1 2 0 0

0 1 1 0

0 0 1 0

   
 

 
The third row was multiplied by 1

2 . 

 
 
 
 
  

1 2 0 0

0 1 0 0

0 0 1 0

   
 

 
The third row was added to the second row. 

 
 
 
 
  

1 0 0 0

0 1 0 0

0 0 1 0

   
 

 
2  times the second row was added to the first row. 

 

 Unique solution: 1 0x , 2 0x , 3 0x . 

16. We present two different solutions. 
Solution I uses Gauss-Jordan elimination 

 
  

   
  

2 1 3 0

1 2 3 0

1 1 4 0

   
 

 

  
The augmented matrix for the system. 
 

 
  

   
  

31
2 21 0

1 2 3 0

1 1 4 0

   
 

 
The first row was multiplied by 1

2 . 

 
  

  
  

31
2 2

3 9
2 2

1 0

0 0

1 1 4 0

   
 

 
The first row was added to the second row. 

 
  

  
  

31
2 2

3 9
2 2

3 11
2 2

1 0

0 0

0 0

   
 

 
1  times the first row was added to the third row. 

 
  

  
  

31
2 2

3 11
2 2

1 0

0 1 3 0

0 0

   
 

 
The second row was multiplied by 2

3 . 

 
  

  
  

31
2 21 0

0 1 3 0

0 0 10 0

   
 

 
 3

2  times the second row was added to the third row. 
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31
2 21 0

0 1 3 0

0 0 1 0

   
 

 
The third row was multiplied by 1

10 . 

 
 

 
 
  

1
21 0 0

0 1 0 0

0 0 1 0

   
 

 

 
3  times the third row was added to the second row 

and 3
2  times the third row was added to the first row 

 
 
 
 
  

1 0 0 0

0 1 0 0

0 0 1 0

   
 

 

1
2  times the second row was added to the first row. 

 

     Unique solution:  0x ,  0y ,  0z . 

  Solution II. This time, we shall choose the order of the elementary row operations differently in order to avoid 
introducing fractions into the computation. (Since every matrix has a unique reduced row echelon form, the exact 
sequence of elementary row operations being used does not matter – see part 1 of the discussion “Some Facts 
About Echelon Forms” in Section 1.2) 

 
  

   
  

2 1 3 0

1 2 3 0

1 1 4 0

   
 

 

  
The augmented matrix for the system. 
 

 
 
   
   

1 1 4 0

1 2 3 0

2 1 3 0

   
 

 

 
The first and third rows were interchanged 
(to avoid introducing fractions into the first row). 

 
 
 
 
   

1 1 4 0

0 3 1 0

2 1 3 0

   
 

 
The first row was added to the second row. 

 
 
 
 
   

1 1 4 0

0 3 1 0

0 3 11 0

   
 

 
2  times the first row was added to the third row. 

 
 
 
 
  

1 1 4 0

0 3 1 0

0 0 10 0

   
 

 
The second row was added to the third row. 

 
 
 
 
  

1 1 4 0

0 3 1 0

0 0 1 0

   
 

 
The third row was multiplied by  1

10 . 
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1 1 4 0

0 3 0 0

0 0 1 0

   
 

 
1  times the third row was added to the second row. 

 
 
 
 
  

1 1 0 0

0 3 0 0

0 0 1 0

   
 

 
4  times the third row was added to the first row. 

 
 
 
 
  

1 1 0 0

0 1 0 0

0 0 1 0

   
 

 
The second row was multiplied by 1

3 . 

 
 
 
 
  

1 0 0 0

0 1 0 0

0 0 1 0

   
 

 
1  times the second row was added to the first row. 

 

 Unique solution:  0x ,  0y ,  0z . 

17.  
   

3 1 1 1 0

5 1 1 1 0
   

 

 

  
The augmented matrix for the system. 
 

  
   

1 1 1
3 3 31 0

5 1 1 1 0
   

 

 
The first row was multiplied by 1

3 . 

  
    

1 1 1
3 3 3

8 82
3 3 3

1 0

0 0
   

 

 
5  times the first row was added to the second row. 

 
 
 
 

1 1 1
3 3 3

1
4

1 0

0 1 1 0
   

 

 
The second row was multiplied by  3

8
. 

 
 
 
 

1
4

1
4

1 0 0 0

0 1 1 0
   

 

 
 1

3  times the second row was added to the first row. 

 

 If we assign 3x  and 4x  the arbitrary values s  and t , respectively, the general solution is given by the formulas 

      1 2 3 4

1 1
,     ,     ,     

4 4
x s x s t x s x t . 

 (Note that fractions in the solution could be avoided if we assigned 3 4x s  instead, which along with 4x t  would 

yield  1x s ,   2x s t , 3 4x s , 4x t .) 
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18. 

 
  
 
 
   

0 1 3 2 0

2 1 4 3 0

2 3 2 1 0

4 3 5 4 0

   
 

 

  
The augmented matrix for the system. 
 

 

 
  
 
 
   

2 1 4 3 0

0 1 3 2 0

2 3 2 1 0

4 3 5 4 0

   
 

 
The first and second rows were interchanged. 

 

 
  
 
 
   

31
2 21 2 0

0 1 3 2 0

2 3 2 1 0

4 3 5 4 0

   
 

 
The first row was multiplied by 1

2 . 

 

 
  
 
 

  

31
2 21 2 0

0 1 3 2 0

0 2 6 4 0

0 1 3 2 0

   
 

 

 
2  times the first row was added to the third row 
and 4  times the first row was added to the fourth row. 

 

 
  
 
 
 

31
2 21 2 0

0 1 3 2 0

0 0 0 0 0

0 0 0 0 0

   
 

 

 
2  times the second row was added to the third row and 
the second row was added to the fourth row. 

 

 
  
 
 
 

7 5
2 21 0 0

0 1 3 2 0

0 0 0 0 0

0 0 0 0 0

   
 

 
 1

2  times the second row was added to the first row. 

 

 If we assign w  and x  the arbitrary values s  and t , respectively, the general solution is given by the formulas 

      
7 5

,     3 2 ,     ,     
2 2

u s t v s t w s x t . 

 

19. 

 
   
 
 
  

0 2 2 4 0

1 0 1 3 0

2 3 1 1 0

2 1 3 2 0

   
 

 

  
The augmented matrix for the system. 
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1 0 1 3 0

0 2 2 4 0

2 3 1 1 0

2 1 3 2 0

   
 

 
The first and second rows were interchanged. 

 

  
 
 
 
 

 

1 0 1 3 0

0 2 2 4 0

0 3 3 7 0

0 1 1 8 0

   
 

 

 
2  times the first row was added to the third row 
and 2  times the first row was added to the fourth row. 

 

  
 
 
 
 

 

1 0 1 3 0

0 1 1 2 0

0 3 3 7 0

0 1 1 8 0

   
 

 
The second row was multiplied by 1

2 . 

 

  
 
 
 
 

 

1 0 1 3 0

0 1 1 2 0

0 0 0 1 0

0 0 0 10 0

   
 

 

 
3  times the second row was added to the third and 
1  times the second row was added to the fourth row. 

 

  
 
 
 
 
 

1 0 1 3 0

0 1 1 2 0

0 0 0 1 0

0 0 0 0 0

   
 

 
10  times the third row was added to the fourth row. 

 

 
 
 
 
 
 

1 0 1 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 0 0

   
 

 

 
2  times the third row was added to the second and 
3  times the third row was added to the first row. 

 

 If we assign y  an arbitrary value t  the general solution is given by the formulas 

    ,     ,     ,     0w t x t y t z . 

 

20. 

 
 
 
   
 

 
   

1 3 0 1 0

1 4 2 0 0

0 2 2 1 0

2 4 1 1 0

1 2 1 1 0

   
 

 

  
The augmented matrix for the system. 
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1 3 0 1 0

0 1 2 1 0

0 2 2 1 0

0 10 1 1 0

0 5 1 0 0

   
 

 

 
 
1  times the first row was added to the second row, 
2  times the first row was added to the fourth row, 
and 1  times the first row was added to the fifth row. 

 

 
  
 
 

 
  

1 3 0 1 0

0 1 2 1 0

0 0 2 3 0

0 0 21 11 0

0 0 9 5 0

   
 

 

 
 
2  times the second row was added to the third row, 
10  times the second row was added to the fourth row, 
and 5  times the second row was added to the fifth row. 

 

 
  
 
 

 
  

3
2

1 3 0 1 0

0 1 2 1 0

0 0 1 0

0 0 21 11 0

0 0 9 5 0

   
 

 
The third row was multiplied by 1

2 . 

 

 
  
 
 
 
  

3
2

41
2

17
2

1 3 0 1 0

0 1 2 1 0

0 0 1 0

0 0 0 0

0 0 0 0

   
 

 

 
 
21  times the third row was added to the fourth row 
and 9  times the third row was added to the fifth row. 
 

 

 
  
 
 
 
  

3
2

17
2

1 3 0 1 0

0 1 2 1 0

0 0 1 0

0 0 0 1 0

0 0 0 0

   
 

 
The fourth row was multiplied by 2

41 . 

 

 
  
 
 
 
  

3
2

1 3 0 1 0

0 1 2 1 0

0 0 1 0

0 0 0 1 0

0 0 0 0 0

   
 

 
 17

2  times the fourth row was added to the fifth row. 

  
 The augmented matrix in row echelon form corresponds to the system 

 

  
  

 



1 2 4

2 3 4

3 4

4

3   0

  2 0

3
    0

2
      0

x x x

x x x

x x

x
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 Using back-substitution, we obtain the unique solution of this system 

   1 2 3 40,     0,     0,     0x x x x . 

21. 

 
  
 
 
 

2 1 3 4 9

1 0 2 7 11

3 3 1 5 8

2 1 4 4 10

   
 

 

  
The augmented matrix for the system. 
 

 

 
  
 
 
 

1 0 2 7 11

2 1 3 4 9

3 3 1 5 8

2 1 4 4 10

   
 

 

 
The first and second rows were interchanged 
(to avoid introducing fractions into the first row). 

 

 
    
   
 

  

1 0 2 7 11

0 1 7 10 13

0 3 7 16 25

0 1 8 10 12

   
 

 

 
 
2  times the first row was added to the second row, 
3  times the first row was added to the third row, 
and 2  times the first row was added to the fourth. 

 

 
  
   
 

  

1 0 2 7 11

0 1 7 10 13

0 3 7 16 25

0 1 8 10 12

   
 

 
The second row was multiplied by 1 . 

 

 
  
 
 

  

1 0 2 7 11

0 1 7 10 13

0 0 14 14 14

0 0 15 20 25

   
 

 

 
 
3  times the second row was added to the third row and 
1 times the second row was added to the fourth row. 
 

 

 
  
  
 

  

1 0 2 7 11

0 1 7 10 13

0 0 1 1 1

0 0 15 20 25

   
 

 
The third row was multiplied by  1

14 . 

 

 
  
  
 

  

1 0 2 7 11

0 1 7 10 13

0 0 1 1 1

0 0 0 5 10

   
 

 
15  times the third row was added to the fourth row. 

 

 
  
  
 
 

1 0 2 7 11

0 1 7 10 13

0 0 1 1 1

0 0 0 1 2

   
 

 
The fourth row was multiplied by  1

5 . 
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1 0 2 0 3

0 1 7 0 7

0 0 1 0 1

0 0 0 1 2

   
 

 

 
 
The fourth row was added to the third row, 
10  times the fourth row was added to the second, 
and 7  times the fourth row was added to the first. 

 

 
 
 
 
 
 

1 0 0 0 1

0 1 0 0 0

0 0 1 0 1

0 0 0 1 2

   
 

 

 
7  times the third row was added to the second row, 
and 2  times the third row was added to the first row. 

  

 Unique solution:  1 1I , 2 0I , 3 1I , 4 2I . 

22. 

 
    
  
 

 

0 0 1 1 1 0

1 1 2 3 1 0

1 1 2 0 1 0

2 2 1 0 1 0

     The augmented matrix for the system. 
 

 

  
    
 
 

 

1 1 2 0 1 0

1 1 2 3 1 0

0 0 1 1 1 0

2 2 1 0 1 0

   
 

 
The first and third rows were interchanged. 

 

  
  
 
 
 

1 1 2 0 1 0

0 0 0 3 0 0

0 0 1 1 1 0

0 0 3 0 3 0

   
 

 

 
The first row was added to the second row 
and 2  times the first row was added to the last row. 

 

  
 
 
 
 
 

1 1 2 0 1 0

0 0 1 1 1 0

0 0 0 3 0 0

0 0 3 0 3 0

   
 

 
The second and third rows were interchanged. 

 

  
 
 
 
 

 

1 1 2 0 1 0

0 0 1 1 1 0

0 0 0 3 0 0

0 0 0 3 0 0

   
 

 
3  times the second row was added to the fourth row. 

 

  
 
 
 
 

 

1 1 2 0 1 0

0 0 1 1 1 0

0 0 0 1 0 0

0 0 0 3 0 0

   
 

 
The third row was multiplied by  1

3 . 
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1 1 2 0 1 0

0 0 1 1 1 0

0 0 0 1 0 0

0 0 0 0 0 0

   
 

 
3  times the third row was added to the fourth row. 

 

  
 
 
 
 
 

1 1 2 0 1 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0

   
 

 
1  times the third row was added to the second row. 

 

 
 
 
 
 
 

1 1 0 0 1 0

0 0 1 0 1 0

0 0 0 1 0 0

0 0 0 0 0 0

   
 

 
2  times the second row was added to the first row. 

 

 If we assign 2Z  and 5Z  the arbitrary values s  and t , respectively, the general solution is given by the formulas 

       1 2 3 4 5,     ,     ,     0,     Z s t Z s Z t Z Z t . 

23. (a) The system is consistent; it has a unique solution (back-substitution can be used to solve for all three 
unknowns). 

 (b) The system is consistent; it has infinitely many solutions (the third unknown can be assigned an arbitrary value 

t , then back-substitution can be used to solve for the first two unknowns). 

 (c) The system is inconsistent since the third equation 0 1  is contradictory. 

 (d) There is insufficient information to decide whether the system is consistent as illustrated by these examples: 

 For 

   
 
 
  

1

0 0 0 0

0 0 1

 the system is consistent with infinitely many solutions. 

 For 

   
 
 
  

1

0 0 1 0

0 0 1 1

 the system is inconsistent (the matrix can be reduced to 

   
 
 
  

1

0 0 1 0

0 0 0 1

). 

24. (a) The system is consistent; it has a unique solution (back-substitution can be used to solve for all three 
unknowns). 

 (b) The system is consistent; it has a unique solution (solve the first equation for the first unknown, then proceed 
to solve the second equation for the second unknown and solve the third equation last.) 

 (c) The system is inconsistent (adding 1 times the first row to the second yields 

 
 
 
    

1 0 0 0

0 0 0 1

1

; the second 

equation 0 1  is contradictory). 

 (d) There is insufficient information to decide whether the system is consistent as illustrated by these examples: 
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 For 

 
 
 
  

1 0 0 1

1 0 0 1

1 0 0 1

 the system is consistent with infinitely many solutions. 

 For 

 
 
 
  

1 0 0 2

1 0 0 1

1 0 0 1

 the system is inconsistent (the matrix can be reduced to 

 
 
 
  

1 0 0 2

0 0 0 1

0 0 0 0

). 

25. 
 

  
   

2

1 2 3 4

3 1    5 2

4 1 14 2a a

   
 

 

  
The augmented matrix for the system. 
 

 
 

   
    

2

1 2 3   4

0 7   1 4 10 

0 7 2 14a a

   
 

 

 
3  times the first row was added to the second row 
and 4  times the first row was added to the third row. 

 
 

   
   

2

1 2 3   4

0 7   1 4 10 

0 0 16 4a a

   
 

 
1  times the second row was added to the third row. 

 
 

  
   

10
7

2

1 2 3   4

0 1 2  

0 0 16 4a a

   
 

 
The second row was multiplied by  1

7 . 

  

 The system has no solutions when  4a  (since the third row of our last matrix would then correspond to a 

contradictory equation  0 8 ). 

 The system has infinitely many solutions when  4a  (since the third row of our last matrix would then correspond 

to the equation 0 0 ). 

 For all remaining values of a  (i.e.,  4a  and  4a ) the system has exactly one solution. 

 

26. 
 
  
   

2

1 2 1 2

2 2 3 1

1 2 ( 3)a a

   
 

 

  
The augmented matrix for the system. 
 

 
 
   
    

2

1 2 1 2

0 6 1 3

0 0 2 2a a

   
 

 

 
2  times the first row was added to the second row 
and 1  times the first row was added to the third row. 

 
 
  
    

1 1
6 2

2

1 2    1 2

0 1

0 0 2 2a a

   
 

 
The second row was multiplied by  1

6 . 
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 The system has no solutions when  2a  or   2a  (since the third row of our last matrix would then correspond 

to a contradictory equation). 

 For all remaining values of a  (i.e.,  2a  and   2a ) the system has exactly one solution. 

 There is no value of a  for which this system has infinitely many solutions. 

27. 
 

 
 
  

1 3 1

1 1 2

0 2 3

a

b

c

   
 

 

  
The augmented matrix for the system. 
 

 
 

    
  

1 3 1    

0 2 3

0 2 3    

a

a b

c

   
 

 
1  times the first row was added to the second row. 

 
 

    
    

1 3 1    

0 2 3

0 0 0

a

a b

a b c

   
 

 
The second row was added to the third row. 

 
 

   
    

3
2 2 2

1 3 1    

0 1

0 0 0

a b

a

a b c

   
 

 
The second row was multiplied by  1

2 . 

 

 If     0a b c  then the linear system is consistent. Otherwise (if     0a b c ) it is inconsistent. 

28. 
 
   
  

1 3 1

1 2 1

3 7 1

a

b

c

   
 

 

  
The augmented matrix for the system. 
 

 
 
  
     

1 3 1    

0 1 2       

0 2 4 3

a

a b

a c

   
 

 

 
The first row was added to the second row and 
3  times the first row was added to the third row. 

 
 
  
    

1 3 1   

0 1 2   

0 0 0 2

a

a b

a b c

   
 

 
2  times the second row was added to the third row. 

 

 If    2 0a b c  then the linear system is consistent. Otherwise (if    2 0a b c ) it is inconsistent. 

29.  
 
 

2 1

3 6

a

b
   

 

 
 The augmented matrix for the system. 

  
 
 

1 1
2 21

3 6

a

b
   

 

 
The first row was multiplied by 1

2 . 
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1 1
2 2

9 3
2 2

1

0

a

a b
   

 

 
3  times the first row was added to the second row. 

  
   

1 1
2 2

1 2
3 9

1

0 1

a

a b
   

 

 
The third row was multiplied by 2

9 . 

 
 

   

2 1
3 9

1 2
3 9

1 0

0 1

a b

a b
   

 

 
 1

2  times the second row was added to the first row. 

 

 The system has exactly one solution:  2 1
3 9x a b  and   1 2

3 9y a b . 

30. 
 
 
 
  

1 1 1

2 0 2

0 3 3

a

b

c

   
 

 

  
The augmented matrix for the system. 
 

 
 
    
  

1 1 1

0 2 0 2

0 3 3

a

a b

c

   
 

 
2  times the first row was added to the second row. 

 
 
  
  

2

1 1 1

0 1 0

0 3 3

b

a

a

c

   
 

 
The second row was multiplied by  1

2 . 

 
 
  
    

2

3
2

1 1 1

0 1 0

0 0 3 3

b

a

a

a b c

   
 

 
3  times the second row was added to the third row. 

 
 
  
    

2

2 3

1 1 1

0 1 0

0 0 1

b

b c

a

a

a

   
 

 
The third row was multiplied by 1

3 . 

 
  

  
    

2 3

2

2 3

1 1 0 2

0 1 0

0 0 1

b c

b

b c

a

a

a

   
 

 
1  times the third row was added to the first row. 

 
 

  
    

3

2

2 3

1 0 0

0 1 0

0 0 1

c

b

b c

a

a

a

   
 

 
1  times the second row was added to the first row. 

 

 The system has exactly one solution:  1 3
cx a ,  2 2

bx a , and    3 2 3
b cx a . 

31. Adding 2  times the first row to the second yields a matrix in row echelon form 
 
 
 

1 3

0 1
. 
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 Adding 3  times its second row to the first results in 
 
 
 

1 0

0 1
, which is also in row echelon form. 

32. 
 
   
  

2 1 3

0 2 29

3 4 5

    
 

  
 

 
 
   
  

2 1 3

0 2 29

1 3 2

   
 

 
1  times the first row was added to the third row. 

 
 
   
  

1 3 2

0 2 29

2 1 3

   
 

 
The first and third rows were interchanged. 

 
 
   
   

1 3 2

0 2 29

0 5 1

   
 

 
2  times the first row was added to the third row. 

 
 
   
  

1 3 2

0 2 29

0 1 86

   
 

 
3  times the second row was added to the third row. 

 
 
 
 
   

1 3 2

0 1 86

0 2 29

   
 

 
The second and third rows were interchanged. 

 
 
 
 
  

1 3 2

0 1 86

0 0 143

   
 

 
2  times the second row was added to the third row. 

 
 
 
 
  

1 3 2

0 1 86

0 0 1

   
 

 
The third row was multiplied by 1

143 . 

 
 
 
 
  

1 3 0

0 1 0

0 0 1

   
 

 

 
86  times the third row was added to the second row 
and 2  times the third row was added to the first row. 

 
 
 
 
  

1 0 0

0 1 0

0 0 1

   
 

 
3  times the second row was added to the first row. 

 

33. We begin by substituting  sinx ,  cosy , and  tanz  so that the system becomes 
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2 3 0

2 5 3 0

5 5 0

x y z

x y z

x y z

 

  
 
 
 
   

1 2 3 0

2 5 3 0

1 5 5 0

   
 

 

  
The augmented matrix for the system. 
 

 
 
  
  

1 2 3 0

0 1 3 0

0 3 8 0

   
 

 

 
2  times the first row was added to the second row 
and the first row was added to the third row. 

 
 
  
  

1 2 3 0

0 1 3 0

0 0 1 0

   
 

 
3  times the second row was added to the third row. 

 
 
  
  

1 2 3 0

0 1 3 0

0 0 1 0

   
 

 
The third row was multiplied by 1 . 

 
 
 
 
  

1 2 0 0

0 1 0 0

0 0 1 0

   
 

 

 
3  times the third row was added to the second row and 
3  times the third row was added to the first row. 

 
 
 
 
  

1 0 0 0

0 1 0 0

0 0 1 0

   
 

 
2  times the second row was added to the first row. 

 

 This system has exactly one solution   0,   0,   0.x y z  

 On the interval   0 2 , the equation  sin 0  has three solutions:   0 ,   , and   2 . 

 On the interval   0 2 , the equation  cos 0  has two solutions:   2  and   3
2 . 

 On the interval   0 2 , the equation  tan 0  has three solutions:   0 ,   , and   2 . 

 Overall,   3 2 3 18  solutions    , ,  can be obtained by combining the values of  ,  , and   listed above: 

    
   
   

0, ,0 , , ,0
2 2

, etc. 

34. We begin by substituting  sinx ,  cosy , and  tanz  so that the system becomes 

  
  
  

2 3 3

4 2 2 2

6 3 9

x y z

x y z

x y z
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2 1 3 3

4 2 2 2

6 3 1 9

   
 

 

  
The augmented matrix for the system. 
 

 
 

   
  

2 1 3 3

0 4 8 4

0 0 8 0

   
 

 

 
2  times the first row was added to the second row 
and 3  times the first row was added to the third row. 

 
 

   
  

2 1 3 3

0 4 8 4

0 0 1 0

   
 

 
The third row was multiplied by  1

8 . 

 
 

  
  

2 1 0 3

0 4 0 4

0 0 1 0

   
 

 

 
8  times the third row was added to the second row 
and 3  times the third row was added to the first row. 

 
 

  
  

2 1 0 3

0 1 0 1

0 0 1 0

   
 

 
The second row was multiplied by 1

4 . 

 
 
  
  

2 0 0 2

0 1 0 1

0 0 1 0

   
 

 
The second row was added to the first row. 

 
 
  
  

1 0 0 1

0 1 0 1

0 0 1 0

   
 

 
The first row was multiplied by 1

2 . 

 

 This system has exactly one solution    1,   1,   0.x y z  

 The only angles  , ,  and   that satisfy the inequalities   0 2 ,   0 2 ,   0  and the equations 

      sin 1,   cos 1,   tan 0  

 are    2  ,   ,  and   0 . 

35. We begin by substituting  2X x ,  2Y y , and  2Z z  so that the system becomes 

 

  
  
  

6

2 2

2 3

X Y Z

X Y Z

X Y Z

 

 
 
  
  

1 1 1 6

1 1 2 2

2 1 1 3

   
 

 

  
The augmented matrix for the system. 
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1 1 1 6

0 2 1 4

0 1 3 9

   
 

 

 
1  times the first row was added to the second row 
and 2  times the first row was added to the third row. 

 
 
    
   

1 1 1 6

0 1 3 9

0 2 1 4

   
 

 

 
The second and third rows were interchanged 
(to avoid introducing fractions into the second row). 

 
 
 
 
   

1 1 1 6

0 1 3 9

0 2 1 4

   
 

 
The second row was multiplied by 1 . 

 
 
 
 
  

1 1 1 6

0 1 3 9

0 0 7 14

   
 

 
2  times the second row was added to the third row. 

 
 
 
 
  

1 1 1 6

0 1 3 9

0 0 1 2

   
 

 
The third row was multiplied by 1

7 . 

 
 
 
 
  

1 1 0 4

0 1 0 3

0 0 1 2

   
 

 

 
3  times the third row was added to the second row 
and 1  times the third row was added to the first row. 

 
 
 
 
  

1 0 0 1

0 1 0 3

0 0 1 2

   
 

 
1  times the second row was added to the first row. 

 
 We obtain 

 

   

   

   

1 1

3 3

2 2

X x

Y y

Z z

 

36. We begin by substituting  1
xa ,  1

yb , and  1
zc  so that the system becomes 

 

  
  

   

2 4 1

2 3 8 0

9 10 5

a b c

a b c

a b c

 

 
 

 
 
  

1 2 4 1

2 3 8 0

1 9 10 5

   
 

 

  
The augmented matrix for the system. 
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1 2 4 1

0 1 16 2

0 11 6 6

   
 

 

 
2  times the first row was added to the second row 
and the first row was added to the third row. 

 
 

  
  

1 2 4 1

0 1 16 2

0 11 6 6

   
 

 
The second row was multiplied by 1 . 

 
 

  
  

1 2 4 1

0 1 16 2

0 0 182 16

   
 

 
11  times the second row was added to the third row. 

 
 

  
  

8
91

1 2 4 1

0 1 16 2

0 0 1

   
 

 
The third row was multiplied by 1

182 . 

 
 Using back-substitution, we obtain 

 

     

     

        

8 1 91

91 8
54 1 91

2 16
91 54

7 1 13
1 2 4

13 7

c z
c

b c y
b

a b c x
a

 

37. Each point on the curve yields an equation, therefore we have a system of four equations 

 

 
 
 
 

   
     
     



equation corresponding to  1,7 :  7

equation corresponding to  3, 11 :                27 9 3 11

equation corresponding to  4, 14 :  64 16 4 14

equation corresponding to  0,10 :        10

a b c d

a b c d

a b c d

d

 

  

 
  
 
 
 

1 1 1 1 7

27 9 3 1 11

64 16 4 1 14

0 0 0 1 10

   
 

 

  
The augmented matrix for the system. 
 

 

 
     
    
 
 

1 1 1 1 7

0 18 24 26 200

0 48 60 63 462

0 0 0 1 10

   
 

 

 
27  times the first row was added to the second row 
and 64  times the first row was added to the third. 
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13 1004
3 9 9

1 1 1 1 7

0 1

0 48 60 63 462

0 0 0 1 10

   
 

 
The second row was multiplied by  1

18 . 

 

 
 
 
 
 
 

13 1004
3 9 9

19 214
3 3

1 1 1 1 7

0 1

0 0 4

0 0 0 1 10

   
 

 
48  times the second row was added to the third row. 

 

 
 
 
 
 
 

13 1004
3 9 9

19 107
12 6

1 1 1 1 7

0 1

0 0 1

0 0 0 1 10

   
 

 
The third row was multiplied by 1

4 . 

 

 
  
 
 
 

104
3 3

1 1 1 0 3

0 1 0

0 0 1 0 2

0 0 0 1 10

   
 

 

 
 
 19

12  times the fourth row was added to the third row, 

 13
9  times the fourth row was added to the second row, 

and 1  times the fourth row was added to the first. 

 

 
  
 
 
 

1 1 0 0 5

0 1 0 0 6

0 0 1 0 2

0 0 0 1 10

   
 

 

 
 4

3  times the third row was added to the second row and 

1  times the third row was added to the first row. 

 

 
  
 
 
 

1 0 0 0 1

0 1 0 0 6

0 0 1 0 2

0 0 0 1 10

   
 

 
1  times the second row was added to the first row. 

 

  The linear system has a unique solution: 1a ,  6b ,  2c , 10d . These are the coefficient values required 

for the curve    3 2y ax bx cx d  to pass through the four given points. 

38.    Each point on the curve yields an equation, therefore we have a system of three equations 

 

 
 
 

    
    
    

equation corresponding to  2,7 :  53 2 7     0

equation corresponding to  4,5 :  41 4 5     0

equation corresponding to  4, 3 :                25 4 3     0

a b c d

a b c d

a b c d

 

 The augmented matrix of this system 

 
  
  

53 2 7 1 0

41 4 5 1 0

25 4 3 1 0

 has the reduced row echelon form 
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1
29

2
29

4
29

1 0 0 0

0 1 0 0

0 0 1 0

 
  
  

 

 If we assign d  an arbitrary value t , the general solution is given by the formulas 

     
1 2 4

,     ,     ,     
29 29 29

a t b t c t d t  

 (For instance, letting the free variable d  have the value 29  yields 1a ,  2b , and  4c .) 

39. Since the homogeneous system has only the trivial solution, its augmented matrix must be possible to reduce via a 

sequence of elementary row operations to the reduced row echelon form 

 
 
 
  

1 0 0 0

0 1 0 0

0 0 1 0

. 

 Applying the same sequence of elementary row operations to the augmented matrix of the nonhomogeneous system 

yields the reduced row echelon form 

 
 
 
  

1 0 0

0 1 0

0 0 1

r

s

t

 where r , s , and t  are some real numbers. Therefore, the 

nonhomogeneous system has one solution. 

 

40. (a) 3 (this will be the number of leading 1's if the matrix has no rows of zeros)  

 (b) 5 (if all entries in B  are 0) 

 (c) 2 (this will be the number of rows of zeros if each column contains a leading 1) 

41. (a) There are eight possible reduced row echelon forms:  

  

 
 
 
  

1 0 0

0 1 0

0 0 1

, 

 
 
 
  

1 0

0 1

0 0 0

r

s , 

 
 
 
  

1 0

0 0 1

0 0 0

r

, 

 
 
 
  

1

0 0 0

0 0 0

r s

, 

 
 
 
  

0 1 0

0 0 1

0 0 0

, 

 
 
 
  

0 1

0 0 0

0 0 0

r

, 

 
 
 
  

0 0 1

0 0 0

0 0 0

, and 

 
 
 
  

0 0 0

0 0 0

0 0 0

 

  where r  and s  can be any real numbers. 

 (b) There are sixteen possible reduced row echelon forms:  



1.2 Gaussian Elimination          40 
 

  

 
 
 
 
 
 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

, 

 
 
 
 
 
 

1 0 0

0 1 0

0 0 1

0 0 0 0

r

s

t
, 

 
 
 
 
 
 

1 0 0

0 1 0

0 0 0 1

0 0 0 0

r

s
, 

 
 
 
 
 
 

1 0

0 1

0 0 0 0

0 0 0 0

r t

s u
, 

 
 
 
 
 
 

1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

r

, 

 
 
 
 
 
 

1 0

0 0 1

0 0 0 0

0 0 0 0

r s

t
, 

 
 
 
 
 
 

1 0

0 0 0 1

0 0 0 0

0 0 0 0

r s

, 

 
 
 
 
 
 

1

0 0 0 0

0 0 0 0

0 0 0 0

r s t

, 

 
 
 
 
 
 

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

, 

 
 
 
 
 
 

0 1 0

0 0 1

0 0 0 0

0 0 0 0

r

s
, 

 
 
 
 
 
 

0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

r

, 

 
 
 
 
 
 

0 1

0 0 0 0

0 0 0 0

0 0 0 0

r s

, 

 
 
 
 
 
 

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

, 

 
 
 
 
 
 

0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

r

, 

 
 
 
 
 
 

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

, and 

 
 
 
 
 
 

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

. 

  where r , s , t , and u  can be any real numbers. 

42. (a) Either the three lines properly intersect at the origin, or two of them completely overlap and the other one 
intersects them at the origin. 

 (b) All three lines completely overlap one another. 

43. (a) We consider two possible cases: (i)  0a , and (ii)  0a . 

  (i) If  0a  then the assumption   0ad bc  implies that  0b  and  0c . Gauss-Jordan elimination yields 

  
 
 

0 b

c d
   

 

 

  
We assumed  0a  
 

  
 
 0

c d

b
   

 

 
The rows were interchanged. 

  
 
 

1

0 1

d
c    

 

 

 
The first row was multiplied by 1

c  and  

the second row was multiplied by 1 .b  (Note that , 0.)b c  

  
 
 

1 0

0 1
   

 

 
 d

c  times the second row was added to the first row. 

 

   (ii) If  0a  then we perform Gauss-Jordan elimination as follows: 

  
 
 

a b

c d
    

 
  
 

  
 
 

1 b
a

c d
   

 

 
The first row was multiplied by 1

a . 

 


 
 
 

1

0

b
a

ad bc
a

   
 

 
c  times the first row was added to the second row. 
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1

0 1

b
a    

 

 

 
The second row was multiplied by 

a
ad bc .  

(Note that both a  and ad bc  are nonzero.) 

  
 
 

1 0

0 1
   

 

 
 b

a  times the second row was added to the first row. 

 

  In both cases (  0a  as well as  0a ) we established that the reduced row echelon form of 
 
 
 

a b

c d
 is 

 
 
 

1 0

0 1
 

provided that   0ad bc . 

 (b) Applying the same elementary row operation steps as in part (a) the augmented matrix 
 
 
 

a b k

c d l
 will be 

transformed to a matrix in reduced row echelon form 
 
 
 

1 0

0 1

p

q
 where p  and q  are some real numbers. We 

conclude that the given linear system has exactly one solution: x p , y q . 

True-False Exercises 

(a) True. A matrix in reduced row echelon form has all properties required for the row echelon form. 

(b) False. For instance, interchanging the rows of 
 
 
 

1 0

0 1
 yields a matrix that is not in row echelon form. 

(c) False. See Exercise 31. 

(d) True. In a reduced row echelon form, the number of nonzero rows equals to the number of leading 1's. The result 
follows from Theorem 1.2.1. 

(e) True. This is implied by the third property of a row echelon form (see Section 1.2). 

(f) False. Nonzero entries are permitted above the leading 1's in a row echelon form. 

(g) True. In a reduced row echelon form, the number of nonzero rows equals to the number of leading 1's. From 

Theorem 1.2.1 we conclude that the system has   0n n  free variables, i.e. it has only the trivial solution. 

(h) False. The row of zeros imposes no restriction on the unknowns and can be omitted. Whether the system has 
infinitely many, one, or no solution(s) depends solely on the nonzero rows of the reduced row echelon form. 

(i) False. For example, the following system is clearly inconsistent: 

  
  

1

2

x y z

x y z
 

1.3 Matrices and Matrix Operations 

1. (a) Undefined (the number of columns in B  does not match the number of rows in A ) 

 (b) Defined; 4 4  matrix 
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 (c) Defined; 4 2  matrix 

 (d) Defined; 5 2  matrix 

 (e) Defined; 4 5  matrix 

 (f) Defined; 5 5  matrix 

2. (a) Defined; 5 4  matrix 

 (b) Undefined (the number of columns in D  does not match the number of rows in C ) 

 (c) Defined; 4 2  matrix 

 (d) Defined; 2 4  matrix 

 (e) Defined; 5 2  matrix 

 (f) Undefined ( TBA  is a 4 4  matrix, which cannot be added to a 4 2  matrix D ) 

3.  (a)  
     

            
        

1 6 5 1 2 3 7 6 5

1 1 0 1 1 2 2 1 3

3 4 2 1 4 3 7 3 7

  

 (b)  
       

             
         

1 6 5 1 2 3 5 4 1

1 1 0 1 1 2 0 1 1

3 4 2 1 4 3 1 1 1

   

 (c)  
    

          
       

5 3 5 0 15 0

5 1 5 2 5 10

5 1 5 1 5 5

 

  (d) 
           

              

7 1 7 4 7 2 7 28 14

7 3 7 1 7 5 21 7 35
  

 (e) Undefined (a 2 3  matrix C  cannot be subtracted from a 2 2  matrix 2B )  

 (f)      
             

                        
                  

4 6 4 1 4 3 2 1 2 5 2 2 24 2 4 10 12 4

4 1 4 1 4 2 2 1 2 0 2 1 4 2 4 0 8 2

4 4 4 1 4 3 2 3 2 2 2 4 16 6 4 4 12 8

 

 

 
   
  

22 6 8

2 4 6

10 0 4

  

  (g)    
           
                         
                 

1 5 2 2 6 2 1 2 3 1 12 5 2 2 6

3 1 0 1 2 1 2 1 2 2 3 1 2 0 2 1 4

3 2 4 2 4 2 1 2 3 3 8 2 2 4 6

  
           
                
              

3 13 3 7 3 8 39 21 24

3 3 3 2 3 5 9 6 15

3 11 3 4 3 10 33 12 30
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 (h)  
    

          
       

3 3 0 0 0 0

1 1 2 2 0 0

1 1 1 1 0 0

   

 (i)   1 0 4 5  

 (j)    
             
                           
                     

1 5 2 3 6 3 1 3 3 1 18 5 3 2 9

tr 1 0 1 3 1 3 1 3 2 tr 1 3 0 3 1 6

3 2 4 3 4 3 1 3 3 3 12 2 3 4 9

  

 

   
            
      

17 2 7

tr 2 3 5 17 3 5 25

9 1 5

 

 (k) 
   

        
                   

28 77 4 7 1
4tr 4tr 4 28 14 4 42 168

0 147 0 7 2
 

 (l) Undefined (trace is only defined for square matrices) 

4. (a) 
              

                   

3 1 1 1 4 2 7 2 42 3 1 2 1 4 2 1 2
2

0 2 1 3 1 5 3 5 72 0 3 2 2 1 2 1 5
  

 (b) 

               
                  
                

1 1 3 6 1 4 1 6 1 1 3 4 5 0 1

5 0 2 1 1 1 5 1 0 1 2 1 4 1 1

2 1 4 3 2 3 2 3 1 2 4 3 1 1 1

   

 (c)  
              
                         
                     

1 6 5 1 2 3 5 4 1 5 0 1

1 1 0 1 1 2 0 1 1 4 1 1

3 4 2 1 4 3 1 1 1 1 1 1

T T

 

  (d) Undefined (a 2 2  matrix TB  cannot be added to a 3 2  matrix 5 TC ) 

 (e) 

            
                     
                  

3 3 31 1 1 1 1 1
2 2 4 4 2 4 2 4 2

91 1 1 1 1 1 1
2 2 4 4 4 2 2 4

5 3 91 1 1 1 1 1
2 2 4 4 4 2 4 4 4

1 3 3 0  0

4 1 ( 1) 2  2 0

2 5 1 1 1 

   

 (f)  
         

                

4 4 1 04 1 4 0 0 1

0 1 2 20 2 1 2 1 0
 

  (g) 

                  
                    
                   

6 1 4 1 1 3 2 6 2 1 2 4 3 1 3 1 3 3

2 1 1 1 3 5 0 2 2 1 2 1 2 1 3 5 3 0 3 2

3 2 3 2 1 4 2 3 2 2 2 3 3 2 3 1 3 4

 

        
            
        

12 3 2 3 8 9 9 1 1

2 15 2 0 2 6 13 2 4

6 6 4 3 6 12 0 1 6
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 (h) 

                     
                          
                        

6 1 4 1 1 3 2 6 2 1 2 4 3 1 3 1 3 3

2 1 1 1 3 5 0 2 2 1 2 1 2 1 3 5 3 0 3 2

3 2 3 2 1 4 2 3 2 2 2 3 3 2 3 1 3 4

TT

 

 

              
                       
                     

12 3 2 3 8 9 9 1 1 9 13 0

2 15 2 0 2 6 13 2 4 1 2 1

6 6 4 3 6 12 0 1 6 1 4 6

T T

   

 (i) 
                 
                 

 
                                      

6 1 3
1 1 4 1 2 3 1 5 4 0 2 2 1 2 4 1 2 4

1 1 2
3 1 1 1 5 3 3 5 1 0 5 2 3 2 1 1 5 4

4 1 3

 

 
           

6 1 3
3 9 14

1 1 2
17 25 27

4 1 3

 

 
                 
                 
               

                 

3 6 9 1 14 4 3 1 9 1 14 1 3 3 9 2 14 3

17 6 25 1 27 4 17 1 25 1 27 1 17 3 25 2 27 3
 

  
 

 
  
 

65 26 69

185 69 182
 

 (j) Undefined (a 2 2  matrix B  cannot be multiplied by a 3 2  matrix A ) 

 (k) 

    
        
        

1 5 2 6 1 4

tr 1 0 1 1 1 1

3 2 4 3 2 3

 

   

                 
                 
                 

                 
                     
                   

1 6 5 1 2 3 1 1 5 1 2 2 1 4 5 1 2 3

tr 1 6 0 1 1 3 1 1 0 1 1 2 1 4 0 1 1 3

3 6 2 1 4 3 3 1 2 1 4 2 3 4 2 1 4 3

  

 

  
          
    

17 8 15

tr 3 3 1 17 3 26

32 7 26

46  

 (l) Undefined ( BC  is a 2 3  matrix; trace is only defined for square matrices) 

5. (a) 

       
       
       

         
              
            

3 4 0 0 3 1 0 2 12 3

1 4 2 0 1 1 2 2 4 5

1 4 1 0 1 1 1 2 4 1

  

 (b) Undefined (the number of columns of B  does not match the number of rows in A ) 
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 (c)  
     

          
        

3 6 3 1 3 3 1 5 2

3 1 3 1 3 2 1 0 1

3 4 3 1 3 3 3 2 4

 

 

                 
                 

                 

               
                    
                

18 1 3 1 9 3 18 5 3 0 9 2 18 2 3 1 9 4

3 1 3 1 6 3 3 5 3 0 6 2 3 2 3 1 6 4

12 1 3 1 9 3 12 5 3 0 9 2 12 2 3 1 9 4

 

 

 
   
  

42 108 75

12 3 21

36 78 63

 

  (d) 

       
       
       

         
                                   

3 4 0 0 3 1 0 2 12 3
1 4 2 1 4 2

1 4 2 0 1 1 2 2 4 5
3 1 5 3 1 5

1 4 1 0 1 1 1 2 4 1

 

           
           
           

         
              
          

12 1 3 3 12 4 3 1 12 2 3 5

4 1 5 3 4 4 5 1 4 2 5 5

4 1 1 3 4 4 1 1 4 2 1 5

 

   

 
   
  

3 45 9

11 11 17

7 17 13

  

 (e) 
           
           

   
                                       

3 0 3 0
4 1 1 3 4 4 1 1 4 2 1 5 1 15 3

1 2 1 2
0 1 2 3 0 4 2 1 0 2 2 5 6 2 10

1 1 1 1

  

 

           
           
           

         
              
          

3 1 0 6 3 15 0 2 3 3 0 10

1 1 2 6 1 15 2 2 1 3 2 10

1 1 1 6 1 15 1 2 1 3 1 10

 

 
   
  

3 45 9

11 11 17

7 17 13

 

 (f) 
           
           

 
                                     

1 3
1 1 4 4 2 2 1 3 4 1 2 51 4 2 21 17

4 1
3 1 1 4 5 2 3 3 1 1 5 53 1 5 17 35

2 5

 

  (g) 

           
           
           

           
                    

              

1 3 5 1 2 1 1 0 5 2 2 1
0 2 11

1 3 0 1 1 1 1 0 0 2 1 1
12 1 8

3 3 2 1 4 1 3 0 2 2 4 1

T
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 (h) 

  
      

             

1 3
4 1 3 1 1

4 1
0 2 0 2 1

2 5

 

       
       
       

       
            

         

1 4 3 0 1 1 3 2
3 1 1

4 4 1 0 4 1 1 2
0 2 1

2 4 5 0 2 1 5 2

  

 

           
           
           

           
                                      

4 5 4 3 5 0 4 1 5 2 4 1 5 1
3 1 1

16 2 16 3 2 0 16 1 2 2 16 1 2 1
0 2 1

8 8 8 3 8 0 8 1 8 2 8 1 8 1

 

 

 
   
  

12 6 9

48 20 14

24 8 16

 

 (i) 

    
        
        

1 5 2 1 1 3

tr 1 0 1 5 0 2

3 2 4 2 1 4

  

 

                 
                 
                 

                 
                     
                   

1 1 5 5 2 2 1 1 5 0 2 1 1 3 5 2 2 4

tr 1 1 0 5 1 2 1 1 0 0 1 1 1 3 0 2 1 4

3 1 2 5 4 2 3 1 2 0 4 1 3 3 2 2 4 4

  

 

  
        
    

30 1 21

tr 1 2 1 30 2 29 61

21 1 29

 

 (j) 

 
 

              
                       
                    

6 1 4 1 5 2 4 6 1 4 1 5 4 4 2

tr 4 1 1 1 1 0 1 tr 4 1 1 4 1 0 4 1 1

3 2 3 3 2 4 4 3 3 4 2 2 4 3 4

 

  
        
    

23 9 14

tr 5 4 3 23 4 8 35

9 6 8

  

 (k) 

    
                   

1 3 6 1 4
3 1 1

tr 4 1 2 1 1 1
0 2 1

2 5 3 2 3

 

 

           
           
           

                  
                     
                    

1 3 3 0 1 1 3 2 1 1 3 1 2 6 2 1 2 4

tr 4 3 1 0 4 1 1 2 4 1 1 1 2 1 2 1 2 1

2 3 5 0 2 1 5 2 2 1 5 1 2 3 2 2 2 3

 

 

        
                      
                

3 5 4 12 2 8 15 3 12

tr 12 2 5 2 2 2 tr 14 0 7 15 0 13 28

6 8 7 6 4 6 12 12 13
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 (l) 

                                     

T
6 1 3 1 3 3 0

tr 1 1 2 4 1 1 2

4 1 3 2 5 1 1

 

 

           
           
           

                                                        

6 1 1 4 3 2 6 3 1 1 3 5 3 0

tr 1 1 1 4 2 2 1 3 1 1 2 5 1 2

4 1 1 4 3 2 4 3 1 1 3 5 1 1

T

  

 

                                                       

T
16 34 3 0 3 0

16 7 14
tr 7 8 1 2 tr 1 2

34 8 28
14 28 1 1 1 1

 

 
           
           

           
               

16 3 7 1 14 1 16 0 7 2 14 1
tr

34 3 8 1 28 1 34 0 8 2 28 1
 

 
  

     
  

55 28
tr 55 44 99

122 44
  

6. (a) 

 
 

                 
                               
                         

1 1 3 6 1 3 3 0 2 1 6 2 1 1 2 3 3 3 0

2 5 0 2 1 1 2 1 2 2 5 1 2 0 1 2 2 2 1 2

2 1 4 4 1 3 1 1 2 2 4 2 1 1 2 4 3 1 1

   

           
           
           

                 
                     
                   

4 3 3 3 0 4 3 3 1 3 1 4 0 3 2 3 1

11 1 2 1 2 11 3 1 1 2 1 11 0 1 2 2 1

0 1 5 1 1 0 3 1 1 5 1 0 0 1 2 5 1

  

  
   
  

6 3

36 0

4 7

  

 (b) Undefined (a 2 3  matrix  4B C  cannot be added to a 2 2  matrix 2B )  

 (c) 

           
           
           

            
                     
                

3 1 0 3 3 4 0 1 3 2 0 5 1 1 3

1 1 2 3 1 4 2 1 1 2 2 5 5 5 0 2

1 1 1 3 1 4 1 1 1 2 1 5 2 1 4

T

 

 

                
                          
                     

3 12 6 5 1 5 1 5 3 3 5 4 5 5 15

5 2 8 5 5 5 0 5 2 12 2 5 25 0 10

4 5 7 5 2 5 1 5 4 6 8 7 10 5 20

T

 

          
            
           

3 5 5 5 4 15 2 10 11

12 25 2 0 5 10 13 2 5

6 10 8 5 7 20 4 3 13
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 (d) 
          

              

4 1 3 1 1 2 1 2 4 2 2

0 2 0 2 1 2 3 2 1 2 5

T

  

 
           
           

             
                   

4 3 1 0 4 1 1 2 4 1 1 1 2 8 4

0 3 2 0 0 1 2 2 0 1 2 1 6 2 10

T

 

 
            

                    

12 6 3 2 8 4 12 2 6 8 3 4

0 4 2 6 2 10 0 6 4 2 2 10

T T

  

 

 
                  

10 6
10 14 1

14 2
6 2 8

1 8

T

  

 (e) 

    
                                

1 3 3 0
4 0 1 4 2 3 1 1

4 1 1 2
1 2 3 1 5 0 2 1

2 5 1 1

 

 
           
           

            
                 

1 1 4 4 2 2 1 3 4 1 2 54 0

3 1 1 4 5 2 3 3 1 1 5 51 2
 

                                 
           
           

          
              

3 3 1 1 1 1 3 0 1 2 1 1

0 3 2 1 1 1 0 0 2 2 1 1

 
 

 
               

                                    

21 11 17 14 0 21 17 11 1 4 0 4 0 10 18

17 1 35 51 2 17 35 1 5 1 2 1 2 18 30
 

 
       
       

        
              

4 10 0 18 4 18 0 30 40 72

1 10 2 18 1 18 2 30 26 42
  

 (f) 

         
                  
                

1 1 3 6 1 4 6 1 3 1 5 2

5 0 2 1 1 1 1 1 2 1 0 1

2 1 4 3 2 3 4 1 3 3 2 4

T

 

 

                 
                 
                 

                
                  
                 

1 6 1 1 3 3 1 1 1 1 3 2 1 4 1 1 3 3

5 6 0 1 2 3 5 1 0 1 2 2 5 4 0 1 2 3

2 6 1 1 4 3 2 1 1 1 4 2 2 4 1 1 4 3

  

 

                 
                 
                 

                
                      
                  

6 1 1 1 3 3 6 5 1 0 3 2 6 2 1 1 3 4

         1 1 1 1 2 3 1 5 1 0 2 2 1 2 1 1 2 4

4 1 1 1 3 3 4 5 1 0 3 2 4 2 1 1 3 4

T

 

 

          
                            
                    

14 4 12 14 36 25 14 4 12 14 4 12 0 0 0

36 1 26 4 1 7 36 1 26 36 1 26 0 0 0

25 7 21 12 26 21 25 7 21 25 7 21 0 0 0

T
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7. (a) first row of AB  [first row of A ]  
 

    
  

6 2 4

3 2 7 0 1 3

7 7 5

B

                                    3 6 2 0 7 7 3 2 2 1 7 7 3 4 2 3 7 5  

   67 41 41   

 (b) third row of AB  [third row of A ]  
 

   
  

6 2 4

0 4 9 0 1 3

7 7 5

B  

                                    0 6 4 0 9 7 0 2 4 1 9 7 0 4 4 3 9 5   

   63 67 57  

 (c) second column of   AB A  [second column of B ] 

 

     
     
     

             
                    
                 

3 2 7 2 3 2 2 1 7 7 41

6 5 4 1 6 2 5 1 4 7 21

0 4 9 7 0 2 4 1 9 7 67

  

 (d) first column of   BA B  [first column of A ] 

 

     
     
     

           
                   
                

6 2 4 3 6 3 2 6 4 0 6

0 1 3 6 0 3 1 6 3 0 6  

7 7 5 0 7 3 7 6 5 0 63

  

 (e) third row of  AA  [third row of A ]  
 

   
  

3 2 7

0 4 9 6 5 4

0 4 9

A  

                                    0 3 4 6 9 0 0 2 4 5 9 4 0 7 4 4 9 9   

   24 56 97  

 (f) third column of   AA A  [third column of A ]  

 

     
     
     

           
                   
                

3 2 7 7 3 7 2 4 7 9 76

6 5 4 4 6 7 5 4 4 9 98

0 4 9 9 0 7 4 4 9 9 97

  

8. (a) first column of   AB A  [first column of B ] 

 

     
     
     

           
                   
                

3 2 7 6 3 6 2 0 7 7 67

6 5 4 0 6 6 5 0 4 7 64

0 4 9 7 0 6 4 0 9 7 63
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 (b) third column of BB B  [third column of B ] 

 

     
     
     

           
                   
                

6 2 4 4 6 4 2 3 4 5 38

0 1 3 3 0 4 1 3 3 5 18

7 7 5 5 7 4 7 3 5 5 74

  

 (c) second row of  BB  [second row of B ]  
 

   
  

6 2 4

0 1 3 0 1 3

7 7 5

B  

                                    0 6 1 0 3 7 0 2 1 1 3 7 0 4 1 3 3 5   

   21 22 18   

 (d) first column of   AA A  [first column of A ]  

 

     
     
     

            
                   
                

3 2 7 3 3 3 2 6 7 0 3

6 5 4 6 6 3 5 6 4 0 48

0 4 9 0 0 3 4 6 9 0 24

  

 (e) third column of   AB A  [third column of B ]  

 

     
     
     

           
                   
                

3 2 7 4 3 4 2 3 7 5 41

6 5 4 3 6 4 5 3 4 5 59

0 4 9 5 0 4 4 3 9 5 57

  

 (f) first row of  BA  [first row of B ]  
 

    
  

3 2 7

6 2 4 6 5 4

0 4 9

A  

                                    6 3 2 6 4 0 6 2 2 5 4 4 6 7 2 4 4 9   

   6 6 70   

9. (a) first column of 

        
                 
              

3 2 7 3

 3 6 6 5 0 4 48

0 4 9 24

AA   

  second column of 

       
                  
              

3 2 7 12

 2 6 5 5 4 4 29

0 4 9 56

AA  

  third column of 

       
                 
              

3 2 7 76

 7 6 4 5 9 4 98

0 4 9 97

AA  

 (b) first column of 

       
                 
              

6 2 4 64

 6 0 0 1 7 3 21

7 7 5 77

BB  
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  second column of 

       
                  
              

6 2 4 14

 2 0 1 1 7 3 22

7 7 5 28

BB  

  third column of 

       
                 
              

6 2 4 38

 4 0 3 1 5 3 18

7 7 5 74

BB  

10. (a) first column of 

       
                 
              

3 2 7 67

 6 6 0 5 7 4 64

0 4 9 63

AB   

  second column of 

       
                  
              

3 2 7 41

 2 6 1 5 7 4 21

0 4 9 67

AB  

  third column of 

       
                 
              

3 2 7 41

 4 6 3 5 5 4 59

0 4 9 57

AB  

 (b) first column of 

       
                 
              

6 2 4 6

 3 0 6 1 0 3 6

7 7 5 63

BA  

  second column of 

        
                  
              

6 2 4 6

 2 0 5 1 4 3 17

7 7 5 41

BA  

  third column of 

       
                 
              

6 2 4 70

 7 0 4 1 9 3 31

7 7 5 122

BA  

11. (a) 

 
   
  

2 3 5

9 1 1

1 5 4

A , 

 
   
  

1

2

3

x

x

x

x , 

 
   
  

7

1

0

b ; the matrix equation: 

     
            
          

1

2

3

2 3 5 7

9 1 1 1

1 5 4 0

x

x

x

 

 (b) 





 



 
 
 
 
 
 

A

4 0 3 1

5 1 0 8
=

2 5 9 1

0 3 1 7

, 

 
 
 
 
 
 

1

2

3

4

x

x

x

x

x , 

 
 
 
 
 
 

1

3

0

2

b ; the matrix equation: 

     
         
     
    

    

1

2

3

4

4 0 3 1 1

5 1 0 8 3

2 5 9 1 0

0 3 1 7 2

x

x

x

x
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12. (a) 

 
 
 
 
 
 

1 2 3

2 1 0

0 3 4

1 0 1

A , 

 
   
  

1

2

3

x

x

x

x , 

 
 
 
 
 
 

3

0
=

1

5

b ; the matrix equation: 

    
    
        
     

   

1

2

3

1 2 3 3

2 1 0 0

0 3 4 1

1 0 1 5

x

x

x

 

 (b) 

 
     
  

3 3 3

1 5 2

0 4 1

A , 

 
   
  

1

2

3

x

x

x

x , 

 
   
  

3

3

0

b ; the matrix equation: 

     
             
          

1

2

3

3 3 3 3

1 5 2 3

0 4 1 0

x

x

x

  

13.  (a)   
   

 

1 2 3

1 2 3

2 3

5 6 7 2

2 3 0

  4 3

x x x

x x x

x x

  (b)   
 
   

2

2 3   2

5 3 6 9

x y z

x y

x y z

 

14.  (a)   
   

   

1 2 3

1 2 3

1 2 3

3 2 2

4 3 7 1

2 5 4

x x x

x x x

x x x

 (b) 

  
  

   
    

3 2   0

5   2 2 0

3 4 7 0

2 5 6 0

w x z

w y z

w x y z

w x y z

 

15.      
     

                     
           

22 2

1 1 0 1

1 1 1 0 2 1 1 1 2 2 1 2 1 1

0 2 3 1 1

k k

k k k k k k k k k  

 The only value of k  that satisfies the equation is  1k . 

16.       
     
                 
          

2

1 2 0 2 6

2 2 2 0 3 2 2 2 3 4 12 20 10 2

0 3 1 6

k k k k k k k

k k

 

The values of k  that satisfy the equation are  10k  and  2k . 

17.                
                         

4 3 0 4 8 6 9 3 6 5 5
0 1 2 2 3 1

2 1 0 2 4 2 3 1 2 1 3
 

18.               
                        

0 2 0 0 0 6 0 4 6 0 4
1 4 1 3 0 2

4 3 4 16 4 9 0 6 13 16 2
 

19.                   
                  

             

1 2 3 1 2 6 8 15 18 22 28
1 2 3 4 5 6

4 5 6 4 8 15 20 30 36 49 64
 

20.                     
                                      

0 4 2 0 0 16 0 2 2 18 2
2 1 4 0 1 1

1 2 5 2 1 8 0 5 5 1 6
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21. 

     

 

            
            
            
            
            
            
            
           

            

1

2

3

4

5

6
1 1 1
3 3 3

3 4 2 0 03 4 2

0 00 0

2 0 00 2 0
= = + + + =

0 00 0

0 00 0

0 0 0

r s tx r s t

rx r

sx s

sx s

tx t

x

  



     
     
     
     
     
     
     

      
     

3 4 2

1 0 0

0 2 0
+ + +

0 1 0

0 0 1

0 0 0

r s t  

22. 

                   
            
           
             

                
           
           
           

                      

1

2

3

4

5

6

3 4 2 3 4 2 3 4

0 0 1 0

2 0 2 0 0 2

0 0 0 1

0 0 0 0

0 0 0 0 0 0

x r s t r s t

x r r

x s s
r s

x s s

x t t

x

  
  

   
   

   
   
   
   
     

2

0

0

0

1

0

t  

23. The given matrix equation is equivalent to the linear system 

 4a     

 3 2d c   

       1 2d c     

   2a b   

 After subtracting first equation from the fourth, adding the second to the third, and back-substituting, we obtain the 

solution:  4a ,  6b ,  1c , and 1d . 

24. The given matrix equation is equivalent to the linear system 

 
 

 
  

   8

   1

    3 7

   2 6

a b

a b

c d

c d

 

 After subtracting first equation from the second, adding the third to the fourth, and back-substituting, we obtain the 

solution:  9
2a ,   7

2b ,   4
5c , and  13

5d . 

25. (a) If the i th row vector of A  is  0 0  then it follows from Formula (9) in Section 1.3 that i th row vector 

of         0 0      0 0  AB B   

 (b) If the j th column vector of B  is 

 
 
 
  


0

0

 then it follows from Formula (8) in Section 1.3 that the j th column 

vector of     AB A  

   
      
      

 
0 0

    

0 0
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26. (a) 

 
 
 
 
 
 
 
 
  

11

22

33

44

55

66

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

a

a

a

a

a

a

 (b) 

 
 
 
 
 
 
 
 
  

11 12 13 14 15 16

22 23 24 25 26

33 34 35 36

44 45 46

55 56

66

0

0 0

0 0 0

0 0 0 0

0 0 0 0 0

a a a a a a

a a a a a

a a a a

a a a

a a

a

 

 (c) 

 
 
 
 
 
 
 
 
  

11

21 22

31 32 33

41 42 43 44

51 52 53 54 55

61 62 63 64 65 66

0 0 0 0 0

0 0 0 0

0 0 0

0 0

0

a

a a

a a a

a a a a

a a a a a

a a a a a a

 (d) 

 
 
 
 
 
 
 
 
  

11 12

21 22 23

32 33 34

43 44 45

54 55 56

65 66

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

a a

a a a

a a a

a a a

a a a

a a

 

27. Setting the left hand side 

        
                 
               

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

x a a a x a x a y a z

A y a a a y a x a y a z

z a a a z a x a y a z

 equal to 

 
  
  0

x y

x y  yields 

   
   
  

11 12 13

21 22 23

31 32 33 0

a x a y a z x y

a x a y a z x y

a x a y a z
 

 Assuming the entries of A  are real numbers that do not depend on x , y , and z , this requires that the coefficients 

corresponding to the same variable on both sides of each equation must match. Therefore, the only matrix satisfying 

the given condition is 

 
   
  

1 1 0

1 1 0

0 0 0

A . 

28. Setting the left hand side 

        
                 
               

11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

x a a a x a x a y a z

A y a a a y a x a y a z

z a a a z a x a y a z

 equal to 

 
 
 
  

0

0

xy

 yields 

  
  
  

11 12 13

21 22 23

31 32 33

0

0

a x a y a z xy

a x a y a z

a x a y a z
 

 Assuming the entries of A  are real numbers that do not depend on x , y , and z , it follows that no real numbers 11a , 

12a , and 13a  exist for which the first equation is satisfied for all x , y , and z . Therefore no matrix A  with real 

number entries can satisfy the given condition. 

(Note that if A  were permitted to depend on x , y , and z , then solutions do exist e.g., 

 
   
  

0 0

0

0

y

A z x

z y

.) 
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29. (a) 
 
 
 

1 1

1 1
 and 

  
   

1 1

1 1
 

 (b) Four square roots can be found: 
 
 
 

5 0

0 3
, 
 
 
 

5 0

0 3
, 
 
 

 

5 0

0 3
, and 

 
 

 

5 0

0 3
. 

32. (a) 

 
 
 
 
 
 

2 3 4 5

3 4 5 6

4 5 6 7

5 6 7 8

 (b) 

 
 
 
 
 
 

1 1 1 1

1 2 4 8

1 3 9 27

1 4 16 64

 (c) 

  
    
   
 

  

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

 

33. The given matrix product represents 

 
 
 
 
 
 

the total cost of items purchased in January

the total cost of items purchased in February

the total cost of items purchased in March

the total cost of items purchased in April

. 

34. (a) The 4 3  matrix M J  represents sales over the two month period. 

 (b) The 4 3  matrix M J  represents the decrease in sales of each item from May to June. 

 (c) 

 
   
  

1

1

1

x  

 (d)   1 1 1 1y  

 (e) The entry in the 1 1 matrix My x  represents the total number of items sold in May. 

True-False Exercises 

(a) True. The main diagonal is only defined for square matrices. 

(b) False. An m n  matrix has m  row vectors and n  column vectors. 

(c) False. E.g., if 
 

  
 

1 0

0 0
A  and 

 
  
 

0 0

1 0
B  then 

 
  
 

0 0

0 0
AB  does not equal BA B . 

(d) False. The i th row vector of AB  can be computed by multiplying the i th row vector of A  by B . 

(e) True. Using Formula (14),        
TT T

ijjiij

A A A . 

(f) False. E.g., if 
 

  
 

1 0

0 0
A  and 

 
  
 

0 0

0 1
B  then the trace of 

 
  
 

0 0

0 0
AB  is 0,  which does not equal tr( )tr( ) 1A B . 

(g) False. E.g., if 
 

  
 

1 0

0 0
A  and 

 
  
 

0 0

1 0
B  then    

  
 

0 0

0 0

T
AB  does not equal 

 
  
 

0 1

0 0
T TA B . 

(h) True. The main diagonal entries in a square matrix A  are the same as those in TA . 
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(i) True. Since TA  is a 4 6  matrix, it follows from T TB A  being a 2 6  matrix that TB  must be a 2 4  matrix. 

Consequently, B  is a 4 2  matrix. 

(j) True.  

      
            
            

 
     

 

11 1 11 1

1 1

tr  tr
n n

n nn n nn

a a ca ca

c

a a ca ca
 

   
  
           
    


    



11 1

11 11

1

 tr
n

nn nn

n nn

a a

ca ca c a a c

a a

 

(k) True. The equality of the matrices A C  and B C  implies that   ij ij ij ija c b c  for all i  and j . Adding ijc  to 

both sides yields ij ija b  for all i  and j . Consequently, the matrices A  and B  are equal. 

(l) False. E.g., if 
 

  
 

1 0

0 0
A  and 

 
   

 

0 0

1 0
B C  then 

 
   

 

0 0

0 0
AC BC  even though A B . 

(m) True. If A  is a p q  matrix and B  is an r s  matrix then AB  being defined requires q r  and BA  being defined 

requires s p . For the p p  matrix AB  to be possible to add to the q q  matrix BA , we must have p q . 

(n) True. If the j th column vector of B  is 

 
 
 
  


0

0

 then it follows from Formula (8) in Section 1.3 that 

 the j th column vector of     AB A  

   
      
      

 
0 0

    

0 0

. 

(o) False. E.g., if 
 

  
 

1 1

1 1
A  and 

 
  
 

1 0

1 0
B  then BA A  does not have a column of zeros even though B  does. 

 

 
 
 
1.4 Inverses; Algebraic Properties of Matrices 

1. (a)      
        

7 2

0 2
A B C A B C  (b)       

   
 

34 21

52 28
A BC AB C  
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 (c)    
      

14 15

0 18
A B C AB AC  (d)     

     
 

12 3

9 6
a b C aC bC  

2. (a)         
    

 

24 16

64 36
a BC aB C B aC  

 (b)    
      

16 5

8 6
A B C AB AC  

 (c)    
       

18 8

18 22
B C A BA CA  

 (d)       
   

 

112 28

84 56
a bC ab C  

3. (a)    
   

 

3 1

2 4

TTA A  (b)    
    

1 4
 

10 12

T T TAB B A  

4. (a)    
     

 

3 3

1 0

T T TA B A B  (b)    
    

16 12

4 8

T TaC aC  

5. The determinant of A ,           det 2 4 3 4 20A , is nonzero. Therefore A  is invertible and its inverse is 

   
        

31
1 5 201

20 1 1
5 10

4 3

4 2
A . 

6. The determinant of B ,          det 3 2 1 5 1B , is nonzero. Therefore B  is invertible and its inverse is 

  
   

1 2 1

5 3
B . 

7. The determinant of C ,          det 2 3 0 0 6C , is nonzero. Therefore C  is invertible and its inverse is 

   
    

   

1
1 21

6 1
3

03 0

00 2
C . 

8. The determinant of D ,            det 6 1 4 2 2D , is nonzero. Therefore D  is invertible and its inverse is 

      
    

   

1
1 21

2

1 4 2

2 6 1 3
D . 

9. The determinant of 
   
   

 

 

  
 
   

1 1
2 2

1 1
2 2

x x x x

x x x x

e e e e
A

e e e e
,  

                          
2 2 2 2 2 21 1 1 1 1

4 4 4 4 4det 2 2 2 2 1x x x x x x x xA e e e e e e e e  is nonzero. Therefore A  is 

invertible and its inverse is 
   
   

 



 

   
 
    

1 1
2 21

1 1
2 2

x x x x

x x x x

e e e e
A

e e e e
. 
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10. The determinant of the matrix is            cos cos sin sin 1 0 . Therefore the matrix is invertible and its 

inverse is 
 
 

 
 
 

cos sin

sin cos
. 

11. 
 

   

2 4

3 4
TA ;        

       
              

1 1
1 5 51

20 3 1
20 10

4 4 4 41

3 2 3 22 4 4 3
TA  

     
     
                

31
1 5 20

1 1
5 10

4 3 4 31 1

4 2 4 22 4 3 4 20
A ;    

  
 

1 1
1 5 5

3 1
20 10

 
T

A  

12. 
     

     
                

31
1 5 20

1 1
5 10

4 3 4 31 1

4 2 4 22 4 3 4 20
A ; 

       
          
                   

3 3 31 1 1
11 10 20 10 20 10 201

51 1 1 1 1 131 1 1
5 5 5 5 5 55 10 20 5 100

2 31
20

4 4
A A   

13. 
  

  
 

18 12

64 36
ABC ;        

     
                    

3 1
1 10 10

8 3
15 20

36 12 36 121 1

64 18 64 1818 36 12 64 120
ABC  

                    
                                     

3 31 1 1
1 1 1 2 5 20 10 10

8 31 1 1
3 5 10 15 20

03 0 2 1 4 3 2 11 1
00 2 5 3 4 2 5 36 20

C B A   

14. 
  

  
 

18 12

64 36
ABC ;    

   

18 64

12 36

T
ABC ; 

       
                

2 0 3 5 2 4 18 64

0 3 1 2 3 4 12 36
T T TC B A  

15. From part (a) of Theorem 1.4.7 it follows that the inverse of  1
7A  is 7A . 

Thus 
     

        
                  

2 7 2 7 2 71 1
7

1 3 1 3 1 33 2 7 1 1
A . Consequently, 

  
    

   

2
7

31
7 7

12 71

1 37
A . 

16. From part (a) of Theorem 1.4.7 it follows that the inverse of  1
5 TA  is 5 TA .  

Thus 
    

         

2 1 2 11
5 .

5 3 5 31
TA  Consequently, 

 
   

2
5

31
5 5

1
A . 

17. From part (a) of Theorem 1.4.7 it follows that the inverse of  
1

2I A  is 2I A . 

Thus 
     

     
                  

5 2
13 13

4 1
13 13

5 2 5 21 1
2

4 1 4 11 5 2 4 13
I A . 

Consequently, 
      

              

5 92 1
13 13 13 13

64 1 2
13 13 13 13

1 01

0 12
A   

18. From part (a) of Theorem 1.4.7 we have  
11A A . Therefore 

  
        

5 1
13 13

3 2
13 13

5 11
 

3 213
A . 
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19. (a) 
 

   
 

3 41 15

30 11
A AAA   

 (b)        
     
         

13 11 15 11 151

30 41 30 4141 11 15 30
A  

 (c) 
               

                       
               

2 3 1 3 1 3 1 1 0 11 4 6 2 1 0 6 2
2 2

2 1 2 1 2 1 0 1 8 3 4 2 0 1 4 2
A A I  

20. (a) 
 

   
 

3 8 0

28 1
A AAA   

 (b)        
     
               

1
13 8

7
2

01 0 1 01 1
128 8 28 88 1 0 28 8

A    

 (c) 
               

                       
               

2 2 0 2 0 2 0 1 0 4 0 4 0 1 0 1 0
2 2

4 1 4 1 4 1 0 1 12 1 8 2 0 1 4 0
A A I  

21. (a) 
 

    

1 1
2

2 1
A I  (b) 

 
    

 
2 20 7

2
14 6

A A I  (c) 
 

    
 

3 36 13
2

26 10
A A I  

22. (a) 
 

    

0 0
2

4 1
A I  (b) 

 
    

 
2 7 0

2
20 2

A A I  (c) 
 

    
 

3 5 0
2

20 0
A A I  

23. 
     

      
     

0 1 0

0 0 0

a b a
AB

c d c
; 

     
      
     

0 1

0 0 0 0

a b c d
BA

c d
. 

The matrices A  and B  commute if 
   

   
   

0

0 0 0

a c d

c
, i.e. 

0 c  

a d  

0 0  

 0c  

 Therefore, 
 
 
 

a b

c d
 and 

 
 
 

0 1

0 0
 commute if  0c  and a d . 

If we assign b  and d  the arbitrary values s  and t , respectively, the general solution is given by the formulas 

   ,     ,     0,     a t b s c d t  

24. 
     

      
     

0 0 0

1 0 0

a b b
AC

c d d
; 

     
      
     

0 0 0 0

1 0

a b
CA

c d a b
. 

The matrices A  and C  commute if 
   

   
   

0 0 0

0

b

d a b
, i.e. 
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 0b  

0 0  

d a  

0 b  

 Therefore, 
 
 
 

a b

c d
 and 

 
 
 

0 0

1 0
 commute if  0b  and a d . 

If we assign c  and d  the arbitrary values s  and t , respectively, the general solution is given by the formulas 

   ,     0,     ,     a t b c s d t  

25.      
     

  

  5 1 2 3 1
1 233 5 2 4

x ,      
     

 

  3 3 4 1 13
2 233 5 2 4

x  

26.      
     
 

     3 4 5 1 17
1 81 3 5 1

x ,      
     
  

    1 1 1 4 3
2 81 3 5 1

x  

27.      
     
  

    3 0 1 2 2 1
1 22 116 3 1 4

x ,      
     

  
   6 2 4 0 612

2 22 116 3 1 4
x  

28.      
     

 

   4 4 2 4 24 12
1 10 52 4 2 1

x ,      
     



   2 4 1 4 4 2
2 10 52 4 2 1

x  

29.    
     

2 2 4
9

8 6
p A A I , 

   
    

 
1

6 1
3

2 4
p A A I ,         

          
2 1 2

0 1 2 4
3 ,      

2 2 8 6
p A A I p A p A   

30.     1 2p A p A      3 3A I A I      

         3 3 3A A I I A I    Theorem 1.4.1(e) 

            2( 3 ) 3 3 3A A I I A I I    Theorem 1.4.1(i) 

         2( 3 ) 3 9A AI IA II    Theorem 1.4.1(m) 

      2( 3 ) 3 9A A A I    Property  AI IA A  on p. 43 

     2 9A I p A    Theorem 1.4.1(b) 

 

31. (a) If 
 

  
 

1 0

0 0
A  and 

 
  
 

0 1

0 0
B  then          

        
     

1 1 1 1 1 1

0 0 0 0 0 0
A B A B  does not equal 

     
        

     
2 2 1 0 0 0 1 0

0 0 0 0 0 0
A B . 

 (b) Using the properties in Theorem 1.4.1 we can write 

               2 2A B A B A A B B A B A AB BA B  
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 (c) If the matrices A  and B  commute (i.e., AB BA ) then      2 2A B A B A B . 

32. We can let A  be one of the following eight matrices: 

 
 
 
  

1 0 0

0 1 0

0 0 1

, 

 
 
 
  

1 0 0

0 1 0

0 0 1

, 

 
  
  

1 0 0

0 1 0

0 0 1

, 

 
  
  

1 0 0

0 1 0

0 0 1

, 

 
 
 
  

1 0 0

0 1 0

0 0 1

, 

 
 
 
  

1 0 0

0 1 0

0 0 1

, 

 
  
  

1 0 0

0 1 0

0 0 1

, 

 
  
  

1 0 0

0 1 0

0 0 1

. 

Note that these eight are not the only solutions - e.g., A  can be 

 
 
 
  

0 1 0

1 0 0

0 0 1

, etc. 

33. (a) We can rewrite the equation 

   2 2A A I O  

         2 2A A I  

     2 2A A I  

    2A A I I  

  which shows that A  is invertible and    1 2A A I . 

 (b) Let        2
2 1 0

n
np x c x c x c x c  with 0 0c . The equation   p A O  can be rewritten as 

     2
2 1 0

n
nc A c A c A c I O  

      2
2 1 0

n
nc A c A c A c I  

     2 1

0 0

2

0

c cnn
c c

c
A A A I

c  

      2 1

0 0 0

1nc c cn
c c cA A A I I

 

 which shows that A  is invertible and      1 1 2 1

0 0 0

nnc c c
A A A I

c c c
. 

34. If 3A I  then it follows that 2AA I  therefore A  must be invertible (  1 2 ).A A  

35. If the i th row vector of A  is  0 0  then it follows from Formula (9) in Section 1.3 that 

i th row vector of         0 0      0 0  AB B .  

Consequently no matrix B  can be found to make the product AB I  thus A  does not have an inverse. 

If the j th column vector of A  is 

 
 
 
  


0

0

 then it follows from Formula (8) in Section 1.3 that 
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the j th column vector of     BA B  

   
      
      

 
0 0

    

0 0

. 

Consequently no matrix B  can be found to make the product BA I  thus A  does not have an inverse. 

36. If the i th and j th row vectors of A  are equal then it follows from Formula (9) in Section 1.3 that 

i th row vector of  AB  j th row vector of AB . 

Consequently no matrix B  can be found to make the product AB I  thus A  does not have an inverse. 

 If the i th and j th column vectors of A  are equal then it follows from Formula (8) in Section 1.3 that 

the i th column vector of     BA the j th column vector of  BA  

Consequently no matrix B  can be found to make the product BA I  thus A  does not have an inverse. 

37. Letting 

 
   
  

11 12 13

21 22 23

31 32 33

x x x

X x x x

x x x

, the matrix equation AX I  becomes 

     
         
        

11 31 12 32 13 33

11 21 12 22 13 23

21 31 22 32 23 33

1 0 0

0 1 0

0 0 1

x x x x x x

x x x x x x

x x x x x x

 

 Setting the first columns on both sides equal yields the system 

 11 31 1x x  

 11 21 0x x  

 21 31 0x x  

 Subtracting the second and third equations from the first leads to  212 1x . Therefore   1
21 2x  and (after 

substituting this into the remaining equations)   1
11 31 2x x . 

 The second and the third columns can be treated in a similar manner to result in  

 
   
  

1 1 1
2 2 2

1 1 1
2 2 2

1 1 1
2 2 2

X . We conclude that A  invertible and its inverse is 

 
   
  

1 1 1
2 2 2

1 1 1 1
2 2 2

1 1 1
2 2 2

A . 

38. Letting 

 
   
  

11 12 13

21 22 23

31 32 33

x x x

X x x x

x x x

, the matrix equation AX I  becomes 

        
      
        

11 21 31 12 22 32 13 23 33

11 12 13

21 31 22 32 23 33

1 0 0

0 1 0

0 0 1

x x x x x x x x x

x x x

x x x x x x

 

 Although this corresponds to a system of nine equations, it is sufficient to examine just the three equations 
corresponding to the first column 
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  11 21 31 1x x x  

   11 0x    

   21 31 0x x   

 to see that subtracting the second and third equations from the first leads to a contradiction 0 1 .  

We conclude that A  is not invertible. 

39.          11 1 1 1 1AB AC D C D      

              
1 11 1 1 1 1 1( )B A AC C D D    Theorem 1.4.6 

        1 1 1 1( )B A AC CD D    Theorem 1.4.7(a) 

         1 1 1 1B A A C C DD    Theorem 1.4.1(c) 

   1B III    Formula (1) in Section 1.4 

   1B    Property  AI IA A  in Section 1.4 

 

40.          1 11 1 1 1AC AC AC AD      

              
1 11 1 1 1 1 1C A AC C A AD    Theorem 1.4.6 

         1 1 1 1CA AC CA AD    Theorem 1.4.7(a) 

         1 1 1 1C A A C C A A D    Theorem 1.4.1(c) 

   1CIIID    Formula (1) in Section 1.4 

   1CD    Property  AI IA A  in Section 1.4 

 

41. If   1 nR r r  and 

 
   
  


1

n

c

C

c

 then 

 
   
  


  



1 1 1

1

n

n n n

c r c r

CR

c r c r

 and          1 1 trn nRC r c r c CR . 

42. Yes, it is true. From part (e) of Theorem 1.4.8, it follows that      
22( )

TT T T TA AA A A A . This statement can be 

extended to n  factors (see Section 1.4) so that 

  
   
 
  

 factors  factors

( )

T
nn T T T T T

n n

A AA A A A A A  

43. (a) Assuming A  is invertible, we can multiply (on the left) each side of the equation by 1A : 

    AB AC     
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       1 1A AB A AC   Multiply (on the left) each side by 1A  

       1 1A A B A A C   Theorem 1.4.1(c) 

   IB IC   Formula (1) in Section 1.4 

   B C   Property  AI IA A  on Section 1.4 

 

 (b) If A  is not an invertible matrix then AB AC  does not generally imply B C  as evidenced by Example 3. 

44. Invertibility of A  implies that A  is a square matrix, which is all that is required. 
By repeated application of Theorem 1.4.1(m) and (l), we have 

                 
 

         
2 2 3 3

 factors 2 factors 3 factors

n n n

n n n

kA kA kA kA kA kA kA kA kA k A kA kA k A k A  

45. (a)      
11 1A A B B A B      

       
11 1AA B AB B A B    Theorem 1.4.1(d) and (e) 

      
1

IB AI A B    Formula (1) in Section 1.4 

      
1

B A A B    Property  AI IA A  in Section 1.4 

      
1

A B A B    Theorem 1.4.1(a) 

   I    Formula (1) in Section 1.4 

 (b) We can multiply each side of the equality from part (a) on the left by 1A , then on the right by A  to obtain 

      
11 1A B B A B A I

 

  which shows that if A , B , and A B  are invertible then so is  1 1A B .  

Furthermore,        
1 11 1A B B A B A . 

46. (a)  
2

I A      

      I A I A     

     II IA AI AA    Theorem 1.4.1(f) and (g) 

      2I A A A    Property  AI IA A  in Section 1.4 

     I A A A    A  is idempotent so 2A A  

   I A     

     

 (b)    2 2A I A I      
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         2 2 2 2A A AI I A II    Theorem 1.4.1(f) and (g) 

     24 2 2A A A I    
 
Theorem 1.4.1(l) and (m); 
Property  AI IA A  in Section 1.4 

    4 4A A I    A  is idempotent so 2A A  

   I     

 

47. Applying Theorem 1.4.1(d) and (g), property  AI IA A , and the assumption kA O  we can write 

        2 2 1k kI A I A A A A
                

            2 2 3 2 1 1k k k kI A A A A A A A A A  

  kI A                   

 I O                   

 I                    

48.               
               

       
2 1 0

0 1

a b a b a b
A a d A ad bc I a d ad bc

c d c d c d
  

           
                    

2 2

2 2

0 0 0

0 0 0

ad bca bc ab bd a da ab bd

ad bcca dc cb d ac dc ad d
  

 

True-False Exercises 

(a) False. A  and B  are inverses of one another if and only if  AB BA I . 

(b) False.            
2 2 2A B A B A B A AB BA B  does not generally equal  2 22A AB B  since AB  may not 

equal BA . 

(c) False.        2 2A B A B A AB BA B  does not generally equal 2 2A B  since AB  may not equal BA . 

(d) False.    
1 1 1AB B A  does not generally equal  1 1A B . 

(e) False.   
T T TAB B A  does not generally equal T TA B . 

(f) True. This follows from Theorem 1.4.5. 

(g) True. This follows from Theorem 1.4.8. 

(h) True. This follows from Theorem 1.4.9. (The inverse of TA  is the transpose of 1A .) 

(i) False.        0 1 2 mp I a a a a I . 
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(j) True.  

If the i th row vector of A  is  0 0  then it follows from Formula (9) in Section 1.3 that 

i th row vector of         0 0      0 0  AB B .  

Consequently no matrix B  can be found to make the product AB I  thus A  does not have an inverse. 

If the j th column vector of A  is 

 
 
 
  


0

0

 then it follows from Formula (8) in Section 1.3 that 

the j th column vector of     BA B  

   
      
      

 
0 0

    

0 0

. 

Consequently no matrix B  can be found to make the product BA I  thus A  does not have an inverse. 

(k) False. E.g. I  and I  are both invertible but    I I O  is not. 

 

1.5 Elementary Matrices and a Method for Finding A-1 

1. (a) Elementary matrix (corresponds to adding 5  times the first row to the second row) 

 (b) Not an elementary matrix 

 (c) Not an elementary matrix 

 (d) Not an elementary matrix 

2. (a) Elementary matrix (corresponds to multiplying the second row by 3 ) 

 (b) Elementary matrix (corresponds to interchanging the first row and the third row) 

 (c) Elementary matrix (corresponds to adding 9  times the third row to the second row) 

 (d) Not an elementary matrix 

3. (a) Add 3  times the second row to the first row: 
 
 
 

1 3

0 1
 

 (b) Multiply the first row by  1
7 : 

 
 
 
  

1
7 0 0

0 1 0

0 0 1

 

 (c) Add 5  times the first row to the third row: 

 
 
 
  

1 0 0

0 1 0

5 0 1
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 (d) Interchange the first and third rows: 

 
 
 
 
 
 

0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1

 

4. (a) Add 3  times the first row to the second row: 
 
 
 

1 0

3 1
 

 (b) Multiply the third row by 1
3 : 

 
 
 
  

1
3

1 0 0

0 1 0

0 0

 

 (c) Interchange the first and fourth rows: 

 
 
 
 
 
 

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 

 (d) Add 1
7  times the third row to the first row: 

 
 
 
 
 
 

1
71 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 

5. (a) Interchange the first and second rows: 
   

     

3 6 6 6

1 2 5 1
EA  

 (b) Add 3  times the second row to the third row: 

   
    
    

2 1 0 4 4

1 3 1 5 3

1 9 4 12 10

EA  

 (c) Add 4  times the third row to the first row: 

 
   
  

13 28

2 5

3 6

EA  

6. (a) Multiply the first row by 6 : 
 

     

6 12 30 6

3 6 6 6
EA  

 (b) Add 4 times the first row to the second row: 

   
    
  

2 1 0 4 4

7 1 1 21 19

2 0 1 3 1

EA  

 (c) Multiply the second row by 5 : 

 
   
  

1 4

10 25

3 6

EA  
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7. (a) 

 
 
 
  

0 0 1

0 1 0

1 0 0

 ( B  was obtained from A  by interchanging the first row and the third row) 

 (b) 

 
 
 
  

0 0 1

0 1 0

1 0 0

 ( A  was obtained from B  by interchanging the first row and the third row) 

 (c) 

 
 
 
  

1 0 0

0 1 0

2 0 1

 (C  was obtained from A  by adding 2 times the first row to the third row) 

 (d) 

 
 
 
  

1 0 0

0 1 0

2 0 1

 ( A  was obtained from C  by adding 2  times the first row to the third row) 

8. (a) 

 
  
  

1 0 0

0 3 0

0 0 1

 ( D  was obtained from B  by multiplying the second row by 3 ) 

 (b) 

 
  
  

1
3

1 0 0

0 0

0 0 1

 ( B  was obtained from D  by multiplying the second row by  1
3 ) 

 (c) 

 
 
 
  

1 0 0

0 1 2

0 0 1

 ( F  was obtained from B  by adding 2  times the third row to the second row) 

 (d) 

 
  
  

1 0 0

0 1 2

0 0 1

 ( B  was obtained from F  by adding 2 times the third row to the second row) 

9. (a) (Method I: using Theorem 1.4.5) 

The determinant of A ,           det 1 7 4 2 1A , is nonzero. Therefore A  is invertible and its inverse is 




    
        

1 1
1

7 4 7 4

2 1 2 1
A . 

   (Method II: using the inversion algorithm) 

   
 
 

1 4 1 0

2 7 0 1
   

 

 
The identity matrix was adjoined to the given matrix. 

  
   

1 4 1 0

0 1 2 1
   

 

 
2  times the first row was added to the second row. 
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1 4 1 0

0 1 2 1
   

 

 
The second row was multiplied by 1 . 

  
  

1 0 7 4

0 1 2 1
,  

 

 
4  times the second row was added to the first row. 

 

  The inverse is 
 
  

7 4

2 1
. 

 (b) (Method I: using Theorem 1.4.5) 

The determinant of A ,            det 2 8 4 4 0A . Therefore A  is not invertible. 

(Method II: using the inversion algorithm) 

   
  

2 4 1 0

4 8 0 1
   

 

 
The identity matrix was adjoined to the given matrix. 

  
 
 

2 4 1 0

0 0 2 1
   

 

 
2  times the first row was added to the second row. 

 

  A row of zeros was obtained on the left side, therefore A  is not invertible. 

10. (a) (Method I: using Theorem 1.4.5) 

The determinant of A ,             det 1 16 5 3 1A , is nonzero. Therefore A  is invertible and its inverse 

is 


    
        

11
1

16 5 16 5

3 1 3 1
A . 

  (Method II: using the inversion algorithm) 

   
  

1 5 1 0

3 16 0 1
   

 

 
The identity matrix was adjoined to the given matrix. 

  
   

1 5 1 0

0 1 3 1
   

 

 
3  times the first row was added to the second row. 

  
  

1 5 1 0

0 1 3 1
   

 

 
The second row was multiplied by 1 . 

  
  

1 0 16 5

0 1 3 1
,  

 

 
5  times the second row was added to the first row. 

 

  The inverse is 
 

  

16 5

3 1
. 
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 (b) (Method I: using Theorem 1.4.5) 

The determinant of A ,            det 6 2 4 3 0A . Therefore A  is not invertible. 

  (Method II: using the inversion algorithm) 

  
 
   

6 4 1 0

3 2 0 1
   

 

 
The identity matrix was adjoined to the given matrix. 

  
   

0 0 1 2

3 2 0 1
   

 

 
2  times the second row was added to the first row. 

 
  A row of zeros was obtained on the left side, therefore the matrix is not invertible. 

11. (a) 

 
 
 
  

1 2 3 1 0 0

 2 5 3 0 1 0  

1 0 8 0 0 1

   
 

 
The identity matrix was adjoined to the given matrix. 

  
 
   
   

1 2 3 1 0 0

 0 1 3  2 1 0  

0 2 5 1 0 1

   
 

 

 
2  times the first row was added to the second row and 
1  times the first row was added to the third row. 

 

  
   
   

1 2 3 1 0 0

0 1 3  2 1 0  

0 0 1 5 2 1

   
 

 
2  times the second row was added to the third row. 

 

  
   
   

1 2 3 1 0 0

 0 1 3  2 1 0  

0 0 1 5 2 1

   
 

 
The third row was multiplied by 1 . 

 

  
   
   

1 2 0 14 6 3

 0 1 0  13 5 3 

0 0 1 5 2 1

   
 

 

 
3  times the third row was added to the second row and 
3  times the third row was added to the first row. 

 

  
   
   

1 0 0 40 16 9

 0 1 0  13 5 3

0 0 1 5 2 1

   
 

 
2  times the second row was added to the first row. 

 

    The inverse is 

 
   
   

40 16 9

13 5 3

5 2 1

. 
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  (b) 

  
 
 
   

1 3 4 1 0 0

 2 4 1  0 1 0  

4 2 9 0 0 1

   
 

 
The identity matrix was adjoined to the given matrix. 

  
  
 
 
   

1 3 4 1 0 0

 2 4 1  0 1 0  

4 2 9 0 0 1

   
 

 
The first row was multiplied by 1 . 

 

   
  
   

1 3 4 1 0 0

0 10 7  2 1 0  

0 10 7 4 0 1

   
 

 

 
2  times the first row was added to the second row and 
4  times the first row was added to the third row. 

 

   
  
  

1 3 4 1 0 0

 0 10 7  2 1 0  

0 0 0 2 1 1

   
 

 
The second row was added to the third row. 

 
   A row of zeros was obtained on the left side, therefore the matrix is not invertible. 

12. (a) 
 
 
 
  

1 1 2
5 5 5

1 1 1
5 5 10

1 4 1
5 5 10

1 0 0

     0 1 0  

0 0 1

   
 

 
The identity matrix was adjoined to the given matrix. 

  
 
 
 
  

1
2

1
2

1 1 2 5 0 0

 1 1    0 5 0  

1 4 0 0 5

   
 

 
Each row was multiplied by 5 . 

 

  
  
   

5
2

5
2

1 1 2 5 0 0

 0 0    5 5 0  

0 5 5 0 5

   
 

 

 
1  times the first row was added to the second and 
 1  times the first row was added to the third row. 

 

  
   
  

5
2

5
2

1 1 2 5 0 0

 0 5    5 0 5 

0 0 5 5 0

   
 

 
The second and third rows were interchanged. 

 

  
   
  

1
2

1 1 2 5 0 0

 0 1    1 0 1 

0 0 1 2 2 0

   
 

 

 
The second row was multiplied by  1

5  and 

the third row was multiplied by 2
5 . 

 

  
  
  

1 1 0 1 4 0

 0 1 0    0 1 1 

0 0 1 2 2 0

   
 

 

 
1
2  times the third row was added to the second row and  

2 times the third row was added to the first row. 
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1 0 0 1 3 1

 0 1 0    0 1 1 

0 0 1 2 2 0

   
 

 
1  times the second row was added to the first row. 

  The inverse is 

 
  
  

1 3 1

0 1 1

2 2 0

. 

  (b) 
 
   
  

1 1 2
5 5 5

3 32
5 5 10

1 4 1
5 5 10

1 0 0

     0 1 0  

0 0 1

   
 

 
The identity matrix was adjoined to the given matrix. 

  
 
   
  

3
2

1
2

1 1 2 5 0 0

 2 3    0 5 0  

1 4 0 0 5

   
 

 
Each row was multiplied by 5 . 

 

  
   
   

5
2

5
2

1 1 2 5 0 0

 0 5    10 5 0  

0 5 5 0 5

   
 

 

 
2  times the first row was added to the second and 
1  times the first row was added to the third row. 

 

  
   
  

5
2

1 1 2 5 0 0

 0 5    10 5 0  

0 0 0 5 5 5

   
 

 
1  times the second row was added to the third row. 

 
 A row of zeros was obtained on the left side, therefore the matrix is not invertible. 

13. 

 
 
 
  

1 0 1 1 0 0

 0 1 1  0 1 0  

1 1 0 0 0 1

   
 

 
The identity matrix was adjoined to the given matrix. 

 
 
 
 
   

1 0 1 1 0 0

 0 1 1  0 1 0  

0 1 1 1 0 1

   
 

 
1  times the first row was added to the third row. 

 
 
 
 
    

1 0 1 1 0 0

0 1 1 0 1 0  

0 0 2 1 1 1

   
 

 
1  times the second row was added to the third row. 

 
 
 
 
  

1 1 1
2 2 2

1 0 1 1 0 0

 0 1 1  0 1 0  

0 0 1

   
 

 
The third row was multiplied by  1

2 . 
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1 1 1
2 2 2

1 1 1
2 2 2

1 1 1
2 2 2

1 0 0

 0 1 0    

0 0 1

   
 

 

 
1  times the third row was added to the second and 
1  times the third row was added to the first row 

 

 The inverse is 

 
  
  

1 1 1
2 2 2

1 1 1
2 2 2

1 1 1
2 2 2

. 

14. 

 
 
 
 
  

2 3 2 0 1 0 0

 4 2 2 0   0 1 0  

0 0 1 0 0 1

   
 

 
The identity matrix was adjoined to the given matrix. 

 

 
 
 

 
 

1
2

1
2

0 01 3 0

 4 1 0    0 0  

0 0 1 0 0 1

   
 

 
Each of the first two rows was multiplied by 1

2
. 

 

 
 
 
 
  

1
2

1
2

0 01 3 0

 0 13 0    2 2 0  

0 0 1 0 0 1

   
 

 
4  times the first row was added to the second row. 

 

 
 
 
 
  

1
2

2 2 2
13 26

0 01 3 0

 0 1 0    0  

0 0 1 0 0 1

   
 

 
The second row was multiplied by 1

13 .  

 

 
 
 
 
  

2 3 2
26 26

2 2 2
13 26

01 0 0

 0 1 0    0  

0 0 1 0 0 1

   
 

 
3  times the second row was added to the first row. 

 

 The inverse is 

 
 
 
 
  

2 3 2
26 26

2 2 2
13 26

0

0

0 0 1

. 

15. 

 
 
 
  

2 6 6 1 0 0

 2 7 6  0 1 0  

2 7 7 0 0 1

   
 

 
The identity matrix was adjoined to the given matrix. 

 
 
  
  

2 6 6 1 0 0

 0 1 0  1 1 0  

0 1 1 1 0 1

   
 

 

 
1  times the first row was added to the second and 
1  times the first row was added to the third row 
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2 6 6 1 0 0

0 1 0  1 1 0  

0 0 1 0 1 1

   
 

 
1  times the second row was added to the third row. 

 
 
  
  

2 6 0 1 6 6

 0 1 0  1 1 0  

0 0 1 0 1 1

   
 

 
6  times the third row was added to the first row 

 
 
  
  

2 0 0 7 0 6

 0 1 0  1 1 0  

0 0 1 0 1 1

   
 

 
6  times the second row was added to the first row 

 
 
  
  

7
21 0 0 0 3

 0 1 0  1 1 0   

0 0 1 0 1 1

   
 

 
The first row was multiplied by 1

2 .  

 

  The inverse is 

 
  
  

7
2 0 3

1 1 0

0 1 1

. 

16. 

 
 
 
 
 
  

1 0 0 0 1 0 0 0

1 3 0 0 0 1 0 0
    
1 3 5 0 0 0 1 0

1 3 5 7 0 0 0 1

   
 

 

 
The identity matrix was adjoined to the given matrix. 

 

 
  
 
 

  

1 0 0 0 1 0 0 0

0 3 0 0 1 1 0 0
    
0 3 5 0 1 0 1 0

0 3 5 7 1 0 0 1

   
 

 

 
1  times the first row was added to each of the remaining 
rows. 

 

 
  
 
 

  

1 0 0 0 1 0 0 0

0 3 0 0 1 1 0 0
    
0 0 5 0 0 1 1 0

0 0 5 7 0 1 0 1

   
 

 

 
1  times the second row was added to the third row and 
to the fourth row. 

 

 
  
 
 

  

1 0 0 0 1 0 0 0

0 3 0 0 1 1 0 0
    
0 0 5 0 0 1 1 0

0 0 0 7 0 0 1 1

   
 

 
1  times the third row was added to the fourth row 
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1 1
3 3

1 1
5 5

1 1
7 7

1 0 0 01 0 0 0

0 00 1 0 0
    

0 00 0 1 0

0 00 0 0 1

   
 

 

 
 
 
The second row was multiplied by 1

3  ,  

the third row was multiplied by 1
5  ,  and 

the fourth row was multiplied by 1
7  .  

 

 The inverse is 

 
  
 
 

 

1 1
3 3

1 1
5 5

1 1
7 7

1 0 0 0

0 0

0 0

0 0

. 

17. 

 
 
 
 
 

    

2 4 0 0 1 0 0 0

1 2 12 0 0 1 0 0
    
0 0 2 0 0 0 1 0

0 1 4 5 0 0 0 1

  
 

 

 
The identity matrix was adjoined to the given 
matrix. 

 

 
  
 
 

    

1 2 12 0 0 1 0 0

2 4 0 0 1 0 0 0
    
0 0 2 0 0 0 1 0

0 1 4 5 0 0 0 1

  
 

 
The first and second rows were interchanged. 

 

 
    
 
 

    

1 2 12 0 0 1 0 0

0 8 24 0 1 2 0 0
    
0 0 2 0 0 0 1 0

0 1 4 5 0 0 0 1

  
 

 
2  times the first row was added to the second. 

 

 
    
 
 

    

1 2 12 0 0 1 0 0

0 1 4 5 0 0 0 1
    
0 0 2 0 0 0 1 0

0 8 24 0 1 2 0 0

  
 

 
The second and fourth rows were interchanged. 

 

 
  
 
 

    

1 2 12 0 0 1 0 0

0 1 4 5 0 0 0 1
    
0 0 2 0 0 0 1 0

0 8 24 0 1 2 0 0

  
 

 
The second row was multiplied by 1.  

 

 
  
 
 

   

1 2 12 0 0 1 0 0

0 1 4 5 0 0 0 1
    
0 0 2 0 0 0 1 0

0 0 8 40 1 2 0 8

  
 

 
8  times the second row was added to the fourth. 
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1
2

1 2 12 0 0 1 0 0

0 1 4 5 0 0 0 1
    
0 0 1 0 0 0 0

0 0 8 40 1 2 0 8

  
 

 
The third row was multiplied by 1

2 .  

 

 
  
 
 

    

1
2

1 2 12 0 0 1 0 0

0 1 4 5 0 0 0 1
    
0 0 1 0 0 0 0

0 0 0 40 1 2 4 8

  
 

 

 
8  times the third row was added  
to the fourth row. 

 

 
  
 
 

    

1
2

1 1 1 1
40 20 10 5

0 1 0 01 2 12 0

0 0 0 10 1 4 5
    

0 0 00 0 1 0

0 0 0 1

  
 

 
The fourth row was multiplied by 1

40 .  

 

 
  
 
 

    

1 1 1
8 4 2

1
2

1 1 1 1
40 20 10 5

0 1 0 01 2 12 0

00 1 4 0
    

0 0 00 0 1 0

0 0 0 1

  
 

 

 
5  times the fourth row was added  
to the second row. 

 

 
   
 
 

    

31 1
8 4 2

1
2

1 1 1 1
40 20 10 5

0 1 6 01 2 0 0

00 1 0 0
    

0 0 00 0 1 0

0 0 0 1

  
 

 

 
 
 
4  times the third row was added  
to the second row and 
12  times the third row was added  
to the first row. 

 

 
   
 
 

    

1 1
4 2

31 1
8 4 2

1
2

1 1 1 1
40 20 10 5

3 01 0 0 0

00 1 0 0
    

0 0 00 0 1 0

0 0 0 1

  
 

 

 
2  times the second row was added  
to the first row. 

 

 The inverse is 

 
   
 
 

    

1 1
4 2

31 1
8 4 2

1
2

1 1 1 1
40 20 10 5

3 0

0

0 0 0
. 

18. 

 
 
 
 
 

  

0 0 2 0 1 0 0 0

1 0 0 1 0 1 0 0
    
0 1 3 0 0 0 1 0

2 1 5 3 0 0 0 1

   
 

 
The identity matrix was adjoined to the given matrix. 
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1 0 0 1 0 1 0 0

0 0 2 0 1 0 0 0
    
0 1 3 0 0 0 1 0

2 1 5 3 0 0 0 1

   
 

 
The first and second rows were interchanged. 

 

 
 
 
 
 

   

1 0 0 1 0 1 0 0

0 0 2 0 1 0 0 0
    
0 1 3 0 0 0 1 0

0 1 5 5 0 2 0 1

   
 

 

 
2  times the first row was added to the fourth row 
and to the fourth row. 

 

 
  
 
 

   

1 0 0 1 0 1 0 0

0 1 3 0 0 0 1 0
    
0 0 2 0 1 0 0 0

0 1 5 5 0 2 0 1

   
 

 
The second and third rows were interchanged. 

 

 
   
 
 

   

1 0 0 1 0 1 0 0

0 1 3 0 0 0 1 0
    
0 0 2 0 1 0 0 0

0 1 5 5 0 2 0 1

   
 

 
The second row was multiplied by 1.  

 

 
   
 
 

   

1 0 0 1 0 1 0 0

0 1 3 0 0 0 1 0
    
0 0 2 0 1 0 0 0

0 0 8 5 0 2 1 1

   
 

 

 
1  times the second row was added  
to the fourth row. 

 

 
   
 
 

    

1 0 0 1 0 1 0 0

0 1 3 0 0 0 1 0
    
0 0 2 0 1 0 0 0

0 0 0 5 4 2 1 1

   
 

 

 
4  times the third row was added  
to the fourth row. 

 

 
  
 
 

   

1
2

4 2 1 1
5 5 5 5

0 1 0 01 0 0 1

0 0 1 00 1 3 0
     

0 0 00 0 1 0

0 0 0 1

   
 

 

 
The third row was multiplied by 1

2   and 

the fourth row was multiplied by  1
5  .  

 

 
  
 
 

   

34 1 1
5 5 5 5

3
2

1
2

4 2 1 1
5 5 5 5

1 0 0 0

0 1 00 1 0 0
     

0 0 00 0 1 0

0 0 0 1

   
 

 

 
 
1  times the fourth row was added to the first row 
and  
3 times the third row was added to the second. 
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 The inverse is 

 
  
 
 

   

34 1 1
5 5 5 5

3
2

1
2

4 2 1 1
5 5 5 5

0 1 0

0 0 0
. 

19. (a)        

 
 
 
 
 
  

1

2

3

4

0 0 0 1 0 0 0

0 0 0 0 1 0 0
    
0 0 0 0 0 1 0

0 0 0 0 0 0 1

k

k

k

k

   
 

 
The identity matrix was adjoined to the given matrix. 

 

 
 
 
 
 
 
 

1

2

3

4

1

1

1

1

0 0 01 0 0 0
0 0 00 1 0 0

    
0 0 1 0 0 0 0

0 0 0 1 0 0 0

k

k

k

k

   
 

 

 
 
 
The first row was multiplied by 11 / ,k  

the second row was multiplied by 21 /  ,k  

the third row was multiplied by 31 /  ,k  and 

the fourth row was multiplied by 41 /  .k  

 

  The inverse is 

 
 
 
 
 
 
 

1

2

3

4

1

1

1

1

0 0 0

0 0 0

0 0 0

0 0 0

k

k

k

k

. 

 (b)            

 
 
 
 
 
  

1 0 0 1 0 0 0

0 1 0 0 0 1 0 0
      
0 0 1 0 0 1 0

0 0 0 1 0 0 0 1

k

k
   

 

 
The identity matrix was adjoined to the given matrix. 

 

 
 
 
 
 
  

1 1

1 1

1 0 0 0 0 0

0 1 0 0 0 1 0 0
    
0 0 1 0 0 0

0 0 0 1 0 0 0 1

k k

k k

   
 

 
First row and third row were both multiplied by 1 / k . 

 

 
 
 
 
 
  

1 1

1 1

1 0 0 0 0 0

0 1 0 0 0 1 0 0
    
0 0 1 0 0 0

0 0 0 1 0 0 0 1

k k

k k

   
 

 

 
 1

k  times the fourth row was added  

to the third row and 
 1

k  times the second row was added  

to the first row. 

 

  The inverse is 

 
 
 
 
 
 

1 1

1 1

0 0

0 1 0 0

0 0

0 0 0 1

k k

k k

. 
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20. (a)       

 
 
 
 
 
  

1

2

3

4

0 0 0 1 0 0 0

0 0 0 0 1 0 0
    
0 0 0 0 0 1 0

0 0 0 0 0 0 1

k

k

k

k

   
 

 
The identity matrix was adjoined to the given matrix. 

 

 
 
 
 
 
  

4

3

2

1

0 0 0 0 0 0 1

0 0 0 0 0 1 0
    
0 0 0 0 1 0 0

0 0 0 1 0 0 0

k

k

k

k

   
 

 

The first and fourth rows were interchanged; 
the second and third rows were interchanged. 

 

 
 
 
 
 
 
 

4

3

2

1

1

1

1

1

0 0 01 0 0 0
0 0 00 1 0 0

    
0 0 1 0 0 0 0

0 0 0 1 0 0 0

k

k

k

k

   
 

 

The first row was multiplied by 41 / ,k  

the second row was multiplied by 31 /  ,k  

the third row was multiplied by 21 /  ,k  and 

the fourth row was multiplied by 11 /  . k  

 

  The inverse is 

 
 
 
 
 
 
 

4

3

2

1

1

1

1

1

0 0 0

0 0 0

0 0 0

0 0 0

k

k

k

k

. 

 (b)           

 
 
 
 
 
  

0 0 0 1 0 0 0

1 0 0 0 1 0 0
      
0 1 0 0 0 1 0

0 0 1 0 0 0 1

k

k

k

k

   
 

 
The identity matrix was adjoined to the given matrix. 

 

 
 
 
 
 
  

1

1 1

1 1

1 1

1 0 0 0 0 0 0

1 0 0 0 0 0
    
0 1 0 0 0 0

0 0 1 0 0 0

k

k k

k k

k k

   
 

 
Each row was multiplied by 1 / k . 

 

 
  
 
 
  

2

1

1 1

1 1

1 1

0 0 01 0 0 0

0 00 1 0 0
    
0 1 0 0 0 0
0 0 1 0 0 0

k

kk

k k

k k

   
 

 

 
 1

k  times the first row was added  

to the second row. 

 

 
  
 
 
  

2

3 2

1

1 1

1 1 1

1 1

0 0 01 0 0 0
0 00 1 0 0

    
0 0 1 0 0

0 0 1 0 0 0

k

kk

kk k

k k

   
 

 

 
 1

k  times the second row was added  

to the third row. 
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2

3 2

4 3 2

1

1 1

1 1 1

1 1 1 1

0 0 01 0 0 0
0 00 1 0 0

     
00 0 1 0

0 0 0 1

k

kk

kk k

kk k k

   
 

 

 
 1

k  times the third row was added  

to the fourth row. 

 

 The inverse is 

 
  
 
 
   

2

3 2

4 3 2

1

1 1

1 1 1

1 1 1 1

0 0 0

0 0

0

k

kk

kk k

kk k k

. 

21. It follows from parts (a) and (c) of Theorem 1.5.3 that a square matrix is invertible if and only if its reduced row 

 echelon form is identity. 

 
 
 
 
  

 1   

1 1

c c c

c c

c

     

 
 
 
 
  

1 1

 1    

c

c c

c c c

   
 

 
The first and third rows were interchanged. 

 
 
   
  

2

1 1

 0 1 0    

0 0

c

c

c c

   
 

 

1  times the first row was added to the second row and 
c  times the first row was added to the third row. 

 

 If     2 1 0c c c c  or   1 0c , i.e. if  0c  or  1c  the last matrix contains at least one row of zeros, therefore 

 it cannot be reduced to I  by elementary row operations. 

Otherwise (if  0c  and  1c ), multiplying the second row by  
1
1 c  and multiplying the third row by 

 2
1

c c
 would 

result in a row echelon form with 1’s on the main diagonal. Subsequent elementary row operations would then lead 

to the identity matrix. 

 We conclude that for any value of c  other than 0  and 1  the matrix is invertible. 

22. It follows from parts (a) and (c) of Theorem 1.5.3 that a square matrix is invertible if and only if its reduced row 
echelon form is identity. 

 
 
 
 
  

1 0

 1 1   

0 1

c

c

c
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1 1

 1 0    

0 1

c

c

c

   
 

 
The first and second rows were interchanged. 

 
 
 
 
  

1 1

 0 1    

1 0

c

c

c

   
 

 
The second and third rows were interchanged. 

 
 
 
 
   

2

1 1

 0 1    

0 1

c

c

c c

   
 

 
c  times the first row was added to the third row. 

 
 
 
 
  

3

1 1

 0 1    

0 0 2

c

c

c c

   
 

 

 

2 1c  times the second row was added to the third. 
 

 

If    3 22 ( 2) 0c c c c , i.e. if  0c ,  2c  or   2c  the last matrix contains a row of zeros, therefore it cannot 

be reduced to I  by elementary row operations. 

 Otherwise (if  3 2 0c c ), multiplying the last row by 
3
1

2c c
 would result in a row echelon form with 1’s on the main 

 diagonal. Subsequent elementary row operations would then lead to the identity matrix. 

 We conclude that for any value of c  other than 0 , 2  and  2  the matrix is invertible. 

23. We perform a sequence of elementary row operations to reduce the given matrix to the identity matrix. As we do so, 
we keep track of each corresponding elementary matrix: 

  
  
 

3 1
   

2 2
A      

  
 
 

1 5
   
2 2

  
 

 
2  times the second row was added to the first. 

 
  
 

1

1 2

0 1
E   

  
  

1 5
   
0 8

  
 

 
2  times the first row was added to the second. 

 
   

2

1 0

2 1
E   

  
 
 

1 5
   
0 1

  
 

 
The second row was multiplied by  1

8 . 
 

   
3 1

8

1 0

0
E   

  
 
 

1 0
   
0 1

  
 

 
5  times the second row was added to the first. 

 
  
 

4

1 5

0 1
E   

 

  Since 4 3 2 1E E E E A I , then 
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1 1 1 1 1
4 3 2 1 1 2 3 4

1 2 1 0 1 0 1 5

0 1 2 1 0 8 0 1
A E E E E I E E E E and  

        
               

A E E E E1
4 3 2 1 1

8

1 01 5 1 0 1 2

00 1 2 1 0 1
. 

Note that this answer is not unique since a different sequence of elementary row operations (and the corresponding 
elementary matrices) could be used instead. 

24. We perform a sequence of elementary row operations to reduce the given matrix to the identity matrix. As we do so, 

 we keep track of each corresponding elementary matrix: 

  
   

1 0
   

5 2
A      

  
 
 

1 0
   
0 2

  
 

 
5  times the first row was added to the second row. 

 
  
 

1

1 0

5 1
E   

  
 
 

1 0
   
0 1

  
 

 
The second row was multiplied by 1

2 . 
 

  
 

2 1
2

1 0

0
E   

 

  Since 2 1E E A I ,        
         

1 1 1
2 1 1 2

1 0 1 0

5 1 0 2
A E E I E E  and     

     
  

1
2 1 1

2

1 0 1 0

0 5 1
A E E . 

Note that this answer is not unique since a different sequence of elementary row operations (and the corresponding 
elementary matrices) could be used instead. 

25.   We perform a sequence of elementary row operations to reduce the given matrix to the identity matrix. As we do so, 
we keep track of each corresponding elementary matrix: 

 
 

   
  

1 0 2

 0 4 3 

0 0 1

A      

 
 

 
 
  

3
4

1 0 2

 0 1  

0 0 1

  
 

 
The second row was multiplied by 1

4 . 

 
   
  

1
1 4

1 0 0

0 0

0 0 1

E   

 
 

 
 
  

1 0 2

 0 1 0  

0 0 1

  
 

 
 3

4  times the third row was added to the second. 

 
   
  

3
2 4

1 0 0

0 1

0 0 1

E   

 
 
 
 
  

1 0 0

 0 1 0  

0 0 1

  
 

 
2  times the third row was added to the first row. 

 
   
  

3

1 0 2

0 1 0

0 0 1

E   
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  Since 3 2 1E E E A I , we have     

     
             
          

1 1 1 1 3
3 2 1 1 2 3 4

1 0 0 1 0 0 1 0 2

0 4 0 0 1 0 1 0

0 0 1 0 0 1 0 0 1

A E E E I E E E  

and 

     
            
          

1 3 1
3 2 1 4 4

1 0 2 1 0 0 1 0 0

0 1 0 0 1 0 0

0 0 1 0 0 1 0 0 1

A E E E . 

Note that this answer is not unique since a different sequence of elementary row operations (and the corresponding 
elementary matrices) could be used instead. 

26. We perform a sequence of elementary row operations to reduce the given matrix to the identity matrix. As we do so, 

 we keep track of each corresponding elementary matrix: 

 
 
   
  

1 1 0

 1 1 1  

0 1 1

A      

 
 
 
 
  

1 1 0

 0 0 1  

0 1 1

  
 

 
1  times the first row was added to the second row. 

 
   
  

1

1 0 0

1 1 0

0 0 1

E   

 
 
 
 
  

1 1 0

 0 1 1  

0 0 1

  
 

 
The second and third rows were interchanged 

 
   
  

2

1 0 0

0 0 1

0 1 0

E   

 
 
 
 
  

1 1 0

 0 1 0  

0 0 1

  
 

 
1  times the third row was added to the second. 

 
   
  

3

1 0 0

0 1 1

0 0 1

E   

 
 
 
 
  

1 0 0

 0 1 0  

0 0 1

  
 

 
1  times the second row was added to the first row. 

 
   
  

4

1 1 0

0 1 0

0 0 1

E   

 

  Since 4 3 2 1E E E E A I , we have 

       

       
                 
              

1 1 1 1 1
4 3 2 1 1 2 3 4

1 0 0 1 0 0 1 0 0 1 1 0

1 1 0 0 0 1 0 1 1 0 1 0

0 0 1 0 1 0 0 0 1 0 0 1

A E E E E I E E E E  and 



       
                 
              

1
4 3 2 1

1 1 0 1 0 0 1 0 0 1 0 0

0 1 0 0 1 1 0 0 1 1 1 0

0 0 1 0 0 1 0 1 0 0 0 1

A E E E E . 

Note that this answer is not unique since a different sequence of elementary row operations (and the corresponding 
elementary matrices) could be used instead. 

27. Let us perform a sequence of elementary row operations to produce B  from A . As we do so, we keep track of each 
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 corresponding elementary matrix: 

 
 
   
  

1 2 3

 1 4 1  

2 1 9

A      

 
 
  
  

1 2 3

 0 2 2  

2 1 9

  
 

 
1  times the first row was added to the second row. 

 
   
  

1

1 0 0

1 1 0

0 0 1

E   

 
 
  
  

1 0 5

 0 2 2  

2 1 9

  
 

 
1  times the second row was added to the first row. 

 
   
  

2

1 1 0

0 1 0

0 0 1

E   

 
 
   
  

1 0 5

 0 2 2  

1 1 4

B   
 

 
1  times the first row was added to the third row. 

 
   
  

3

1 0 0

0 1 0

1 0 1

E   

 

  Since 3 2 1E E E A B , the equality CA B  is satisfied by the matrix  

        
                  
               

3 2 1

1 0 0 1 1 0 1 0 0 2 1 0

0 1 0 0 1 0 1 1 0 1 1 0

1 0 1 0 0 1 0 0 1 2 1 1

C E E E .  

Note that this answer is not unique since a different sequence of elementary row operations (and the corresponding 
elementary matrices) could be used instead. 

28. Let us perform a sequence of elementary row operations to produce B  from A . As we do so, we keep track of each 

 corresponding elementary matrix: 

 
 
   
  

2 1 0

 1 1 0  

3 0 1

A      

 
 
   
  

2 1 0

 5 1 0  

3 0 1

  
 

 
2  times the first row was added to the second. 

 
   
  

1

1 0 0

2 1 0

0 0 1

E   

 
 
   
    

2 1 0

 5 1 0  

1 2 1

  
 

 
2  times the first row was added to the third row. 

 
   
  

2

1 0 0

0 1 0

2 0 1

E   

 
 
    
    

6 9 4

 5 1 0  

1 2 1

B   
 

 
4  times the third row was added to the first row. 

 
   
  

3

1 0 4

0 1 0

0 0 1

E   
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  Since 3 2 1E E E A B , the equality CA B  is satisfied by the matrix  

        
                  
               

3 2 1

1 0 4 1 0 0 1 0 0 9 0 4

0 1 0 0 1 0 2 1 0 2 1 0

0 0 1 2 0 1 0 0 1 2 0 1

C E E E .  

Note that a different sequence of elementary row operations (and the corresponding elementary matrices) could be 

used instead. (However, since both A  and B  in this exercise are invertible, C  is uniquely determined by the 

formula  1C BA .) 

29.  

 
   
  

1 0 0

0 1 0A

a b c

 cannot result from interchanging two rows of 3I  (since that would create a nonzero entry above the 

main diagonal). 

 A  can result from multiplying the third row of 3I  by a nonzero number c   

(in this case,   0,  0a b c ). 

 The other possibilities are that A  can be obtained by adding a  times the first row to the third  ( 0, 1)b c  or by 

adding b  times the second row to the third   0, 1a c . 

 In all three cases, at least one entry in the third row must be zero. 

30. Consider three cases: 

 If  0a  then A  has a row of zeros (first row). 

 If  0a  and  0h  then A  has a row of zeros (fifth row). 

 If  0a  and  0h  then adding  d
a  times the first row to the third, and adding  e

h  times the fifth row to the third 

results in the third row becoming a row of zeros. 

In all three cases, the reduced row echelon form of A  is not 5I . By Theorem 1.5.3, A  is not invertible. 

True-False Exercises 

(a) False. An elementary matrix results from performing a single elementary row operation on an identity matrix; a 
product of two elementary matrices would correspond to a sequence of two such operations instead, which generally 
is not equivalent to a single elementary operation. 

(b) True. This follows from Theorem 1.5.2. 

(c) True. If A  and B  are row equivalent then there exist elementary matrices 1, , pE E  such that   1pB E E A . 

Likewise, if B  and C  are row equivalent then there exist elementary matrices * *
1 , , qE E  such that  * *

1qC E E B . 

Combining the two equalities yields   * *
1 1q pC E E E E A  therefore A  and C  are row equivalent. 

(d) True. A homogeneous system  0Ax  has either one solution (the trivial solution) or infinitely many solutions. If A  

is not invertible, then by Theorem 1.5.3 the system cannot have just one solution. Consequently, it must have 
infinitely many solutions. 
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(e) True. If the matrix A  is not invertible then by Theorem 1.5.3 its reduced row echelon form is not nI . However, the 

matrix resulting from interchanging two rows of A  (an elementary row operation) must have the same reduced row 

echelon form as A  does, so by Theorem 1.5.3 that matrix is not invertible either. 

(f) True. Adding a multiple of the first row of a matrix to its second row is an elementary row operation. Denoting by E  

be the corresponding elementary matrix we can write    
1 1 1EA A E  so the resulting matrix EA  is invertible if A  

is. 

(g) False. For instance, 
         

          
         

1 0 1 / 2 0 2 0 1 / 3 0 3 0

0 1 0 1 0 1 0 1 0 1
. 

1.6 More on Linear Systems and Invertible Matrices 

1. The given system can be written in matrix form as Ax b , where 
 

  
 

1 1

5 6
A , 

 
  
 

1

2

x

x
x , and 

 
  
 

2

9
b .  

 We begin by inverting the coefficient matrix A  

  
 
 

1 1 1 0

5 6 0 1
   

 

 
The identity matrix was adjoined to the coefficient matrix. 

  
  

1 1 1 0

0 1 5 1
   

 

 
5  times the first row was added to the second row. 

  
  

1 0 6 1

0 1 5 1
   

 

 
1  times the second row was added to the first row. 

 

Since   
   

1 6 1

5 1
A , Theorem 1.6.2 states that the system has exactly one solution  1Ax b : 

       
               

1

2

6 1 2 3

5 1 9 1

x

x
, i.e.,   1 23,  1x x . 

2. The given system can be written in matrix form as Ax b , where 
 

   

4 3

2 5
A , 

 
  
 

1

2

x

x
x , and 

 
  
 

3

9
b . 

 We begin by inverting the coefficient matrix A   

  
  

4 3 1 0

2 5 0 1
   

 

 
The identity matrix was adjoined to the coefficient matrix. 

  
  

2 5 0 1

4 3 1 0
   

 

 
The first and second rows were interchanged. 
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2 5 0 1

0 7 1 2
   

 

 
2  times the first row was added to the second row. 

 
 
  

15
22

1 2
7 7

01  

0 1  
   

 

 

 
The first row was multiplied by 1

2  and  

the second row was multiplied by 1
7 . 

 
 

  

5 3
14 14

1 2
7 7

1 0 

0 1 
   

 

 

5
2  times the second row was added to the first row. 

 

  Since   
   

5 3
1 14 14

1 2
7 7

A , Theorem 1.6.2 states that the system has exactly one solution  1Ax b : 

        
              

5 3
1 14 14

1 2
2 7 7

3 3

9 3

x

x
, i.e.,   1 2 3x x . 

3.  The given system can be written in matrix form as Ax b , where 

 
   
  

1 3 1

2 2 1

2 3 1

A , 

 
   
  

1

2

3

x

x

x

x , and  

 

 
   
  

4

1

3

b . We begin by inverting the coefficient matrix A  

 

 
 
 
  

1 3 1 1 0 0

 2 2 1 0 1 0  

2 3 1 0 0 1

   
 

 
The identity matrix was adjoined to the coefficient matrix. 

 
 
    
    

1 3 1 1 0 0

 0 4 1 2 1 0  

0 3 1 2 0 1

   
 

 

 
2  times the first row was added to the second and 
2  times the first row was added to the third row. 

 
 
    
  

1 3 1 1 0 0

0 4 1 2 1 0  

0 1 0 0 1 1

   
 

 
1  times the second row was added to the third row. 

 
 
  
    

1 3 1 1 0 0

0 1 0 0 1 1 

0 4 1 2 1 0

   
 

 
The second and third rows were interchanged. 

 
 
  
    

1 3 1 1 0 0

0 1 0 0 1 1 

0 0 1 2 3 4

   
 

 
4  times the second row was added to the third row. 
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1 3 1 1 0 0

0 1 0 0 1 1 

0 0 1 2 3 4

   
 

 
The third row was multiplied by 1 . 

 
  
  
  

1 3 0 1 3 4

0 1 0 0 1 1 

0 0 1 2 3 4

   
 

 
1  times the third row was added to the first row. 

 
 
  
  

1 0 0 1 0 1

0 1 0 0 1 1 

0 0 1 2 3 4

   
 

 
3  times the second row was added to the first row. 

 

  Since 

 
   
  

1

1 0 1

0 1 1

2 3 4

A , Theorem 1.6.2 states that the system has exactly one solution  1Ax b :

 

        
                 
               

1

2

3

1 0 1 4 1

0 1 1 1 4

2 3 4 3 7

x

x

x

, i.e.,   1 21, 4,x x  and  3 7x . 

4.  The given system can be written in matrix form as Ax b , where 

 
   
  

5 3 2

3 3 2

0 1 1

A , 

 
   
  

1

2

3

x

x

x

x , and  

 

 
   
  

4

2

5

b . We begin by inverting the coefficient matrix A   

 

 
 
 
  

5 3 2 1 0 0

 3 3 2  0 1 0  

0 1 1 0 0 1

   
 

 

 
The identity matrix was adjoined to the coefficient matrix. 

 
 
 
 
  

2 0 0 1 1 0

 3 3 2   0 1 0  

0 1 1 0 0 1

   
 

 
1  times the second row was added to the first row. 

 
 
 
 
  

1 1
2 21 0 0 0

3 3 2  0 1 0  

0 1 1 0 0 1

   
 

 
The first row was multiplied by 1

2 . 

 
 
  
  

1 1
2 2

3 5
2 2

1 0 0 0

0 3 2  0  

0 1 1 0 0 1

   
 

 
3  times the first row was added to the second row. 
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1 1
2 2

3 5
2 2

1 0 0 0

0 1 1   0 0 1 

0 3 2 0

   
 

 
The second and third rows were interchanged. 

 
 
 
 
    

1 1
2 2

3 5
2 2

1 0 0 0

0 1 1   0 0 1 

0 0 1 3

   
 

 
3  times the second row was added to the third row. 

 
 
 
 
  

1 1
2 2

3 5
2 2

1 0 0 0

0 1 1   0 0 1 

0 0 1 3

   
 

 
The third row was multiplied by 1 . 

 
 
   
  

1 1
2 2

3 5
2 2

3 5
2 2

1 0 0 0

0 1 0  2  

0 0 1 3

   
 

 
1  times the third row was added to the second row. 

 

  Since 

 
    
  

1 1
2 2

1 3 5
2 2

3 5
2 2

0

2

3

A , Theorem 1.6.2 states that the system has exactly one solution  

 1Ax b : 

      
                
            

1 1
1 2 2

3 5
2 2 2

3 5
3 2 2

0 4 1

2 2 11

3 5 16

x

x

x

, i.e.,   1 21, 11,x x  and 3 16x . 

5.  The given system can be written in matrix form as Ax b , where 

 
   
  

1 1 1

1 1 4

4 1 1

A , 

 
   
  

x

y

z

x , and  

 

 
   
  

5

10

0

b . We begin by inverting the coefficient matrix A  

 

 
  
  

1 1 1 1 0 0

 1 1 4 0 1 0  

4 1 1 0 0 1

   
 

 
The identity matrix was adjoined to the coefficient matrix. 

 
 
   
  

1 1 1 1 0 0

 0 0 5 1 1 0  

0 5 5 4 0 1

   
 

 

 
1  times the first row was added to the second row and 
4  times the first row was added to the third row. 

 
 
 
 
   

1 1 1 1 0 0

0 5 5 4 0 1 

0 0 5 1 1 0

   
 

 
The second and third rows were interchanged. 
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4 1
5 5

1 1
5 5

1 1 1 1 0 0

0 1 1  0  

0 0 1 0

   
 

 

 
The second row was multiplied by 1

5  and  

the third row was multiplied by  1
5 . 

 
 
 
 
  

4 1
5 5

3 1 1
5 5 5

1 1
5 5

1 1 0 0

0 1 0   

0 0 1 0

   
 

 

 
1  times the third row was added to the second row 
and to the first row. 

 
 
 
 
  

1 1
5 5

3 1 1
5 5 5

1 1
5 5

1 0 0 0

0 1 0   

0 0 1 0

   
 

 
1  times the second row was added to the first row. 

 

 Since 

 
   
  

1 1
5 5

1 3 1 1
5 5 5

1 1
5 5

0

0

A , Theorem 1.6.2 states that the system has exactly one solution  1Ax b :

 

      
             
             

1 1
5 5

3 1 1
5 5 5

1 1
5 5

0 5 1

10 5

0 0 1

x

y

z

, i.e.,  1, 5,x y  and  1z . 

6.  The given system can be written in matrix form as Ax b , where 

   
 
 
 
 
    

0 1 2 3

1 1 4 4

1 3 7 9

1 2 4 6

A , 

 
 
 
 
 
 

w

x

y

z

x , and 

 
 
 
 
 
 

0

7

4

6

b . 

 We begin by inverting the coefficient matrix A  

 

   
 
 
 
 
     

0 1 2 3 1 0 0 0

1 1 4 4 0 1 0 0
   

1 3 7 9 0 0 1 0

1 2 4 6 0 0 0 1

  
 

 

The identity matrix was adjoined to the coefficient 
matrix. 

 

 
    
 
 
     

1 1 4 4 0 1 0 0

0 1 2 3 1 0 0 0
   

1 3 7 9 0 0 1 0

1 2 4 6 0 0 0 1

  
 

 
The first and second rows were interchanged. 

 

 
    
 
 

   

1 1 4 4 0 1 0 0

0 1 2 3 1 0 0 0
   
0 2 3 5 0 1 1 0

0 1 0 2 0 1 0 1

  
 

 

 
1  times the first row was added to the third row and 
the first row was added to the fourth row. 
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1 1 4 4 0 1 0 0

0 1 2 3 1 0 0 0
   
0 2 3 5 0 1 1 0

0 1 0 2 0 1 0 1

  
 

 
The second row was multiplied by 1 . 

 

 
  
   
 

  

1 1 4 4 0 1 0 0

0 1 2 3 1 0 0 0
   
0 0 1 1 2 1 1 0

0 0 2 1 1 1 0 1

  
 

 

 
2  times the second row was added to the third row 
and the second row was added to the fourth. 

 

 
  
  
 

  

1 1 4 4 0 1 0 0

0 1 2 3 1 0 0 0
   
0 0 1 1 2 1 1 0

0 0 2 1 1 1 0 1

  
 

 
The third row was multiplied by 1 . 

 

 
  
  
 

   

1 1 4 4 0 1 0 0

0 1 2 3 1 0 0 0
   
0 0 1 1 2 1 1 0

0 0 0 1 3 1 2 1

  
 

 
2  times the third row was added to the fourth. 

 

 
  
  
 

    

1 1 4 4 0 1 0 0

0 1 2 3 1 0 0 0
   
0 0 1 1 2 1 1 0

0 0 0 1 3 1 2 1

  
 

 
The fourth row was multiplied by 1 . 

 

 
  
 
 

    

1 1 4 0 12 3 8 4

0 1 2 0 8 3 6 3
   
0 0 1 0 1 0 1 1

0 0 0 1 3 1 2 1

  
 

 

 
 
1  times the last row was added to the third row, 
3  times the last row was added to the second row 
and 4  times the last row was added to the first. 

 

 
  
 
 

    

1 1 0 0 8 3 4 0

0 1 0 0 6 3 4 1
   
0 0 1 0 1 0 1 1

0 0 0 1 3 1 2 1

  
 

 

 
 
2  times the third row was added to the second row 
and  
4  times the third row was added to the first row. 

 

 
  
 
 

    

1 0 0 0 2 0 0 1

0 1 0 0 6 3 4 1
   
0 0 1 0 1 0 1 1

0 0 0 1 3 1 2 1

  
 

 
1  times the second row was added to the first. 
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  Since 

 
  
 
 
   

1

2 0 0 1

6 3 4 1

1 0 1 1

3 1 2 1

A , Theorem 1.6.2 states that the system has exactly one solution  

 
 1Ax b :          

        
               
       
       

          

2 0 0 1 0 6

6 3 4 1 7 1

1 0 1 1 4 10

3 1 2 1 6 7

w

x

y

z

, 

i.e.,  6w , 1x , 10y , and  7z . 

 

7. The given system can be written in matrix form as Ax b , where 
 

  
 

3 5

1 2
A , 

 
  
 

1

2

x

x
x , and 

 
 

  
 

1

2

b

b
b . We begin by inverting the coefficient matrix A  

  
 
 

3 5 1 0
  
1 2 0 1

   
 

 
The identity matrix was adjoined to the coefficient matrix. 

  
 
 

1 2 0 1
  
3 5 1 0

   
 

 
The first and second rows were interchanged. 

  
   

1 2 0 1
  
0 1 1 3

   
 

 
3  times the first row was added to the second row. 

  
  

1 2 0 1
  
0 1 1 3

   
 

 
The second row was multiplied by 1 . 

  
  

1 0 2 5
  
0 1 1 3

   
 

 
2  times the second row was added to the first row. 

 

 Since   
   

1 2 5

1 3
A , Theorem 1.6.2 states that the system has exactly one solution  1Ax b : 

      
               

1 1 1 2

2 2 1 2

2 52 5

31 3

x b b b

x b b b
, i.e.,   1 1 22 5x b b ,   2 1 23x b b . 

8. The given system can be written in matrix form as Ax b , where 

 
   
  

1 2 3

2 5 5

3 5 8

A , 

 
   
  

1

2

3

x

x

x

x , and 

 
   
  

1

2

3

b

b

b

b . We 

begin by inverting the coefficient matrix A  
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1 2 3 1 0 0

 2 5 5 0 1 0  

3 5 8 0 0 1

   
 

 
The identity matrix was adjoined to the coefficient matrix. 

 
 
   
    

1 2 3 1 0 0

 0 1 1 2 1 0  

0 1 1 3 0 1

   
 

 

 
2  times the first row was added to the second row and 
3  times the first row was added to the third row. 

 
 
   
   

1 2 3 1 0 0

 0 1 1 2 1 0  

0 0 2 5 1 1

   
 

 
The second row was added to the third row. 

 
 
   
   

5 1 1
2 2 2

1 2 3 1 0 0

 0 1 1 2 1 0  

0 0 1

   
 

 
The third row was multiplied by  1

2 . 

 
 
  
   

13 3 3
2 2 2

1 1 1
2 2 2

5 1 1
2 2 2

1 2 0

 0 1 0  

0 0 1

   
 

 

 
The third row was added to the second row and 
 3  times the third row was added to the first row. 

 
 
  
   

15 51
2 2 2

1 1 1
2 2 2

5 1 1
2 2 2

1 0 0

 0 1 0  

0 0 1

   
 

 
2  times the second row was added to the first row. 

 

  Since 

 
   
   

15 51
2 2 2

1 1 1 1
2 2 2

5 1 1
2 2 2

A , Theorem 1.6.2 states that the system has exactly one solution  1Ax b : 

         
                
               

15 5 15 51 1
1 1 1 2 32 2 2 2 2 2

1 1 1 1 1 1
2 2 1 2 32 2 2 2 2 2

5 51 1 1 1
3 3 1 2 32 2 2 2 2 2

x b b b b

x b b b b

x b b b b

, i.e., 

     15 51
1 1 2 32 2 2x b b b ,   1 1 1

2 1 2 32 2 2x b b b , and   5 1 1
3 1 2 32 2 2x b b b . 

9. 
  
 
 

1 5 1 2
        
3 2 4 5

   
 

 

 
 
We augmented the coefficient matrix with two columns of 
constants on the right hand sides of the systems  
(i) and (ii) – refer to Example 2. 

   
 
 

1 5 1 2
        
0 17 1 11

   
 

 
3  times the first row was added to the second row. 

 
 
 
  

1 11
17 17

1 21 5
        
0 1

   
 

 
The second row was multiplied by 1

17 . 
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22 21
17 17

1 11
17 17

1 0
        
0 1

   
 

 
5  times the second row was added to the first row. 

  
 We conclude that the solutions of the two systems are: 

 (i)  22
1 17 ,x   1

2 17x  (ii)  21
1 17x ,  11

2 17x   

 

 

10. 

  
  
   

1 4 1 0 3

 1 9 2    1    4  

6 4 8 0 5

   
 

 

 
 
We augmented the coefficient matrix with two columns of 
constants on the right hand sides of the systems  
(i) and (ii) – refer to Example 2. 

 
  
  
   

1 4 1 0 3

 1 9 2    1    4  

6 4 8 0 5

   
 

 
The first row was multiplied by 1 . 

 
  
  
   

1 4 1 0 3

 0 13 1   1    1 

0 28 2 0 23

   
 

 

 
1  times the first row was added to the second row and 
6  times the first row was added to the third row. 

 
  
  
   

1 1 1
13 13 13

1 4 1 0 3

 0 1        

0 28 2 0 23

   
 

 
The second row was multiplied by 1

13 . 

 
  
  
   

1 1 1
13 13 13

28 3272
13 13 13

1 4 1 0 3

 0 1        

0 0

   
 

 
28  times the second row was added to the third row. 

 
  
  
   

1 1 1
13 13 13

327
2

1 4 1 0 3

 0 1      

0 0 1 14

   
 

 
The third row was multiplied by 13

2 . 

 
   
   
   

321
2

25
2

327
2

1 4 0 14

 0 1 0    1    

0 0 1 14

   
 

 

 
1

13  times the third row was added to the second row  

and the third row was added to the first row. 

 
  
   
   

421
2

25
2

327
2

1 0 0 18

 0 1 0    1    

0 0 1 14

   
 

 
4  times the second row was added to the first row. 
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 We conclude that the solutions of the two systems are: 

(i)  1 18,x   2 1x ,  3 14x   (ii)  1

421

2
x ,  2

25

2
x ,  3

327

2
x . 

11. 
    
 
 

4 7 0 4 1 5
            
1 2 1 6 3 1

   
 

 

 
 
We augmented the coefficient matrix with four columns 
of constants on the right hand sides of the systems (i), 
(ii), (iii), and (iv) – refer to Example 2. 

  
     

1 2 1 6 3 1
            
4 7 0 4 1 5

   
 

 
The first and second rows were interchanged. 

  
      

1 2 1 6 3 1
            
0 15 4 28 13 9

   
 

 
4  times the first row was added to the second row. 

 
 
 
  

28 13 34
15 15 15 5

1 6 3 11 2
            
0 1

   
 

 
The second row was multiplied by  1

15 . 

 
 
 
  

7 34 19 1
515 15 15

328 134
515 15 15

1 0
            
0 1

   
 

 
2  times the second row was added to the first row. 

  
 We conclude that the solutions of the four systems are: 

 (i)  7
1 15 ,x   4

2 15x   (ii)  34
1 15x ,  28

2 15x  

 (iii)  19
1 15 ,x   13

2 15x   (iv)   1
1 5x ,  3

2 5x   

12. 

 
    
  

1 3 5 1 0 1

 1 2 0  0    1  1

2 5 4 1 1 0

   
 

 

 
 
We augmented the coefficient matrix with three columns 
of constants on the right hand sides of the systems  
(i), (ii) and (iii) – refer to Example 2. 

 
 
  
    

1 3 5 1 0 1

 0 1 5 1   1  2

0 1 6 3 1 2

   
 

 

 
The first row was added to the second row and 
2  times the first row was added to the third row. 

 
 
  
   

1 3 5 1 0 1

 0 1 5 1   1  2

0 0 1 2 2 0

   
 

 
The second row was added to the third row. 

 
 
  
  

1 3 5 1 0 1

 0 1 5   1   1  2

0 0 1 2 2 0

   
 

 
The third row was multiplied by 1 . 



1.6 More on Linear Systems and Invertible Matrices          96 
 

 
  
   
  

1 3 0 9 10 1

 0 1 0    9    11  2

0 0 1 2 2 0

   
 

 

 
5  times the third row was added to the first row 
and to the second row. 

 
 
   
  

1 0 0 18 23 5

 0 1 0    9    11  2

0 0 1 2 2 0

   
 

 
3  times the second row was added to the first row. 

 We conclude that the solutions of the three systems are: 

(i) 1 18,x   2 9x , 3 2x  

(ii)  1 23x , 2 11x ,  3 2x   

(iii) 1 5,x   2 2x , 3 0x  

13. 
 
  

1

2

1 3
   

2 1

b

b
   

 

 
The augmented matrix for the system. 

  
  

1

1 2

1 3
   

20 7

b

b b
   

 

 
2  times the first row was added to the second row. 

  
  

1

2 1
1 27 7

1 3
    
0 1

b

b b
   

 

 
The second row was multiplied by 1

7 . 

 

 The system is consistent for all values of 1b  and 2b . 

 

14. 

 
 
 
  

1

 2

6 4

   
3 2

b

b
   

 

 
The augmented matrix for the system. 

 
 
  

12
163

2

1
   

3 2

b

b
   

 

 
The first row was multiplied by 1

6 . 

 
 
   

12
163

1
1 22

1
    
0 0

b

b b
   

 

 
3  times the first row was added to the second row. 

 

 The system is consistent if and only if   1
1 22 0b b , i.e. 1 22b b . 

15. 

 
 

 
 
 
   
 

1

2

3

  
1 2 5
  

4 5 8   

  
3 3 3

  

b

b

b

   
 

 
The augmented matrix for the system. 
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1

1 2

1 3

  
1 2 5
  

0 3 12  4

   
0 3 12 3

   

b

b b

b b

   
 

 

 
4  times the first row was added to the second row 
and 3  times the first row was added to the third row. 

 

 
 

 
   
 
    
 

1

1 2

1 2 3

  
1 2 5
  

0 3 12  4

   
0 0 0

   

b

b b

b b b

   
 

 
The second row was added to the third row. 

 

 
 

 
   
 
    
 

1

4 1
1 23 3

1 2 3

  
1 2 5
  

0 1 4  

0 0 0  

 

b

b b

b b b

   
 

 
The second row was multiplied by 1

3 . 

 

 The system is consistent if and only if    1 2 3

 
0

 
b b b , i.e.  1 2 3b b b . 

16. 

 
  

 
 
 
  
 

1

2

3

  
1 2 1
  

4 5 2   

  
4 7 4

  

b

b

b

   
 

 
The augmented matrix for the system. 

 

 
  

 
   
 
   
 

1

1 2

1 3

  
1 2 1
  

0 3 2  4

   
0 1 0 4

   

b

b b

b b

   
 

 

 
4  times the first row was added to the second row 
and to the third row. 

 

 
  

 
  
 
    
 

1

1 3

1 2

  
1 2 1
  

0 1 0  4

   
0 3 2 4

   

b

b b

b b

   
 

 
The second and third rows were interchanged. 
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1

1 3

1 2

  
1 2 1
  

0 1 0  4

   
0 3 2 4

   

b

b b

b b

   
 

 
The second row was multiplied by 1 . 

 

  
   
     

1

1 3

1 2 3

1 2 1

0 1 0  4

0 0 2 8 3

b

b b

b b b

   
 

 
3  times the second row was added to the third row. 

 

  
   
   

1

1 3

31
1 2 32 2

1 2 1

0 1 0  4

0 0 1 4

b

b b

b b b

   
 

 
The third row was multiplied by  1

2 . 

 

 The system is consistent for all values of 1b , 2b , and 3b . 

17. 

 
  
  
 

  

1

2

3

4

1 1 3 2

2 1 5 1
  

3 2 2 1

4 3 1 3

b

b

b

b

   
 

 
The augmented matrix for the system. 

 

 
  
 
 

    

1

1 2

1 3

1 4

1 1 3 2

20 1 11 5
 

30 1 11 5

40 1 11 5

b

b b

b b

b b

   
 

 

 
 
2  times the first row was added to the second row, 
3  times the first row was added to the third row, and 
4  times the first row was added to the fourth row. 

 

 
    
 
 

    

1

1 2

1 3

1 4

1 1 3 2

20 1 11 5
 

30 1 11 5

40 1 11 5

b

b b

b b

b b

   
 

 
The second row was multiplied by 1 . 

 

 
    
  
 

    

1

1 2

1 2 3

1 2 4

1 1 3 2

20 1 11 5
 

0 0 0 0

20 0 0 0

b

b b

b b b

b b b

   
 

 

 
The second row was added to the third row and 
1  times the second row was added to the fourth row. 

 

  The system is consistent for all values of 1b , 2b , 3b , and 4b  that satisfy the equations 

  1 2 3 0b b b  and    1 2 42 0b b b . 
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  These equations form a linear system in the variables 1b , 2b , 3b , and 4b  whose augmented matrix 

 
  

1 1 1 0 0

2 1 0 1 0
 has the reduced row echelon form 

  
   

1 0 1 1 0

0 1 2 1 0
. Therefore the system is consistent if 

 1 3 4b b b  and  2 3 42b b b . 

18. (a) The equation x xA  can be rewritten as x xA I , which yields  x x 0A I  and  

  x 0A I . 

  This is a matrix form of a homogeneous linear system - to solve it, we reduce its augmented matrix to a row 
echelon form. 

 

 
  
  

1 1 2 0

2 1 2  0  

3 1 0 0

   
 

 

 
The augmented matrix for the homogeneous system 
  x 0A I . 

 

 
   
   

1 1 2 0

0 1 6  0  

0 2 6 0

   
 

 

 
2  times the first row was added to the second row 
and 3  times the first row was added to the third row. 

 

 
 
 
   

1 1 2 0

0 1 6  0  

0 2 6 0

   
 

 
The second row was multiplied by 1 . 

 

 
 
 
  

1 1 2 0

0 1 6  0  

0 0 6 0

   
 

 
2  times the second row was added to the third row. 

 
 
 
 
  

1 1 2 0

0 1 6  0  

0 0 1 0

   
 

 
The third row was multiplied by 1

6 . 

 

  Using back-substitution, we obtain the unique solution:   1 2 3 0x x x . 

 (b) As was done in part (a), the equation x 4xA  can be rewritten as   4 x 0A I . We solve the latter system 

by Gauss-Jordan elimination 

 

 
   
  

2 1 2 0

2 2 2  0  

3 1 3 0

   
 

 

 
The augmented matrix for the homogeneous system 
  4 x 0A I . 

 

  
  
  

2 2 2 0

2 1 2  0  

3 1 3 0

   
 

 
The first and second rows were interchanged. 
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1 1 1 0

2 1 2  0  

3 1 3 0

   
 

 
The first row was multiplied by 1

2 . 

 
  
  
  

1 1 1 0

0 1 0  0  

0 4 0 0

   
 

 

 
2  times the first row was added to the second row and  
3  times the first row was added to the third row. 

 
  
 
 
  

1 1 1 0

0 1 0  0  

0 4 0 0

   
 

 
The second row was multiplied by 1 . 

 

 
 
 
  

1 0 1 0

0 1 0  0  

0 0 0 0

   
 

 

 
4  times the second row was added to the third row and 
the second row was added to the first row. 

 
 

  If we assign 3x  an arbitrary value t , the general solution is given by the formulas 

  1x t , 2 0x , and 3x t . 

19. 


    

       
       

1
1 1 1 2 1 5 7 8

2 3 0 4 0 3 0 1

0 2 1 3 5 7 2 1

X . Let us find 


 

 
 
  

1
1 1 1

2 3 0 :

0 2 1

 

 

 
 
 
  

1 1 1 1 0 0

2 3 0 0 1 0  

0 2 1 0 0 1

   
 

 
The identity matrix was adjoined to the matrix. 

 

 
   
  

1 1 1 1 0 0

0 5 2 2 1 0  

0 2 1 0 0 1

   
 

 
2  times the first row was added to the second row. 

 

 
   
  

1 1 1 1 0 0

0 1 0 2 1 2  

0 2 1 0 0 1

   
 

 
2  times the third row was added to the second row. 

 
 
   
   

1 1 1 1 0 0

0 1 0 2 1 2  

0 0 1 4 2 5

   
 

 
2  times the second row was added to the third row. 
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1 1 1 1 0 0

0 1 0 2 1 2  

0 0 1 4 2 5

   
 

 
The third row was multiplied by 1 . 

 
  
   
   

1 1 0 5 2 5

0 1 0 2 1 2  

0 0 1 4 2 5

   
 

 
1  times the third row was added to the first row. 

 
 
   
   

1 0 0 3 1 3

0 1 0 2 1 2  

0 0 1 4 2 5

   
 

 
 The second row was added to the first row. 

 

 Using 


    

        
        

1
1 1 1 3 1 3

2 3 0 2 1 2

0 2 1 4 2 5

 we obtain  

 

 

       
                  
                

3 1 3 2 1 5 7 8 11 12 3 27 26

2 1 2 4 0 3 0 1 6 8 1 18 17

4 2 5 3 5 7 2 1 15 21 9 38 35

X   

20. 


   
        
      

1
2 0 1 4 3 2 1

0 1 1 6 7 8 9

1 1 4 1 3 7 9

X . Let us find 


 
   
  

1
2 0 1

0 1 1 :

1 1 4

 

 

 
   
  

2 0 1 1 0 0

0 1 1 0 1 0  

1 1 4 0 0 1

   
 

 
The identity matrix was adjoined to the matrix. 

 

 
   
  

1 1 4 0 0 1

0 1 1 0 1 0  

2 0 1 1 0 0

   
 

 
The first and third rows were interchanged. 

 
 
   
  

1 1 4 0 0 1

0 1 1 0 1 0  

0 2 7 1 0 2

   
 

 
2  times the first row was added to the third row. 

 
 
  
  

1 1 4 0 0 1

0 1 1 0 1 0  

0 2 7 1 0 2

   
 

 
The second row was multiplied by 1 . 
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1 1 4 0 0 1

0 1 1 0 1 0  

0 0 9 1 2 2

   
 

 
2  times the second row was added to the third row. 

 
 
  
    

1 2 2
9 9 9

1 1 4 0 0 1

0 1 1 0 1 0  

0 0 1

   
 

 
The third row was multiplied by  1

9 . 

 
  
  
    

84 1
9 9 9

71 2
9 9 9

1 2 2
9 9 9

1 1 0

0 1 0   

0 0 1

.   
 

 

 
1  times the third row was added to the second row and 
4  times the third row was added to the first row. 

 

   
  
    

5 1 1
9 9 9

71 2
9 9 9

1 2 2
9 9 9

1 0 0

0 1 0  

0 0 1

   
 

 
1  times the second row was added to the first row. 

 
 
 
 

 Using 


     

       
        

1 5 1 1
9 9 9

71 2
9 9 9

1 2 2
9 9 9

2 0 1

0 1 1

1 1 4

 we obtain  

 

          
              
              

5 25 25 231 1
9 9 9 9 9 9

7 40 401 2 44
9 9 9 9 9 9

23 32 371 2 2
9 9 9 9 9 9

4 3 2 1 3

6 7 8 9 4

1 3 7 9 2

X  

True-False Exercises 

(a) True. By Theorem 1.6.1, if a system of linear equation has more than one solution then it must have infinitely many. 

(b) True. If A  is a square matrix such that Ax b  has a unique solution then the reduced row echelon form of A  must 

be I . Consequently, Ax c  must have a unique solution as well. 

(c) True. Since B  is a square matrix then by Theorem 1.6.3(b)  nAB I  implies  1B A .  

Therefore,  1
nBA A A I . 

(d) True. Since A  and B  are row equivalent matrices, it must be possible to perform a sequence of elementary row 
operations on A  resulting in B . Let E  be the product of the corresponding elementary matrices, i.e., EA B . Note 

that E  must be an invertible matrix thus  1A E B . 

Any solution of  0Ax  is also a solution of  0Bx  since   0 0B EA Ex x . 

Likewise, any solution of  0Bx  is also a solution of  0Ax  since    1 10 0A E B Ex x . 

(e) True. If   1S AS x b  then    1SS AS A S Sx x b . Consequently,  Sy x  is a solution of A Sy b . 
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(f) True.  4Ax x  is equivalent to  4 nA Ix x , which can be rewritten as   4 0nA I x . By Theorem 1.6.4, this 

homogeneous system has a unique solution (the trivial solution) if and only if its coefficient matrix  4 nA I  is 

invertible. 

(g) True. If AB  were invertible, then by Theorem 1.6.5 both A  and B  would be invertible. 

 

1.7 Diagonal, Triangular, and Symmetric Matrices 

1. (a) The matrix is upper triangular. It is invertible (its diagonal entries are both nonzero). 

 (b) The matrix is lower triangular. It is not invertible (its diagonal entries are zero). 

 (c) This is a diagonal matrix, therefore it is also both upper and lower triangular. It is invertible (its diagonal 
entries are all nonzero). 

 (d) The matrix is upper triangular. It is not invertible (its diagonal entries include a zero). 

2. (a) The matrix is lower triangular. It is invertible (its diagonal entries are both nonzero). 

 (b) The matrix is upper triangular. It is not invertible (its diagonal entries are zero). 

 (c) This is a diagonal matrix, therefore it is also both upper and lower triangular. It is invertible (its diagonal 
entries are all nonzero). 

 (d) The matrix is lower triangular. It is not invertible (its diagonal entries include a zero). 

3. 

     
     
     

      
                   
            

3 0 0 2 1 3 2 3 1 6 3

0 1 0 4 1 1 4 1 1 4 1

0 0 2 2 5 2 2 2 5 4 10

 

4. 
        
        

 
                          

4 0 0
1 4 2 3 5 21 2 5 4 6 10

0 3 0
3 4 1 3 0 23 1 0 12 3 0

0 0 2

 

5. 

              
              

              

       
          
                

5 0 0 3 2 0 4 4 5 3 5 2 5 0 5 4 5 4

0 2 0 1 5 3 0 3 2 1 2 5 2 3 2 0 2 3

0 0 3 6 2 2 2 2 3 6 3 2 3 2 3 2 3 2

 

  
   
     

15 10 0 20 20

2 10 6 0 6

18 6 6 6 6

  

6. 

           
           
           

         
                 
                 

2 0 0 4 1 3 3 0 0 2 4 3 2 1 5 2 3 2

0 1 0 1 2 0 0 5 0 1 1 3 1 2 5 1 0 2

0 0 4 5 1 2 0 0 2 4 5 3 4 1 5 4 2 2
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24 10 12

3 10 0

60 20 16

  

7. 
 

   
    

    

2

2
2

1 0 1 0

0 40 2
A ,    

 






   
    

    

2

2
2 1

4

1 0 1 0

00 2
A ,    

   







   
    

     
1

2

1 01 0

00 2 k

k

k
kA  

8. 

    
       
     

2

2 2

2

6 0 0 36 0 0

0 3 0  0 9 0

0 0 5 0 0 25

A ,    

 
 



   
       
     

2 1
36

2 2 1
9

2 1
25

6 0 0 0 0

0 3 0  0 0

0 0 5 0 0

A , 

   




 



     
   
  
    

1

6

1
3

1
5

0 06 0 0

0 3 0 0 0

0 0 5 0 0

k

k

k

k

k k

k

A   

9. 

 
 

 

                 

21
1

2
4

22 1 1
3 9

121 16
4

0 0 0 0

0 0 0 0

0 00 0

A ,    

 
 

 







 
  
      
    

 

21
2

22 1
3

21
4

0 0 4 0 0

0 0 0 9 0

0 0 160 0

A ,  

 
 

 







                 

1
2

1
3

1
4

0 0 2 0 0

0 0 0 3 0

0 0 40 0

k
k

kk k

kk

A   

10. 

 
 

 

                    

2

2
2

2

2

2 0 0 0 4 0 0 0

0 16 0 00 4 0 0
0 0 9 00 0 3 0
0 0 0 40 0 0 2

A ,  

 
 

 










                     

2
1
4

2 1
2 16

12
9

1
2 4

2 0 0 0 0 0 0

0 0 00 4 0 0
0 0 00 0 3 0
0 0 00 0 0 2

A ,  

 
 

 

 

 

 












                       

1

2

1

4

1

3

1
2

0 0 0
2 0 0 0

0 0 00 4 0 0

0 0 00 0 3 0

0 0 0 2 0 0 0

k

k

k

k

k

k
k

k

k

A   
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11. 

   
   

   

   
      
     

1 2 0 0 0 0 0 0

0 0 5 2 0 0 0 0

0 0 3 0 1 0 0 0

 

12. 

   
   

   

   
        
     

1 3 5 0 0 15 0 0

0 2 5 2 0 0 20 0

0 0 4 7 3 0 0 84

 

13. 
 

   
       

39

39

1 0 1 0

0 10 1
 

14. 
 

   
   

    

1000

1000

1 0 1 0

0 10 1
 

15. (a) 

 
 
 
  

au av

bw bx

cy cz

  (b) 

 
 
 
  

ra sb tc

ua vb wc

xa yb zc

 

16. (a) 

 
 
 
  

ua vb

wa xb

ya zb

 (b) 

 
 
 
  

ar as at

bu bv bw

cx cy cz

 

17. (a) 
 

  

2 1

1 3
 (b) 

 
   
 
 

 

1 3 7 2

3 1 8 3

7 8 0 9

2 3 9 0

 

18. (a) 
 
 
 

0 3

3 0
 (b) 

 
  
  
 

  

1 7 3 2

7 4 5 7

3 5 1 6

2 7 6 3

 

19. From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero. 
Since this upper triangular matrix has a 0 on its diagonal, it is not invertible. 

20. From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero. 
Since this upper triangular matrix has all three diagonal entries nonzero, it is invertible. 

21. From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero. 
Since this lower triangular matrix has all four diagonal entries nonzero, it is invertible. 

22. From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero. 
Since this lower triangular matrix has a 0 on its diagonal, it is not invertible. 



1.7 Diagonal, Triangular, and Symmetric Matrices          106 

 

23. 

  
  

  

   
   
  

3 1

0 1 5  

0 0 1 6

AB . The diagonal entries of AB  are:  3,  5,  6 . 

24. 

  
  

  

 
   
   

4 6 0 0

0 5 0

7 6

AB . The diagonal entries of AB  are: 24,  0,  42 . 

25. The matrix is symmetric if and only if   5 3a . In order for A  to be symmetric, we must have  8a . 

26. The matrix is symmetric if and only if the following equations must be satisfied 

 

  
  

  

2 2 3

2 0

 2

a b c

a b c

a c

 

 We solve this system by Gauss-Jordan elimination 

 

 
 
 
  

1 2 2 3

2 1 1 0  

1 0 1 2

   
 

 
The augmented matrix for the system. 

 
 
 
 
  

1 0 1 2

2 1 1 0  

1 2 2 3

   
 

 
The first and third rows were interchanged. 

 
 
  
  

1 0 1 2

0 1 1 4  

0 2 1 5

   
 

 

 
2  times the first row was added to the second row 
and 1  times the first row was added to the third. 

 
 
  
  

1 0 1 2

0 1 1 4  

0 0 1 13

   
 

 
2  times the second row was added to the third row. 

 

 
  
  

1 0 1 2

0 1 1 4  

0 0 1 13

   
 

 
The third row was multiplied by 1 . 

 

 
  
  

1 0 0 11

0 1 0  9  

0 0 1 13

   
 

 

 
The third row was added to the second row 
and 1  times the third row was added to the first. 

 

 In order for A  to be symmetric, we must have 11a ,  9b , and  13c . 

27. From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero. 

Therefore, the given upper triangular matrix is invertible for any real number x  such that 1x ,  2x , and  4x . 
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28. From part (c) of Theorem 1.7.1, a triangular matrix is invertible if and only if its diagonal entries are all nonzero. 

Therefore, the given lower triangular matrix is invertible for any real number x  such that  1
2x ,  1

3x , and   1
4x . 

29. By Theorem 1.7.1, 1A  is also an upper triangular or lower triangular invertible matrix. Its diagonal entries must all 
be nonzero - they are reciprocals of the corresponding diagonal entries of the matrix A . 

30. By Theorem 1.4.8(e),   
T T TAB B A . Therefore we have: 

     
T TT T T TB B B B B B , 

     
T TT T T TBB B B BB , and 

            
T T TTT T T T T TB AB B AB AB B B A B B AB  since A  is symmetric. 

31. 

 
   
  

1 0 0

0 1 0

0 0 1

A  

32. For example 

 
   
  

1
3

1
2

0 0

0 0

0 0 1

A  (there are seven other possible answers, e.g., 

 
 
 
  

1
3

1
2

0 0

0 0

0 0 1

, 

 
  
  

1
3

1
2

0 0

0 0

0 0 1

, etc.) 

33. 

                          
                          
                          

          
         
           

1 2 2 0 5 0 1 8 2 2 5 0 1 0 2 1 5 3

0 2 1 0 3 0 0 8 1 2 3 0 0 0 1 1 3 3

0 2 0 0 4 0 0 8 0 2 4 0 0 0 0 1 4 3

AB  

 
   
  

2 12 17

0 2 10

0 0 12

. Since this is an upper triangular matrix, we have verified Theorem 1.7.1(b). 

34. (a) Theorem 1.4.8(e) states that   
T T TAB B A  (if the multiplication can be performed). Therefore, 

        
22 2

 is

symmetric

T T T T T

A
A AA A A A A  

  which shows that 2A  is symmetric. 

 (b)                
22 2 2

Th. Th.  and  

1.4.8 1.4.8 are

(b-d) (e) symmetric

2 3 2 3 2 3 2 3
T T T T T T T

A I
A A I A A I A A I A A I   

  which shows that  22 3A A I  is symmetric. 

 

35. (a) 
  

  
    

   

3 1
1 5 51

(2)(3) ( 1)( 1) 1 2
5 5

3 1

1 2
A  is symmetric, therefore we verified Theorem 1.7.4. 



1.7 Diagonal, Triangular, and Symmetric Matrices          108 

 

 (b) 
 
   
  

1 2 3 1 0 0

 2 1 7  0 1 0  

3 7 4 0 0 1

   
 

 
The identity matrix was adjoined to the matrix A . 

 
 
   
    

1 2 3 1 0 0

 0 3 1 2 1 0  

0 1 5 3 0 1

   
 

 

 
2  times the first row was added to the second row and 
3  times the first row was added to the third row. 

 
 
    
   

1 2 3 1 0 0

 0 1 5 3 0 1 

0 3 1 2 1 0

   
 

 
The second and third rows were interchanged. 

 

 
  
   

1 2 3 1 0 0

 0 1 5 3 0 1 

0 3 1 2 1 0

   
 

 
The second row was multiplied by 1 .  

 

 
  
  

1 2 3 1 0 0

 0 1 5 3 0 1 

0 0 14 11 1 3

   
 

 
3  times the second row was added to the third row. 

 

 
  
  

311 1
14 14 14

1 2 3 1 0 0

 0 1 5 3 0 1 

0 0 1

   
 

 
The third row was multiplied by 1

14 . 

 

   
   
  

19 3 9
14 14 14

13 5 1
14 14 14

311 1
14 14 14

1 2 3

 0 1 0   

0 0 1

   
 

 

 
5  times the third row was added to the second row and 
3  times the third row was added to the first row. 

 

  
   
  

45 13 11
14 14 14

13 5 1
14 14 14

311 1
14 14 14

1 0 3

 0 1 0   

0 0 1

   
 

 
2  times the second row was added to the first row. 

 

  Since 

  
    
  

45 13 11
14 14 14

1 13 5 1
14 14 14

311 1
14 14 14

 A  is symmetric, we have verified Theorem 1.7.4 

36. All 3 3  diagonal matrices have a form 

 
 
 
  

0 0

0 0

0 0

a

b

c

. 

2

0 0 0 0 0 0 1 0 0

3 4 0 0 0 0 3 0 0 4 0 1 0

0 0 0 0 0 0 0 0 1

a a a

A A I b b b

c c c
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2

2

2

0 0 3 0 0 4 0 0

0 0 0 3 0 0 4 0

0 0 0 0 3 0 0 4

a a

b b

c c
 

  
    
   

2

2

2

3 4 0 0

0 3 4 0

0 0 3 4

a a

b b

c c
 

  
  

  

  
    
   

4 1 0 0

0 4 1 0

0 0 4 1

a a

b b

c c
 

  This is a zero matrix whenever the value of a , b , and c  is either 4  or 1. We conclude that the following are all 

3 3  diagonal matrices that satisfy the equation: 

       
              
              

4 0 0 4 0 0 4 0 0 1 0 0

0 4 0 ,  0 4 0 ,  0 1 0 ,  0 4 0 ,  

0 0 4 0 0 1 0 0 4 0 0 4  

         
                
                

4 0 0 1 0 0 1 0 0 1 0 0

0 1 0 ,  0 4 0 ,  0 1 0 ,  0 1 0

0 0 1 0 0 1 0 0 4 0 0 1

 

37. (a)     2 2 2 2
ji ija j i i j a  for all i  and j  therefore A  is symmetric. 

 (b)  2 2
jia j i  does not generally equal  2 2

ija i j  for i j  therefore A  is not symmetric (unless 1n ). 

 

 (c)     2 2 2 2ji ija j i i j a  for all i  and j  therefore A  is symmetric. 

 (d)  2 32 2jia j i  does not generally equal  2 32 2ija i j  for i j  therefore A  is not symmetric (unless 1n ). 

38. If   ,ija f i j  then A  is symmetric if and only if    , ,f i j f j i  for all values of i  and j . 

39. For a general upper triangular 2 2  matrix 
 

  
 0

a b
A

c
 we have 

     
      
     

3

0 0 0

a b a b a b
A

c c c  

            
        

        

3 2 22 3 2

2 3 300 0 0

a a ac c ba ba ab bc a a b ab bc c

cc c c      
 



1.7 Diagonal, Triangular, and Symmetric Matrices          110 

 

  Setting 
 

   
3 1 30

0 8
A  we obtain the equations 3 1a ,    2 2 30a ac c b ,  3 8c . 

The first and the third equations yield   1, 2a c .  

Substituting these into the second equation leads to    1 2 4 30b , i.e., 10b . 

We conclude that the only upper triangular matrix A  such that 
 

   
3 1 30

0 8
A  is 

 
   

1 10

0 2
A . 

40.  (a) Step 1. Solve 

     
            
          

1

2

3

1 0 0 1

2 3 0 2

2 4 1 0

y

y

y

 

  The first equation is 1 1y . 

  The second equation      22 1 3 2y  yields 2 0y . 

  The third equation        32 1 4 0 1 0y  yields  3 2.y  

   Step 2. Solve 

     
          
          

1

2

3

2 1 3 1

0 1 2 0

0 0 4 2

x

x

x

 using back-substitution: 

  The third equation  34 2x  yields   1
3 2x . 

  The second equation     1
2 21 2 0x  yields 2 1x . 

  The first equation          1
1 22 1 1 3 1x  yields  7

1 4x . 

 (b) Step 1. Solve 

     
           
           

1

2

3

2 0 0 4

4 1 0 5

3 2 3 2

y

y

y

 

  The first equation 12 4y  yields 1 2y . 

  The second equation      24 2 1 5y  yields  2 13y . 

  The third equation           33 2 2 13 3 2y  yields  3 6 . y  

   Step 2. Solve 

     
           
          

1

2

3

3 5 2 2

0 4 1 13

0 0 2 6

x

x

x

 using back-substitution: 

  The third equation  32 6x  yields  3 3x . 

  The second equation      24 1 3 13x  yields   5
2 2x . 

  The first equation           5
1 23 5 2 3 2x  yields   3

1 2x . 

41. (a) 

 
 
 
   

0 0 4

0 0 1

4 1 0  

(b) 

 
  
  

0 0 8

0 0 4

8 4 0

 

42. The condition  TA A  is equivalent to the linear system 
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2 3   2

3 5 5   3

5 8 6   5

      0

a b c

a b c

a b c

d

 

The augmented matrix 

 
  
 
 
 

2 3 1 0 2

3 5 5 0 3

5 8 6 0 5

0 0 0 1 0

 has the reduced row echelon form 

 
  
 
 
 

1 0 10 0 1

0 1 7 0 0

0 0 0 1 0

0 0 0 0 0

. 

 If we assign c  the arbitrary value t , the general solution is given by the formulas 

  1 10a t ,  7b t , c t ,  0d . 

43. No. If AB BA ,  TA A , and  TB B  then          
T T TAB B A B A BA AB  which does not generally 

equal AB . (The product of skew-symmetric matrices that commute is symmetric.) 

44.  1
2

TA A  is symmetric since           1 1 1 1
2 2 2 2

T TT T T TA A A A A A  and  1
2

TA A  is skew-symmetric since 

                 1 1 1 1 1
2 2 2 2 2

T TT T T T TA A A A A A A A  therefore the result follows from the identity 

       1 1
2 2

T TA A A A A . 

45. (a)  1 T
A      

   
1TA    Theorem 1.4.9(d) 

    
1

A    The assumption: A  is skew-symmetric 

    1A    Theorem 1.4.7(c) 

 

  (b)  TTA      

   A    Theorem 1.4.8(a) 

    TA    The assumption: A  is skew-symmetric 

     

   
T

A B     

   T TA B    Theorem 1.4.8(b) 

   A B    The assumption: A  and B  are skew-symmetric 

     A B    Theorem 1.4.1(h) 
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T

A B     

   T TA B    Theorem 1.4.8(c) 

      A B    The assumption: A  and B  are skew-symmetric 

     A B    Theorem 1.4.1(i) 

     

   T
kA     

   TkA    Theorem 1.4.8(d) 

    k A    The assumption: A  is skew-symmetric 

   kA    Theorem 1.4.1(l) 

 

47.       
T TT T T T TA A A A A A A A  therefore A  is symmetric; thus we have   2 TA AA A A A . 

 

True-False Exercises 

(a) True. Every diagonal matrix is symmetric: its transpose equals to the original matrix. 

(b) False. The transpose of an upper triangular matrix is a lower triangular matrix. 

(c) False. E.g., 
     

      
     

1 1 1 0 2 1

0 1 1 1 1 2
 is not a diagonal matrix. 

(d) True. Mirror images of entries across the main diagonal must be equal - see the margin note next to Example 4. 

(e) True. All entries below the main diagonal must be zero. 

(f) False. By Theorem 1.7.1(d), the inverse of an invertible lower triangular matrix is a lower triangular matrix. 

(g) False. A diagonal matrix is invertible if and only if all or its diagonal entries are nonzero (positive or negative). 

(h) True. The entries above the main diagonal are zero. 

(i) True. If A  is upper triangular then TA  is lower triangular. However, if A  is also symmetric then it follows that 

TA A  must be both upper triangular and lower triangular. This requires A  to be a diagonal matrix. 

(j) False. For instance, neither 
 

  
 

0 1

0 0
A  nor 

 
  
 

0 0

1 0
B  is symmetric even though 

 
   

 

0 1

1 0
A B  is. 

(k) False. For instance, neither 
 

   

0 1

1 0
A  nor 

 
  
 

0 0

1 0
B  is upper triangular even though 

 
   

 

0 1

0 0
A B  is. 
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(l) False. For instance, 
 

  
 

0 0

1 0
A  is not symmetric even though 

 
  
 

2 0 0

0 0
A  is. 

(m) True. By Theorem 1.4.8(d),   
T TkA kA . Since kA  is symmetric, we also have   

T
kA kA . For nonzero k  the 

equality of the right hand sides TkA kA  implies TA A . 

 

1.8 Matrix Transformations 

1. (a)   AT Ax x  maps any vector x  in 2R  into a vector  Aw x  in 3R .  

The domain of AT  is 2R ; the codomain is 3R . 

 (b)   AT Ax x  maps any vector x  in 3R  into a vector  Aw x  in 2R .  

The domain of AT  is 3R ; the codomain is 2R . 

 (c)   AT Ax x  maps any vector x  in 3R  into a vector  Aw x  in 3R .  

The domain of AT  is 3R ; the codomain is 3R . 

 (d)   AT Ax x  maps any vector x  in 6R  into a vector  Aw x  in 1R R .  

The domain of AT  is 6R ; the codomain is R . 

2. (a)   AT Ax x  maps any vector x  in 5R  into a vector  Aw x  in 4R .  

The domain of AT  is 5R ; the codomain is 4R . 

 (b)   AT Ax x  maps any vector x  in 4R  into a vector  Aw x  in 5R .  

The domain of AT  is 4R ; the codomain is 5R . 

 (c)   AT Ax x  maps any vector x  in 4R  into a vector  Aw x  in 4R .  

The domain of AT  is 4R ; the codomain is 4R . 

 (d)   AT Ax x  maps any vector x  in 1R R  into a vector  Aw x  in 3R .  

The domain of AT  is R ; the codomain is 3R . 

3. (a) The transformation maps any vector x  in 2R  into a vector w  in 2R .  

Its domain is 2R ; the codomain is 2R . 

 (b) The transformation maps any vector x  in 2R  into a vector w  in 3R .  

Its domain is 2R ; the codomain is 3R . 

4. (a) The transformation maps any vector x  in 3R  into a vector w  in 3R .  

Its domain is 3R ; the codomain is 3R . 



1.8 Matrix Transformations          114 
 

 (b) The transformation maps any vector x  in 3R  into a vector w  in 2R .  

Its domain is 3R ; the codomain is 2R . 

5. (a) The transformation maps any vector x  in 3R  into a vector in 2R .  

Its domain is 3R ; the codomain is 2R . 

 (b) The transformation maps any vector x  in 2R  into a vector in 3R .  

Its domain is 2R ; the codomain is 3R . 

6. (a) The transformation maps any vector x  in 2R  into a vector in 2R .  

Its domain is 2R ; the codomain is 2R . 

 (b) The transformation maps any vector x  in 3R  into a vector in 3R .  

Its domain is 3R ; the codomain is 3R . 

7. (a) The transformation maps any vector x  in 2R  into a vector in 2R .  

Its domain is 2R ; the codomain is 2R . 

 (b) The transformation maps any vector x  in 3R  into a vector in 2R .  

Its domain is 3R ; the codomain is 2R . 

8. (a) The transformation maps any vector x  in 4R  into a vector in 2R .  

Its domain is 4R ; the codomain is 2R . 

 (b) The transformation maps any vector x  in 3R  into a vector in 3R .  

Its domain is 3R ; the codomain is 3R . 

9. The transformation maps any vector x  in 2R  into a vector in 3R . Its domain is 2R ; the codomain is 3R . 

10. The transformation maps any vector x  in 3R  into a vector in 4R . Its domain is 3R ; the codomain is 4R . 

11. (a) The given equations can be expressed in matrix form as 

 
               

1
1

2
2

3

2 3 1

3 5 1

x
w

x
w

x

  

therefore the standard matrix for this transformation is 
 

  

2 3 1

3 5 1
 

 (b) The given equations can be expressed in matrix form as 

     
           
          

1 1

2 2

3 3

7 2 8

0 1 5

4 7 1

w x

w x

w x

  

therefore the standard matrix for this transformation is 

 
  
  

7 2 8

0 1 5

4 7 1

. 
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12. (a) The given equations can be expressed in matrix form as 

   
                  

1
1

2
2

3

1 1

3 2

5 7

w
x

w
x

w

  

therefore the standard matrix for this transformation is 

 
  
  

1 1

3 2

5 7

. 

 (b) The given equations can be expressed in matrix form as 

    
    
    
    
    

    

1 1

2 2

3 3

4 4

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

w x

w x

w x

w x

  

therefore the standard matrix for this transformation is 

 
 
 
 
 
 

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

. 

13. (a)  

   
                       

2

1 1
1 2

1 2 2

1 2

0 1

1 0
,

3 1 3

1 1

x

x x
T x x

x x x

x x

; the standard matrix is 

 
  
 
 

 

0 1

1 0

1 3

1 1

 

 (b)  

 
        

            
         

 

1
1 2 3 4

2
1 2 3 4 2 3

3
1

4

7 2 7 2 1 1

, , , 0 1 1 0

1 0 0 0

x
x x x x

x
T x x x x x x

x
x

x

; 

the standard matrix is 

 
 
 
  

7 2 1 1

0 1 1 0

1 0 0 0

  

 (c)  

   
                         
      

1

1 2 3 2

3

0 0 0 0

0 0 0 0

, , 0 0 0 0

0 0 0 0

0 0 0 0

x

T x x x x

x

; the standard matrix is 

 
 
 
 
 
 
  

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

 

 (d)  

   
    
    
     
    
    
       

4
1

1
2

1 2 3 4 3
3

2
4

1 3

0 0 0 1

1 0 0 0

, , , 0 0 1 0

0 1 0 0

1 0 1 0

x
x

x
x

T x x x x x
x

x
x

x x

; the standard matrix is 

 
 
 
 
 
 
  

0 0 0 1

1 0 0 0

0 0 1 0

0 1 0 0

1 0 1 0

 

14. (a)        
          

1 2 1
1 2

1 2 2

2 2 1
,

1 1

x x x
T x x

x x x
; the standard matrix is 

 
 
 

2 1

1 1
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 (b)       
     

    
1 1

1 2
2 2

1 0
,

0 1

x x
T x x

x x
; the standard matrix is 

 
 
 

1 0

0 1
 

 (c)  
      

            
          

1 2 3 1

1 2 3 1 2 2

3 3

2 1 2 1

, , 5 1 5 0

0 0 1

x x x x

T x x x x x x

x x

; the standard matrix is 

 
 
 
  

1 2 1

1 5 0

0 0 1

 

 (d)  
     
           
           

1 1

1 2 3 2 2

3 3

4 4 0 0

, , 7 0 7 0

8 0 0 8

x x

T x x x x x

x x

; the standard matrix is 

 
 
 
  

4 0 0

0 7 0

0 0 8

 

15. The given equations can be expressed in matrix form as 

     
           
          

1 1

2 2

3 3

3 5 1

4 1 1

3 2 1

w x

w x

w x

 therefore the standard matrix for 

this operator is 

 
  
  

3 5 1

4 1 1

3 2 1

. 

By directly substituting  1,2,4  for  1 2 3, ,x x x  into the given equation we obtain 

            1 3 1 5 2 1 4 3w   

             2 4 1 1 2 1 4 2w  

             3 3 1 2 2 1 4 3w  

 By matrix multiplication, 

        
        
        

            
                       
                    

1

2

3

3 5 1 1 3 1 5 2 1 4 3

4 1 1 2 4 1 1 2 1 4 2

3 2 1 4 3 1 2 2 1 4 3

w

w

w

. 

16. The given equations can be expressed in matrix form as 

 
                 
 

1

1 2

2 3

4

2 3 5 1

1 5 2 3

x

w x

w x

x

 therefore the standard 

 matrix for this transformation is 
  

   

2 3 5 1

1 5 2 3
. 

 By directly substituting  1, 1,2,4  for  1 2 3 4, , ,x x x x  into the given equation we obtain 

                1 2 1 3 1 5 2 1 4 15w  

                2 1 1 5 1 2 2 3 4 2 w   

 By matrix multiplication, 
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1

2

1

2 1 3 1 5 2 1 42 3 5 1 1 15

1 1 5 1 2 2 3 41 5 2 3 2 2

4

w

w
. 

17. (a)         
     

    
1 2 1

1 2
2 2

1 1
,

0 1

x x x
T x x

x x
; the standard matrix is 

 
 
 

1 1

0 1
. 

       
     

       
               

1 1 1 41 1 1 5

0 1 1 40 1 4 4
T x  matches         1,4 1 4,4 5,4T . 

 (b)  
       

            
          

1 2 3 1

1 2 3 2 3 2

3

2 2 1 1

, , 0 1 1

0 0 0 0

x x x x

T x x x x x x

x

; the standard matrix is 

 
 
 
  

2 1 1

0 1 1

0 0 0

. 

 
        
        
        

        
                 
              

2 1 1 2 2 2 1 1 1 3 0

0 1 1 1 0 2 1 1 1 3 2

0 0 0 3 0 2 0 1 0 3 0

T x   

matches            2,1, 3 4 1 3,1 3,0 0, 2,0T . 

18. (a)        
          

1 2 1
1 2

1 2 2

2 2 1
,

1 1

x x x
T x x

x x x
; the standard matrix is 

 
 
 

2 1

1 1
. 

       
     

         
               

2 2 1 22 1 2 6

1 2 1 21 1 2 0
T x  matches  

            2,2 4 2, 2 2 6,0T . 

 (b)  
     
             
          

1 1

1 2 3 2 3 2

2 3

1 0 0

, , 0 1 1

0 1 0

x x

T x x x x x x

x x

; the standard matrix is 

 
  
  

1 0 0

0 1 1

0 1 0

. 

 
        
        
        

       
                  
             

1 0 0 1 1 1 0 0 0 5 1

0 1 1 0 0 1 1 0 1 5 5

0 1 0 5 0 1 1 0 0 5 0

T x  matches     1,0,5 1, 5,0T . 

19. (a)        
            

1 2 3 1
x x

3 4 2 1AT A    

 (b)  
 

               

1
1 2 0 3

x x 1
3 1 5 13

3
AT A   

20. (a)  
        
              
           

1 1 2 3

2 1 2 3

3 1 3

2 1 4 2 4

3 5 7 3 5 7

6 0 1 6
A

x x x x

T A x x x x

x x x

x x   
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 (b)  
     

                  

1 2
1

1 2
2

1 2

1 1

2 4 2 4

7 8 7 8
A

x x
x

T A x x
x

x x

x x   

21. (a) If   1 2,u uu  and   1 2,v vv  then 

      1 1 2 2,T T u v u vu v          

              1 1 2 2 1 1 2 22 ,u v u v u v u v  

        1 2 1 2 1 2 1 22 , 2 ,u u u u v v v v         

    T Tu v           

  and                 1 2 1 2 1 2 1 2 1 2, 2 , 2 ,T k T ku ku ku ku ku ku k u u u u kTu u . 

 (b) If   1 2 3, ,u u uu  and   1 2 3, ,v v vv  then 

       1 1 2 2 3 3, ,T T u v u v u vu v  

      1 1 3 3 1 1 2 2, ,u v u v u v u v      

      1 3 1 2 1 3 1 2, , , ,u u u u v v v v        

    T Tu v           

  and               1 2 3 1 3 1 2 1 3 1 2, , , , , ,T k T ku ku ku ku ku ku ku k u u u u kTu u . 

 

22. (a) If   1 2 3, ,u u uu  and   1 2 3, ,v v vv  then 

       1 1 2 2 3 3, ,T T u v u v u vu v     

        1 1 2 2 2 2 3 3 1 1, ,  u v u v u v u v u v  

        1 2 2 3 1 1 2 2 3 1, , , ,u u u u u v v v v v    

    T Tu v          

  and                 1 2 3 1 2 2 3 1 1 2 2 3 1, , , , , ,T k T ku ku ku ku ku ku ku ku k u u u u u kTu u . 

 (b) If   1 2,u uu  and   1 2,v vv  then 

      1 1 2 2,T T u v u vu v      

   2 2 1 1,u v u v    
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    2 1 2 1, ,u u v v    

    T Tu v     

  and             1 2 2 1 2 1, , ,T k T ku ku ku ku k u u kTu u . 

23. (a) The homogeneity property fails to hold since  2 2 2( , ) (( ) , ) ( , )T kx ky kx ky k x ky  does not generally equal 

      2 2, , ,kT x y k x y kx ky . (It can be shown that the additivity property fails to hold as well.) 

 (b) The homogeneity property fails to hold since        2, , , , , ,T kx ky kz kx ky kxkz kx ky k xz  does not generally 

equal       , , , , , ,kT x y z k x y xz kx ky kxz . (It can be shown that the additivity property fails to hold as well.) 

24. (a) The homogeneity property fails to hold since     , , 1T kx ky kx ky  does not generally equal 

        , , 1 ,kT x y k x y kx ky k . (It can be shown that the additivity property fails to hold as well.) 

 (b) The homogeneity property fails to hold since    1 2 3 1 2 3, , , ,T kx kx kx kx kx kx  does not generally equal 

      1 2 3 1 2 3 1 2 3, , , , , ,kT x x x k x x x kx kx k x . (It can be shown that the additivity property fails to hold as 

well.) 

25. The homogeneity property fails to hold since for  0b ,     f kx m kx b  does not generally equal 

      kf x k mx b kmx kb . (It can be shown that the additivity property fails to hold as well.) 

On the other hand, both properties hold for  0b :              f x y m x y mx my f x f y  and 

         f kx m kx k mx kf x .  

Consequently, f  is not a matrix transformation on R  unless  0b  

26. Both properties of Theorem 1.8.2 hold for    , 0,0T x y : 

                           , , , 0,0 0,0 0,0 , ,T x y x y T x x y y T x y T x y   

             , , 0,0 0,0 ,T k x y T kx ky k kT x y   

 On the other hand, neither property holds in general for    , 1,1T x y , e.g., 

           , , x , 1,1T x y x y T x y y  does not equal  

            , , 1,1 1,1 2,2T x y T x y   

27. By Formula (13), the standard matrix for T  is         1 2 3        A T T Te e e . Therefore 

 
   
  

1 0 4

3 0 3

0 1 1

A  and  
        
        
        

    
          
       

1 2 0 1 4 0 2

3 2 0 1 3 0 6

0 2 1 1 1 0 1

T Ax x . 
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28. By Formula (13), the standard matrix for T  is         1 2 3        A T T Te e e . Therefore 

 
   
  

2 3 1

1 1 0

3 0 2

A  and  
        
        
        

    
          
       

2 3 3 2 1 1 1

1 3 1 2 0 1 1

3 3 0 2 2 1 11

T Ax x . 

29.  (a) 
      

           

1 0 1 1

0 1 2 2
 (b) 

      
     

     

1 0 1 1

0 1 2 2
 (c) 

     
          

0 1 1 2

1 0 2 1
 

30. (a) 
     

           

1 0

0 1

a a

b b
 (b) 

      
     

     

1 0

0 1

a a

b b
 (c) 

     
     

     

0 1

1 0

a b

b a
 

31. (a) 

     
            
           

1 0 0 2 2

0 1 0 5 5

0 0 1 3 3

 (b) 

     
            
          

1 0 0 2 2

0 1 0 5 5

0 0 1 3 3

 (c) 

      
            
          

1 0 0 2 2

0 1 0 5 5

0 0 1 3 3

 

32. (a) 

     
          
           

1 0 0

0 1 0

0 0 1

a a

b b

c c

 (b) 

     
            
          

1 0 0

0 1 0

0 0 1

a a

b b

c c

 (c) 

      
          
          

1 0 0

0 1 0

0 0 1

a a

b b

c c

 

33. (a) 
     

          

1 0 2 2

0 0 5 0
 (b) 

     
           

0 0 2 0

0 1 5 5
 

34. (a) 
     

     
     

1 0

0 0 0

a a

b
 (b) 

     
     

     

0 0 0

0 1

a

b b
 

35. (a) 

      
          
          

1 0 0 2 2

0 1 0 1 1

0 0 0 3 0

 (b) 

      
          
          

1 0 0 2 2

0 0 0 1 0

0 0 1 3 3

 (c) 

     
          
          

0 0 0 2 0

0 1 0 1 1

0 0 1 3 3

 

36. (a) 

     
          
          

1 0 0

0 1 0

0 0 0 0

a a

b b

c

 (b) 

     
          
          

1 0 0

0 0 0 0

0 0 1

a a

b

c c

 (c) 

     
          
          

0 0 0 0

0 1 0

0 0 1

a

b b

c c

 

37. (a) 
            

                            

3 33 1
22 2

31 3
2 2 2

2cos30 sin30 3 3 4.60

sin30 cos30 4 4 1.962 3
 

 (b) 
   
   

              
                                

31 3
2 2 2

3 3 31
2 2 2

2 3cos 60 sin 60 3 3 1.96

sin 60 cos 60 4 4 4.602
 

 (c) 
            

                             

2 2 7 2
2 2 2

2 2 2
2 2 2

cos45 sin 45 3 3 4.95

sin 45 cos45 4 4 0.71
 

 (d) 
            

                      

cos90 sin 90 3 0 1 3 4

sin 90 cos90 4 1 0 4 3
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38. (a) 
  
  
     

          
1 1 2

2 1 2

cos sincos sin

sin cossin cos

v v v

v v v
 

 (b) 
   
   

   
   

     
     

            
                   

1 21 1 2

1 22 1 2

cos sin cos sin cos sin

sin cos sin cos sin cos

v vv v v

v vv v v
 

39. By Formula (13), the standard matrix for T  is       1 2     A T Te e . Therefore 

 
  
 

a c
A

b d
 and      

       

1
1,1

1

a c
T A

b d
. 

40. (a)     
  
 

1

a

cAT e . Since AT  is a matrix transformation,      
   

 
1 1

a
.

cA A

k
T k kT

k
ee  

 (b)     
  
 

2

b

dAT e . Since AT  is a matrix transformation,  

              
               

1 2 1 2

a b a b
.

c d a dA A A

k l k l
T k l kT lT

k l k l
e ee e  

41. (a)  
 
   
  

1

1

2

4
AT e ,  

 
   
  

2

3

1

5
AT e ,  

 
   
  

3

0

2

3
AT e . 

 (b) Since AT  is a matrix transformation,  

       
       
                      
              

1 2 3 1 2 3

1 3 0 2

2 1 2 5

4 5 3 6
A A A AT T T Te e e e e e . 

 (c) Since AT  is a matrix transformation,    
   
        
       

3 3

0 0

7 7 7 2 14

3 21
A AT T ee . 

42. Orthogonal projection onto the xy -plane:  
     
           
          

1 0 0 1 1

1,2,3 0 1 0 2 2

0 0 0 3 0

T . 

 Orthogonal projection onto the xz -plane:  
     
           
          

1 0 0 1 1

1,2,3 0 0 0 2 0

0 0 1 3 3

T .  

 Orthogonal projection onto the yz -plane:  
     
           
          

0 0 0 1 0

1,2,3 0 1 0 2 2

0 0 1 3 3

T . 
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43. Reflection about the xy -plane:  
     
           
           

1 0 0 1 1

1,2,3 0 1 0 2 2

0 0 1 3 3

T . 

 Reflection about the xz -plane:  
     
             
          

1 0 0 1 1

1,2,3 0 1 0 2 2

0 0 1 3 3

T . 

 Reflection about the yz -plane:  
      
           
          

1 0 0 1 1

1,2,3 0 1 0 2 2

0 0 1 3 3

T . 

44. If 
 
 

 
  
 

cos sin

sin cos
A  then 

   
   

  
  

    
         

cos sincos sin

sin cossin cos
TA  (since    cos cos  and 

     sin sin ). The geometric effect of multiplying TA  by x  is to rotate the vector through the angle   (i.e., 

 to rotate through the angle   clockwise). 

45. The standard matrix for  T is       1 2      A T Te e . Observe that 
     

      
     

1 1 2
3

0 1 3
. Because  

 AT  is a transformation,                      
                                           

1

1 2 1 2 1 2 5
3 3 3

1 3 1 3 2 5 11A A A AT T T Te .  

 Likewise, 
     

      
     

0 2 1
2

1 3 1
 so we obtain 

                       
                                          

2

2 1 2 1 2 1 4
2 2 2

3 1 3 1 5 2 9A A A AT T T Te . 

 Therefore, the matrix for AT  is 
 

   

5 4

11 9
A . 

46.  The standard matrix for T  is         1 2 3           A T T Te e e , so we need to express the  

 standard basis vectors 1 2,e e , and 3e  as linear combinations of the vectors 

   
   
   
      

1 1

0 , 1

2 1

, and 

 
  
  

3

1

2

.  

 To do this, we compute the inverse of 

 
  
  

1 1 3

0 1 1

2 1 2

. 
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1 1 3 1 0 0

 0 1 1 0 1 0  

2 1 2 0 0 1

   
 

 
The identity matrix was adjoined to the original matrix. 

 
  
   

1 1 3 1 0 0

 0 1 1 0 1 0  

0 1 8 2 0 1

   
 

 

 
2  times the first row was added to the third row. 
 

 
  
  

1 1 3 1 0 0

0 1 1 0 1 0  

0 0 7 2 1 1

   
 

 
The second row was added to the third row. 

 
  
  

2 1 1
7 7 7

1 1 3 1 0 0

0 1 1 0 1 0  

0 0 1

    
 

The third row was multiplied by 1
7 . 

 

 
  
  

82 1
7 7 7

2 1 1
7 7 7

1 1 3 1 0 0

0 1 0  

0 0 1

   
 

 
The third row was added to the second row. 

 
  
  

3 31
7 7 7

82 1
7 7 7

2 1 1
7 7 7

1 1 0

0 1 0   

0 0 1

   
 

 

 
3  times the third row was added to the first row. 
 

 
  
  

3 5 2
7 7 7

82 1
7 7 7

2 1 1
7 7 7

1 0 0

0 1 0   

0 0 1

  

 
 

 

 
1 times the second row was added to the first row. 
 

 

 We obtain 

    
          
         

3 5 32
7 7 7 7

82 1 2
7 7 7 7

2 1 1 2
7 7 7 7

1

0

0

, 

     
         
         

3 5 52
7 7 7 7

8 82 1
7 7 7 7

2 1 1 1
7 7 7 7

0

1 , 

0

and 

    
         
         

3 5 2 2
7 7 7 7

82 1 1
7 7 7 7

2 1 1 1
7 7 7 7

0

0

1

 

 so that 

   
      
               
            

3 2 2
1 7 7 7

1 1 3

0 1 1

2 1 2

T Te  

                            

                   
                                             
                                    

3 32 2 2 2
7 7 7 7 7 7

1 1 3 2 1 5 2

0 1 1 3 3 11 1 .

2 1 2 10 8 7 0

T T T  
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 Likewise,  
        

                    
              

5 8 1
2 7 7 7

2 1 5 1

3 3 11 4

10 8 7 3

T e  and  
       

                    
              

2 1 1
3 7 7 7

2 1 5 0

3 3 11 2 .

10 8 7 5

T e  

 Therefore, the standard matrix for T is 

 
   
  

2 1 0

1 4 2 .

0 3 5

A  

 47. The terminal point of the vector is first rotated about the origin through the angle  , then it is  

 translated by the vector 0x . No, this is not a matrix transformation, for instance it fails the additivity  

 property:                        0 0 0 0T R R R R R T Tu v x u v x u v x u x v u v . 

48. (a) 

 
 
 
  

1 0 0

0 0 1

0 1 0

  (b)  

 
 
 
  

0 0 1

0 1 0

1 0 0

 (c) 

 
 
 
  

0 1 0

1 0 0

0 0 1

 

49. Since     2 2cos sin cos 2  and    2sin cos sin 2 , we have 
   
   
 
 

 
  
 

cos 2 sin 2

sin 2 cos 2
A . The geometric 

 effect of multiplying A  by x  is to rotate the vector through the angle 2 . 

 

True-False Exercises 

(a) False. The domain of AT  is 3R . 

(b) False. The codomain of AT  is mR . 

(c) True. Since the statement requires the given equality to hold for some vector x  in nR , we can let 0x . 

(d) False. (Refer to Theorem 1.8.3.) 

(e) True. The columns of A  are    0iT e . 

(f) False. The given equality must hold for every matrix transformation since it follows from the homogeneity property. 

(g) False. The homogeneity property fails to hold since    T k kx x b  does not generally equal 

      kT k k kx x b x b . 

 

1.9 Compositions of Matrix Transformations 
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1. (a)  From Tables 1 and 3 in Section 1.8,    
  
 

1

0 1

1 0
T  and    

  
 

2

1 0

0 0
T ; 

      
   

 
1 2 1 2

0 0

1 0
T T T T ;       

   
 

2 1 2 1

0 1

0 0
T T T T . 

For these transformations,  1 2 2 1T T T T . 

 (b) From Table 1 in Section 1.8,    
   

1

1 0

0 1
T  and    

  
 

2

0 1

1 0
T ; 

      
    

1 2 1 2

0 1

1 0
T T T T ;       

   
 

2 1 2 1

0 1

1 0
T T T T . 

For these transformations,  1 2 2 1T T T T . 

2. (a) From Table 3 in Section 1.8,    
  
 

1

1 0

0 0
T  and    

  
 

2

0 0

0 1
T ; 

      
   

 
1 2 1 2

0 0

0 0
T T T T ;       

   
 

2 1 2 1

0 0

0 0
T T T T . 

For these transformations,  1 2 2 1T T T T . 

 (b) From Tables 5 and 1 in Section 1.8,  
 

 

  
    

    

2 2
2 24 4

1 2 2
4 4 2 2

cos sin

sin cos
T  and    

  
 

2

1 0

0 1
T ; 

    
  

   
  


2 2

2 2
1 2 1 2 2 2

2 2

T T T T ;     
 

   
  


2 2

2 2
2 1 2 1 2 2

2 2

T T T T . 

For these transformations,  1 2 2 1T T T T . 

3. From Tables 2 and 4 in Section 1.8,  
 
   
  

1

1 0 0

0 1 0

0 0 1

T  and  
 
   
  

2

0 0 0

0 1 0

0 0 1

T ; 

     
 
    
  

1 2 1 2

0 0 0

0 1 0

0 0 1

T T T T ;     
 
    
  

2 1 2 1

0 0 0

0 1 0

0 0 1

T T T T . 

 For these transformations,  1 2 2 1T T T T . 

4. From Table 4 in Section 1.8,  
 
   
  

1

1 0 0

0 1 0

0 0 0

T . In vector form,  
   
       
      

2

2 2 0 0

3 0 3 0

0 0 1

x

T y

z

 

 
 
 
  

x

y

z

 so that 
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2

2 0 0

0 3 0

0 0 1

T . Therefore, 

    
 
    
  

1 2 1 2

2 0 0

0 3 0

0 0 0

T T T T  and     
 
    
  

2 1 2 1

2 0 0

0 3 0

0 0 0

T T T T . 

For these transformations,  1 2 2 1T T T T . 

5.        
     


10 7

5 10B A B AT T T T BA ;        
     


8 3

13 12A B A BT T T T AB  

6.     
 
     
  


40 0 20

12 9 18

38 18 43
B A B AT T T T BA ;     

 
     
  


19 18 22

10 3 16 .

31 33 58
A B A BT T T T AB  

7. (a) We are looking for the standard matrix of  2 1T T T  where 1T  is a rotation of 90  and 2T  is a reflection about 

the line y x . From Tables 5 and 1 in Section 1.8,  

        
        

1

cos90 sin 90 0 1

sin 90 cos90 1 0
T ,    

  
 

2

0 1

1 0
T . Therefore,       

    
2 1

1 0

0 1
T T T . 

 (b) We are looking for the standard matrix of  2 1T T T  where 1T  is an orthogonal projection onto the y -axis and 

2T  is a rotation of 45 about the origin. From Tables 3 and 5 in Section 1.8,  

   
  
 

1

0 0

0 1
T ,  

    
         

2 2
2 2

2 2 2
2 2

cos45 sin 45
 

sin 45 cos45
T . Therefore,     

 
   

  

2
2

2 1 2
2

0

0
T T T . 

 (c) We are looking for the standard matrix of  2 1T T T  where 1T  is a reflection about the x -axis and 2T  is a 

rotation of 60  about the origin. From Tables 1 and 5 in Section 1.8,    
   

1

1 0

0 1
T  and  

    
    

         

31
2 2

2 3 1
2 2

cos60 sin60

sin60 cos60
T .  

Therefore,     
 

   
  

31
2 2

2 1 3 1
2 2

T T T .  

8. (a)  We are looking for the standard matrix of   3 2 1T T T T  where 1T  is a rotation of 60 , 2T  is an orthogonal 

projection onto the x -axis, and 3T  is a reflection about the line y x . From Tables 5, 3, and 1 in Section 1.8, 

 
    

         

31
2 2

1 3 1
2 2

cos60 sin60

sin60 cos60
T ,    

  
 

2

1 0

0 0
T , and    

  
 

3

0 1

1 0
T . 

  Therefore,      
 

   
  

3 2 1 31
2 2

0 0
T T T T . 
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 (b) We are looking for the standard matrix of   3 2 1T T T T  where 1T  is an orthogonal projection onto the x-axis, 

2T  is a rotation of 45 , and 3T  is a reflection about the y -axis. From Tables 3, 5, and 1 in Section 1.8, 

   
  
 

1

1 0

0 0
T ,  

    
         

2 2
2 2

2 2 2
2 2

cos45 sin 45

sin 45 cos45
T , and    

  
 

3

1 0

0 1
T .  

Therefore,      
 

   
  

2
2

3 2 1 2
2

0

0
T T T T . 

 (c) We are looking for the standard matrix of   3 2 1T T T T  where 1T  is a rotation of 15 , 2T  is a rotation of 

105 , and 3T  is a rotation of 60 . The net effect of the three rotations is a single rotation of 

    15 105 60 180 . From Table 5 in Section 1.8, 

           
        

cos180 sin180 1 0

sin180 cos180 0 1
T . 

9. (a) We are looking for the standard matrix of  2 1T T T  where 1T  is a reflection about the yz -plane and 2T  is an 

orthogonal projection onto the xz -plane. From Tables 2 and 4 in Section 1.8,  

 
 
   
  

1

1 0 0

0 1 0

0 0 1

T  and  
 
   
  

2

1 0 0

0 0 0

0 0 1

T . Therefore,     
 
    
  

2 1

1 0 0

0 0 0

0 0 1

T T T . 

 (b) We are looking for the standard matrix of  2 1T T T  where 1T  is a reflection about the xy -plane and 2T  is an 

orthogonal projection onto the xy -plane. From Tables 2 and 4 in Section 1.8, 

   
 
   
  

1

1 0 0

0 1 0

0 0 1

T  and  
 
   
  

2

1 0 0

0 1 0

0 0 0

T . Therefore,     
 
    
  

2 1

1 0 0

0 1 0

0 0 0

T T T . 

 (c) We are looking for the standard matrix of  2 1T T T  where 1T  is an orthogonal projection on the xy -plane and 

2T  is a reflection about the yz -plane. From Tables 4 and 2 in Section 1.8,  

 
 
   
  

1

1 0 0

0 1 0

0 0 0

T ,  
 
   
  

2

1 0 0

0 1 0

0 0 1

T . Therefore,     
 
    
  

2 1

1 0 0

0 1 0

0 0 0

T T T . 

10. (a) We are looking for the standard matrix of   3 2 1T T T T  where 1T  is a reflection about the xy -plane, 2T  is an 

orthogonal projection onto the xz -plane, and 3T  is the transformation such that    3 .T x x   

  From Tables 2 and 4 in section 1.8,  
 
   
  

1

1 0 0

0 1 0

0 0 1

T  and  
 
   
  

2

1 0 0

0 0 0

0 0 1

T .  
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In vector form,  
      
             
           

1 1

3 1 2 3 2 2

3 3

1 0 0

 , , 0 1 0

0 0 1

x x

T x x x x x

x x

 so that  
 
   
  

3

1 0 0

0 1 0 .

0 0 1

T  

Therefore,      
 
    
  

3 2 1

1 0 0

0 0 0

0 0 1

T T T T . 

 (b) We are looking for the standard matrix of   3 2 1T T T T  where 1T  is a reflection about the xy -plane, 2T  is a 

reflection about the xz -plane, and 3T  is an orthogonal projection on the yz -plane. From Tables 2 and 4 in 

Section 1.8,  
 
   
  

1

1 0 0

0 1 0

0 0 1

T ,  
 
   
  

2

1 0 0

0 1 0

0 0 1

T , and  
 
   
  

3

0 0 0

0 1 0

0 0 1

T . Therefore, 

     
 
    
  

3 2 1

0 0 0

 0 1 0 

0 0 1

T T T T . 

 (c) We are looking for the standard matrix of   3 2 1T T T T  where 1T  is an orthogonal projection onto the yz -

plane, 2T  is the transformation such that   2 2T x x , and 3T  is a reflection about the xy -plane. 

  From Tables 4 and 2 in section 1.8,  
 
   
  

1

0 0 0

0 1 0

0 0 1

T  and  
 
   
  

3

1 0 0

0 1 0

0 0 1

T .  

  In vector form,  
     
           
          

1 1

2 1 2 3 2 2

3 3

2 2 0 0

 , , 2 0 2 0

2 0 0 2

x x

T x x x x x

x x

 so that  
 
   
  

2

2 0 0

0 2 0 .

0 0 2

T  

Therefore,      
 
    
  

3 2 1

0 0 0

0 2 0

0 0 2

T T T T . 

11. (a) In vector form,       
          

1 2 1
1 1 2

1 2 2

1 1
,

1 1

x x x
T x x

x x x
 so that    

   
1

1 1

1 1
T . 

  Likewise,       
          

1 1
2 1 2

1 2 2

3 3 0
,

2 4 2 4

x x
T x x

x x x
 so that    

  
 

2

3 0

2 4
T . 

 (b)           
             

2 1 2 1

3 0 1 1 3 3

2 4 1 1 6 2
T T T T   

           
             

1 2 1 2

1 1 3 0 5 4

1 1 2 4 1 4
T T T T   

 (c)       1 2 1 2 1 2 1 2, 5 4  ,  4T T x x x x x x ;       2 1 1 2 1 2 1 2, 3 3  ,   6 2T T x x x x x x  
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12. (a) In vector form,  
     
              
             

1 1

1 1 2 3 1 2 2

1 2 3

4 4 0 0

, , 2 2 1 0

3 1 3 0

x x

T x x x x x x

x x x

 so that  
 
   
   

1

4 0 0

2 1 0

1 3 0

T . 

  Likewise,  
     

             
           

1 2 1

2 1 2 3 3 2

1 3 3

2 1 2 0

, , 0 0 1

4 4 0 1

x x x

T x x x x x

x x x

 so that  
 
   
  

2

1 2 0

0 0 1

4 0 1

T . 

 (b)     
     
              
            

2 1 2 1

1 2 0 4 0 0 0 2 0

0 0 1 2 1 0 1 3 0

4 0 1 1 3 0 17 3 0

T T T T   

     
     
                 
              

1 2 1 2

4 0 0 1 2 0 4 8 0

2 1 0 0 0 1 2 4 1

1 3 0 4 0 1 1 2 3

T T T T   

 (c)            1 2 1 2 3 1 2 1 2 3 1 2 3, , 4 8 , 2 4 , 2 3T T x x x x x x x x x x x   

       2 1 1 2 3 2 1 2 1 2, , 2 , 3 ,17 3T T x x x x x x x x  

13. (a) In vector form,  
    

                     

1 2
1

1 1 2 1 2
2

1

1 1

, 2 1 2

3 3 0

x x
x

T x x x x
x

x

 so that  
 

   
  

1

1 1

1 2

3 0

T . 

  Likewise,  
 

                 

1
2

2 1 2 3 2
1 2

3

4 0 4 0
, ,

2 1 2 0

x
x

T x x x x
x x

x

 so that    
  
 

2

0 4 0

1 2 0
T . 

 (b)     
 

                 

2 1 2 1

1 1
0 4 0 4 8

1 2
1 2 0 1 3

3 0

T T T T   

     
    

                  

1 2 1 2

1 1 1 2 0
0 4 0

1 2 2 0 0
1 2 0

3 0 0 12 0

T T T T   

 (c)        1 2 1 2 3 1 2 1 2, , 2 , 2 ,1 2T T x x x x x x x ;         2 1 1 2 1 2 1 2, 4 8 , 3T T x x x x x x  

14. (a) In vector form,  

 
                  
 

1

1 2 3 2
1 1 2 3 4

2 4 3

4

2 3 1 2 3 0
, , ,

0 1 0 1

x

x x x x
T x x x x

x x x

x

  

   so that    
   

1

1 2 3 0

0 1 0 1
T . 
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   Likewise,  

    
                   

  

1

1
2 1 2

1 2 2

2

1 0

0 0 0
,

1 1

3 0 3

x

x
T x x

x x x

x

 so that  

 
 
 
 
 
 

2

1 0

0 0

1 1

0 3

T . 

 (b)     

      
               
   

   

2 1 2 1

1 0 1 2 3 0

0 0 1 2 3 0 0 0 0 0

1 1 0 1 0 1 1 3 3 1

0 3 0 3 0 3

T T T T   

     

 
               
 
 

1 2 1 2

1 0

1 2 3 0 0 0 2 3

0 1 0 1 1 1 0 3

0 3

T T T T   

 (c)        1 2 1 2 1 2 2, 2 3 , 3T T x x x x x  

           2 1 1 2 3 4 1 2 3 1 2 3 4 2 4, , , 2 3  ,0, 3 3 , 3 3T T x x x x x x x x x x x x x  

 

15. (a) In vector form,  

   
                
   

    

1

y 0 1

x 1 0
x,y

1 1 y

1 1

x
T

x y

x y

 so that  

 
 
 
 
 

 

1

0 1

1 0
.

1 1

1 1

T   

   Likewise,  

 
     

            
        

 

2

x
x w 1 0 0 1

y
x,y,z,w y w 0 1 0 1

z
0 0 1 1

w

T

z w

 so that  
 
   
  

2

1 0 0 1

0 1 0 1

0 0 1 1

T . 

 (b)     

 
    
           
        

2 1 2 1

0 1
1 0 0 1 1 0

1 0
0 1 0 1 2 1

1 1
0 0 1 1 2 0

1 1

T T T T  

 (c)  1 2T T  is not defined because the outputs from 2T  are vectors in 3R  but the inputs for 1T  are vectors in 2R . 

 (d)      2 1 x,y  ,2 , 2T T x x y x  

16. (a) In vector form,  
   

                  
1

x 2y 1 2

x,y 0 0 0
y

2 2 1

x
T

x y

 so that  
 
   
  

1

1 2

0 0 .

2 1

T   
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   Likewise,  

   
                
           

2

3z 0 0 3
x

x y 1 1 0
x,y,z y

3 0 0 3
z

1 1 0

T
z

x y

 so that  

 
  
 
 
 

2

0 0 3

1 1 0

0 0 3

1 1 0

T . 

 (b)     

   
               
          

2 1 2 1

0 0 3 6 3
1 2

1 1 0 1 2
0 0

0 0 3 6 3
2 1

1 1 0 1 2

T T T T  

 (c)  1 2T T  is not defined because the outputs from 2T  are vectors in 4R  but the inputs for 1T  are vectors in 2R . 

 (d)              2 1 1 2, 6 3 , 2 ,6 3 , 2T T x x x y x y x y x y  

17. (a) 
      

              
1 1 2 1

2 1 2 2

8 4 8 4

2 2 1

w x x x

w x x x
; the standard matrix is 

 
 
 

8 4

2 1
. Using Theorem 1.5.3(c), we attempt to find 

the inverse: 

 
 
 

8 4 1 0

2 1 0 1
    

 

 
The identity matrix was adjoined to the coefficient matrix. 

 
 
 

0 0 1 4

2 1 0 1
    

 

 
4 times the second row was subtracted from the first row. 

 

  Since we obtained a row of zeros on the left side, the operator is not one-to-one. 

 (b) 

          
                
               

1 1 2 3 1

2 1 3 2

3 1 2 3 3

3 2 1 3 2

2 4 2 0 4

3 6 1 3 6

w x x x x

w x x x

w x x x x

; the standard matrix is 

 
 
 
  

1 3 2

2 0 4

1 3 6

. Using Theorem 1.5.3(c), we 

attempt to find the inverse: 

 
 
 
  

1 3 2 1 0 0

 2 0 4 0 1 0  

1 3 6 0 0 1

    
 

 
The identity matrix was adjoined to the coefficient matrix. 

 
 
 
  

1 3 2 1 0 0

 0 6 8 2 1 0  

0 6 8 1 0 1

    
 

 

2  times the first row was added to the second row and the 
first row was added to the third row. 

 
 
 
   

1 3 2 1 0 0

 0 6 8 2 1 0  

0 0 0 1 1 1

    
 

 
The second row was subtracted from the third row. 

  Since we obtained a row of zeros on the left side, the operator is not one-to-one. 
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18. (a) 
       

              
1 1 2 1

2 1 2 2

2 3 2 3

5 5 1

w x x x

w x x x
; the standard matrix is 

 
 
 

2 3

5 1
. Using Theorem 1.5.3(c), we attempt to 

find the inverse: 

 
 
 

2 3 1 0

5 1 0 1
    

 

 
The identity matrix was adjoined to the coefficient matrix. 

 
 
 

17 0 1 3

5 1 0 1
    

 

 
3 times the second row was added to the first row. 

 
 
 

31
17 171 0 

5 1 0 1
    

 

 
The first row was multiplied by 1

17 . 

 
  

31
17 17

5 2
17 17

1 0 

0 1 
   

 

 
5 times the first row was subtracted from the second row. 

  Since the reduced row echelon form of the operator’s standard matrix is the identity, the operator is invertible. 

 (b) 

        
                 
              

1 1 2 3 1

2 1 2 3 2

3 1 3 3

2 3 1 2 3

2 5 3 2 5 3

8 1 0 8

w x x x x

w x x x x

w x x x

; the standard matrix is 

 
 
 
  

1 2 3

2 5 3

1 0 8

.  

  Using Theorem 1.5.3(c), we attempt to find the inverse: 

 
 
 
  

1 2 3 1 0 0

 2 5 3 0 1 0  

1 0 8 0 0 1

    
 

 
The identity matrix was adjoined to the matrix A . 

 
   
   

1 2 3 1 0 0

 0 1 3 2 1 0  

0 2 5 1 0 1

   
 

 

 
2  times the first row was added to the second row and 
the first row was subtracted from the third row. 

 
   
   

1 2 3 1 0 0

 0 1 3 2 1 0  

0 0 1 5 2 1

   
 

 
2 times the second row was added to the third row. 

 
   
   

1 2 3 1 0 0

 0 1 3 2 1 0  

0 0 1 5 2 1

   
 

 
The second row was multiplied by 1 .  

 
   
   

1 2 0 14 6 3

 0 1 0  13 5 3 

0 0 1 5 2 1

   
 

 

 
3 times the third row added to the second row and 3 
times the third row was subtracted from the first row. 
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1 0 0 40 16 9

 0 1 0  13 5 3 

0 0 1 5 2 1

   
 

 

 
2 times the second row was subtracted from the first 
row.  

 

  Since the reduced row echelon form of the operator’s standard matrix is the identity, the operator is invertible. 
  

19. (a) 
      

               
1 1 2 1

2 1 2 2

2 1 2

1 1

w x x x

w x x x
; the standard matrix is 

 
  

1 2

1 1
; since  


1 2

3 0
1 1

, it follows from 

Theorem 1.4.5 that the operator is invertible; 

  the standard matrix of 1T  is 
   

   
   

1 2
3 31

3 1 1
3 3

1 2

1 1
;       1 1 2 1 1

1 2 1 2 1 23 3 3 3, ,  T w w w w w w  

 (b) 
       

               
1 1 2 1

2 1 2 2

4 6 4 6

2 3 2 3

w x x x

w x x x
; the standard matrix is 

 
  

4 6

2 3
; since 





4 6

0
2 3

, it follows from 

Theorem 1.4.5 that the operator is not invertible. 

20. (a) 

         
                 
              

1 1 2 3 1

2 1 2 3 2

3 1 2 3

2 2 1 2 2

2 2 1 1

1 1 0

w x x x x

w x x x x

w x x x

; the standard matrix is 

 
 
 
  

1 2 2

2 1 1

1 1 0

;  

since the reduced row echelon form of the matrix 

 
 
 
  

1 2 2 1 0 0

2 1 1  0 1 0

1 1 0 0 0 1

 is 

 
   
   

1 0 0 1 2 4

0 1 0 1 2 3

0 0 1 1 3 5

, it follows 

from Theorem 1.5.3(c) that the operator T  is invertible. Therefore, the standard matrix of 1T  is 

 
   
   

1 2 4

1 2 3

1 3 5

;  

             1
1 2 3 1 2 3 1 2 3 1 2 3, , 2 4 , 2 3 , 3 5T w w w w w w w w w w w w   

 (b) 

         
                   
                

1 1 2 3 1

2 1 2 3 2

3 2 3 3

3 4 1 3 4

1 1 1

2 5 0 2 5

w x x x x

w x x x x

w x x x

; the standard matrix is 

 
  
  

1 3 4

1 1 1

0 2 5

;  

  Adding row 1 to row 2 followed by adding row 2 to row 3 in the reduced row echelon form of the matrix 

 
  
  

1 3 4 1 0 0

1 1 1  0 1 0

0 2 5 0 0 1

 produces 

 
  
  

1 3 4 1 0 0

0 2 5 1 1 0

0 0 0 1 0 1

, it follows from Theorem 1.5.3(c) that the operator T  

is not invertible. 
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21. (a)  From Table 1 in Section 1.8, the standard matrix is 
 
  

1 0

0 1
; since   


1 0

1 0
0 1

, the matrix operator is 

invertible. The inverse is also a reflection about the x -axis. 

 (b) From Table 5 in Section 1.8, the standard matrix is 
    

        

31
2 2

3 1
2 2

cos60 sin60

sin60 cos60
. Since 


 

31
2 2

3 1
2 2

1 0,  

the matrix operator is invertible. The inverse is a rotation of  60  (equivalent to 300 ) about the origin. 

 (c) From Table 3 in Section 1.8, the standard matrix is 
 
 
 

1 0

0 0
; since 

1 0
0

0 0
, the matrix operator is not 

invertible. 

22. (a)  From Table 1 in Section 1.8, the standard matrix is 
 
 
 

0 1

1 0
; since   

0 1
1 0

1 0
, the  

  matrix operator is invertible. The inverse is also a reflection about the line y x . 

 (b) From Table 3 in Section 1.8, the standard matrix is 
 
 
 

0 0

0 1
; since 

0 0
0

0 1
, the matrix operator is not 

invertible. 

 (c)  The standard matrix is 
 
  

1 0

0 1
; since 


 


1 0

1 0
0 1

, the matrix operator is invertible. The inverse is also a 

reflection about the origin. 

23. (a) Since   
1 2

1 0
1 1

, it follows from Theorem 1.4.5 that the operator AT  is invertible; 

       
         

1 1 2 1 2
1

1 1 1 1
A . Therefore,        

            
1 1 2 1 3

.
1 1 2 1AT x  

 (b) Since 
1 1

0
1 1

, it follows from Theorem 1.4.5 that the operator AT  is not invertible. 

24. (a)  Since the reduced row echelon form of the matrix 

 
 
 
  

1 2 0 1 0 0

1 1 1  0 1 0

2 3 1 0 0 1

 is 

 
 
 
   

1 0 0 1 0 0

0 1 0 0 1 0

0 0 0 1 1 1

, it follows 

from Theorem 1.5.3 that the operator AT  is not invertible.  

 (b) Since the reduced row echelon form of the matrix 

 
 
 
  

1 1 0 1 0 0

0 1 1  0 1 0

1 0 1 0 0 1

 is 

 
  
  

1 1 1
2 2 2

1 1 1
2 2 2

1 1 1
2 2 2

1 0 0

0 1 0

0 0 1

, it follows 

from Theorem 1.5.3 that the operator AT  is invertible.  
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1 1 1
2 2 2

1 1 1 1
2 2 2

1 1 1
2 2 2

.A  Therefore,  

     
            
          

1 1 1
2 2 2

1 1 1 1
2 2 2

1 1 1
2 2 2

1 1

2 0 .

3 2
AT x  

25. (a) In vector form,         
            

0 1 x
x,y .

1 0 yA

y
T

x
 The geometric effect of applying  

  this transformation to x  is to reflect x  about y x  and then to reflect the result about the 

  origin. 

 (b) For instance, if 
 

  
 

0 1

1 0
B  (the standard matrix of the reflection about y x ) and  

   
 

   

1 0

0 1
C  (the standard matrix of the reflection about the origin) then   .A C BT T T  

26. (a) Since     2 2cos sin cos 2  and    2sin cos sin 2 , we have  

  
   
   
 
 

 
  
 

cos 2 sin 2

sin 2 cos 2
A . The geometric effect of applying this transformation to x  is to rotate the vector 

through the angle 2 . 

 (b) For instance, if 
 
 

 
  
 

cos sin

sin cos
B  (the standard matrix of the rotation through an angle  ) then  A B BT T T . 

 

True-False Exercises 

(a) False. For instance, Example 2 shows two matrix operators on 2R  whose composition is not commutative. 

(b) True. This is stated as Theorem 1.9.1. 

(c) True. This was established in Example 3. 

(d) False. For instance, composition of any reflection operator with itself is the identity operator, which is not a 
reflection. 

(e) True. The reflection of a vector 
 
 
 

x

y
about the line y x  is 

 
 
 

y

x
 so a second reflection yields 

 
 
 

.
x

y
 

(f) False. This follows from Example 6. 

(g) True. The reflection about the origin is given by the transformation    T x x  so that T  is its own inverse. 

 

1.10 Applications of Linear Systems 
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1. There are four nodes, which we denote by A , B , C , and D  (see the figure on the left). 

We determine the unknown flow rates 1x , 2x , and 3x  assuming the counterclockwise direction (if any of these 

quantities are found to be negative then the flow direction along the corresponding branch will be reversed). 

 

 
 
 

 

2 1

1 3

2

3

Network node Flow In  Flow Out

50

30

50 60

40 50

A x x

B x x

C x

D x

 

 

 This system can be rearranged as follows 

 

   
 

 


1 2

1 3

2

3

  50  

   30  

    10  

     10  

x x

x x

x

x

 

 By inspection, this system has a unique solution 1 40x ,  2 10x , 3 10x . This yields the flow rates and 

directions shown in the figure on the right. 

2. (a) There are five nodes – each of them corresponds to an equation.  

 

 
  
 
  
 

1 3

3 4 5

1 2

2 4 6

5 6

Network node Flow In  Flow Out

top left 200

top right 150

bottom left 25

bottom middle 175

bottom right 200

x x

x x x

x x

x x x

x x

 

  This system can be rearranged as follows 
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1 3

3 4 5

1 2

2 4 6

5 6

        200  

     150  

        25  

      175  

        200  

x x

x x x

x x

x x x

x x

 

 (b) The augmented matrix of the linear system obtained in part (a) has the reduced row echelon form 

 
  
 
 
 
  

1 0 0 1 0 1 150

0 1 0 1 0 1 175

0 0 1 1 0 1 50

0 0 0 0 1 1 200

0 0 0 0 0 0 0

. If we assign 4x  and 6x  the arbitrary values s  and t , respectively, the general 

solution is given by the formulas 

    1 150x s t ,   2 175x s t ,   3 50x s t , 4x s ,  5 200x t , 6x t  

 (c) When 4 50x  and 6 0x , the remaining flow rates become 1 100x , 2 125x , 3 100x , and 5 200x . 

  The directions of the flow agree with the arrow orientations in the diagram. 

3. (a) There are four nodes – each of them corresponds to an equation.  

 

  
  
  
  

2 3

3 4

1 2

4 1

Network node Flow In  Flow Out

top left 300 400

top right (A) 750 250

bottom left 100 400

bottom right (B) 200 300

x x

x x

x x

x x

 

  This system can be rearranged as follows 

 

 
  

 
  

2 3

3 4

1 2

1 4

    100  

    500  

   300  

    100  

x x

x x

x x

x x

 

 (b) The augmented matrix of the linear system obtained in part (a) 

 
   
 
 
 

0 1 1 0 100

0 0 1 1 500

1 1 0 0 300

1 0 0 1 100

 has the reduced row 

echelon form 

  
   
  
 
 

1 0 0 1 100

0 1 0 1 400

0 0 1 1 500

0 0 0 0 0

. If we assign 4x  the arbitrary value s , the general solution is given by 

the formulas 

    1 100x s ,   2 400x s ,   3 500x s , 4x s  
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 (c) In order for all ix  values to remain positive, we must have  500s . Therefore, to keep the traffic flowing on 

all roads, the flow from A to B must exceed 500 vehicles per hour. 

4. (a) There are six intersections – each of them corresponds to an equation.  

 

  
  
  
  
  
  

1 3

1 4 2

2 5

3 6

7 4 6

5 7

Intersection Flow In  Flow Out

top left 500 300

top middle 200

top right 100 600

bottom left 400 350

bottom middle 600

bottom right 450 400

x x

x x x

x x

x x

x x x

x x

 

  We rewrite the system as follows 

1 3

1 2 4

2 5

3 6

4 6 7

5 7

        800

 200

   +    500

      

       60

750

50

0

x x

x x x

x x

x x

x x x

x x



 





  

 

 



 

 

 

 (b) The augmented matrix of the linear system obtained in part (a) has the reduced row echelon form 

 
  
 
 

 
  
 
  

1 0 0 0 0 1 0 50

0 1 0 0 0 0 1 450

0 0 1 0 0 1 0 750

0 0 0 1 0 1 1 600

0 0 0 0 1 0 1 50

0 0 0 0 0 0 0 0

. If we assign 6x  

and 7x  the arbitrary values s  and t , respectively, the 

general solution is given by the formulas 

 1 50x s ,  2 450x t ,  3 750x s , 

  4 600x s t ,   5 50x t , 6x s , 7x t  subject 

to the restriction that all seven values must be nonnegative. Obviously, we need both  6 0s x  and  7 0t x , 

which in turn imply 1 0x  and 2 0x . Additionally imposing the three inequalities   3 750 0x s , 

   4 600 0x s t , and    5 50 0x t  results in the set of allowable s  and t  values depicted in the grey 

region on the graph. 

 (c) Setting 1 0x  in the general solution obtained in part (b) would result in the negative value   6 50s x  

which is not allowed (the traffic would flow in a wrong way along the street marked as 6x .) 

5. From Kirchhoff's current law at each node, we have   1 2 3 0.I I I  Kirchhoff's voltage law yields 

s

t

600 750

50

150

75
0 

 
 

 0



s

  50    0t

75
0 

 
 

 0



s

  50    0t

60
0 

 
  0





s 
 t

60
0 

 
 

 0





s 
 t
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1 2

2 3

 Voltage Rises  Voltage Drops

Left Loop (clockwise) 2 2 6

Right Loop (clockwise) 2 4 8

I I

I I

 

 (An equation corresponding to the outer loop is a combination of these two equations.)  
The linear system can be rewritten as 

 

  
 

 

1 2 3

1 2

2 3

0

2 2   6

  2 4 8

I I I

I I

I I

 

 Its augmented matrix has the reduced row echelon form 

 
  
  

13
5

2
5

11
5

1 0 0

0 1 0

0 0 1

.  

The solution is 1 2.6AI ,  2 0.4AI , and 3 2.2AI .  

Since 2I  is negative, this current is opposite to the direction shown in the diagram. 

6. From Kirchhoff's current law at each node, we have   1 2 3 0.I I I  Kirchhoff's voltage law yields 

  
 

1 2

3 1

 Voltage Rises  Voltage Drops

Left Inside Loop (clockwise) 4 6 1

Right Inside Loop (clockwise) 2 2 4

I I

I I

 

 (An equation corresponding to the outer loop is a combination of these two equations.)  
The linear system can be rewritten as 

 

  
 

  

1 2 3

1 2

1 3

0

4 6   1

4   2 2

I I I

I I

I I

 

 Its augmented matrix has the reduced row echelon form 

 
 
 
  

5
22

7
22

6
11

1 0 0

0 1 0

0 0 1

.  

The solution is  1

5
A

22
I , 2

7
A

22
I , and 3

6
A

11
I .  

Since 1I  is negative, this current is opposite to the direction shown in the diagram. 

7. From Kirchhoff's current law, we have  

 

 



 

1 2 4

4 3 5

2 6 1

3 5 6

 Current In  Currrent Out

Top Left Node

Top Right Node =

Bottom Left Node =

Bottom Right Node

I I I

I I I

I I I

I I I

 

 Kirchhoff's voltage law yields 
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1 2

2 3

3 5

 Voltage Rises  Voltage Drops

Left Loop (clockwise) 10 20 20

Middle Loop (clockwise) 20 = 20

Right Loop (clockwise) 20 10 20

I I

I I

I I

 

 (Equations corresponding to the other loops are combinations of these three equations.) 

 The linear system can be rewritten as 

0

0

0

0

20 20 10

20 20 0

20 10

  
   

   
  

   
 

  

I I I

I I I

I I I

I I I

I I

I I

I I

1 2 4

3 4 5

1 2 6

3 5 6

1 2

2 3

3 520

 

 Its augmented matrix has the reduced row echelon form 

 
 
 
 
 
 
 
 
 
 
 

1
2

1
2

1
2

1
2

1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0 0

.  

The solution is    1 4 5 6 0.5AI I I I ,  2 3 0AI I . 

8. From Kirchhoff's current law at each node, we have   1 2 3 0.I I I  Kirchhoff's voltage law yields 

   
  

1 2

3 2

 Voltage Rises  Voltage Drops

Top Inside Loop (clockwise) 3 4 5 4

Bottom Inside Loop (clockwise) 4 5 3 4

I I

I I

 

 The corresponding linear system can be rewritten as 

 

  
 
   

1 2 3

1 2

2 3

0

3 4   9

 4 5 1

I I I

I I

I I

 

 Its augmented matrix has the reduced row echelon form 

 
 
 
  

77
47

48
47

29
47

1 0 0

0 1 0

0 0 1

.  

The solution is  77
1 47 AI ,   48

2 47 AI , and  29
3 47 AI . 

 

9. We are looking for positive integers 1 2 3, , x x x , and 4x  such that 
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          1 3 8 2 2 3 2 4 2C H O CO H Ox x x x  

 The number of atoms of carbon, hydrogen, and oxygen on both sides must equal: 

 


 

1 3

1 4

2 3 4

 Left Side  Right Side

Carbon 3

Hydrogen 8 2

Oxygen 2 2

x x

x x

x x x

 

 The linear system 

 

 
 

  

1 3

1 4

2 3 4

3     0

8     2 0

  2 2 0

x x

x x

x x x

 

 has the augmented matrix whose reduced row echelon form is 

 
  
  

1
4

5
4

3
4

1 0 0 0

0 1 0 0

0 0 1 0

.  

The general solution is  1
1 4x t ,  5

2 4x t ,  3
3 4x t , 4x t  where t  is arbitrary. The smallest positive integer values 

for the unknowns occur when  4t , which yields the solution  

1 1x , 2 5x , 3 3x , 4 4x . The balanced equation is  

   3 8 2 2 2C H 5O 3CO 4H O  

10. We are looking for positive integers 1 2, ,x x  and 3x  such that 

       1 6 12 6 2 2 3 2 5C H O CO C H OHx x x  

 The number of atoms of carbon, hydrogen, and oxygen on both sides must equal: 

 
 

 

1 2 3

1 3

1 2 3

 Left Side  Right Side

Carbon 6 2

Hydrogen 12 6

Oxygen 6 2

x x x

x x

x x x

 

 The linear system 

 

  
 

  

1 2 3

1 3

1 2 3

6 2 0

12   6 0

6 2 0

x x x

x x

x x x

 

 has the augmented matrix whose reduced row echelon form is 

 
  
  

1
21 0 0

0 1 1 0

0 0 0 0

.  
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 The general solution is  1
1 2x t , 2x t , 3x t  where t  is arbitrary. The smallest positive integer values for the 

unknowns occur when  2t , which yields the solution 1 1x , 2 2x , 3 2x . The balanced equation is  

 6 12 6 2 2 5C H O 2CO 2C H OH  

11. We are looking for positive integers 1 2 3, , x x x , and 4x  such that 

          1 3 2 2 3 3 4CH COF H O CH COOH HFx x x x  

 The number of atoms of carbon, hydrogen, oxygen, and fluorine on both sides must equal: 

 


  
 



1 3

1 2 3 4

1 2 3

1 4

 Left Side  Right Side

Carbon 2 2

Hydrogen 3 2 4

Oxygen 2

x x

x x x x

x x x

x xFluorine

 

 The linear system 

 

 
   
  

 

1 3

1 2 3 4

1 2 3

1 4

2   2   0

3 2 4 0

2   0

    0

x x

x x x x

x x x

x x

 

 has the augmented matrix whose reduced row echelon form is 

 
  
 
 
 

1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

0 0 0 0 0

. 

 

 The general solution is 1x t , 2x t , 3x t , 4x t  where t  is arbitrary. The smallest positive integer values for the 

 unknowns occur when 1t , which yields the solution 1 1x , 2 1x  3 1x , 4 1x . The balanced equation is  

   3 2 3CH COF H O CH COOH HF  

12. We are looking for positive integers 1 2 3, , x x x , and 4x  such that 

          1 2 2 2 3 6 12 6 4 2CO H O C H O Ox x x x  

 The number of atoms of carbon, hydrogen, and oxygen on both sides must equal: 

 



  

1 3

2 3

1 2 3 4

 Left Side  Right Side

Carbon 6

Hydrogen 2 12

Oxygen 2 6 2

x x

x x

x x x x
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 The linear system 

 

 
 

   

1 3

2 3

1 2 3 4

  6   0

  2 12   0

2 6 2 0

x x

x x

x x x x

 

 has the augmented matrix whose reduced row echelon form is 

 
  
  

1
6

1 0 0 1 0

0 1 0 1 0

0 0 1 0

.  

The general solution is 1x t , 2x t ,  1
3 6x t , 4x t  where t  is arbitrary. The smallest positive integer values for 

the unknowns occur when  6t , which yields the solution 1 6x , 2 6x , 3 1x , 4 6x . The balanced equation is  

   2 2 6 12 6 26CO 6H O C H O 6O  

13. We are looking for a polynomial of the form      2
0 1 2p x a a x a x  such that   1 1,p    2 2p , and   3 5p . We 

obtain a linear system 

 

  
  
  

0 1 2

0 1 2

0 1 2

1

2 4 2

3 9 5

a a a

a a a

a a a

 

 Its augmented matrix has the reduced row echelon form 

 
  
  

1 0 0 2

0 1 0 2

0 0 1 1

. 

 There is a unique solution 0 2a ,  1 2a , 2 1a . 

 The quadratic polynomial is      22 2 .p x x x  

 

14. We are looking for a polynomial of the form      2
0 1 2p x a a x a x  such that   0 0,p    1 1p , and   1 1p . 

 We obtain a linear system 

 


  
  

0

0 1 2

0 1 2

   0

1

1

a

a a a

a a a

 

 Its augmented matrix has the reduced row echelon form 

 
 
 
  

1 0 0 0

0 1 0 0

0 0 1 1

. 

 There is a unique solution 0 0a , 1 0a , 2 1a . The quadratic polynomial is    2 .p x x  

15. We are looking for a polynomial of the form      2 3
0 1 2 3p x a a x a x a x  such that    1 1,p    0 1p ,   1 3p  

and    4 1p . We obtain a linear system 
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0 1 2 3

0

0 1 2 3

0 1 2 3

1

      1

3

4 16 64 1

a a a a

a

a a a a

a a a a

 

 Its augmented matrix has the reduced row echelon form 

 
 
 
 
 

 

13
6

1
6

1 0 0 0 1

0 1 0 0

0 0 1 0 0

0 0 0 1

. 

 There is a unique solution 0 1a ,  13
1 6a , 2 0a ,   1

3 6a . 

 The cubic polynomial is      313 1
6 61p x x x . 

16. We are looking for a polynomial of the form      2 3
0 1 2 3p x a a x a x a x  such that   0 0,p    2 5p ,   4 8p  

and   6 3p . We obtain a linear system 

 


   
   
   

0

0 1 2 3

0 1 2 3

0 1 2 3

      0

2 4 8 5

4 16 64 8

6 36 216 3

a

a a a a

a a a a

a a a a

 

 Its augmented matrix has the reduced row echelon form 

 
 
 
 
 

 

1
2

1
8

1 0 0 0 0

0 1 0 0 2

0 0 1 0

0 0 0 1

. 

 

 There is a unique solution 0 0a , 1 2a ,  1
2 2a ,   1

3 8a .  

 The cubic polynomial is     2 31 1
2 82p x x x x . 

17. (a) We are looking for a polynomial of the form      2
0 1 2p x a a x a x  such that   0 1p  and   1 2p . We 

obtain a linear system 

 


  
0

0 1 2

   1

2

a

a a a
 

  Its augmented matrix has the reduced row echelon form 
 
 
 

1 0 0 1

0 1 1 1
.  

The general solution of the linear system is 0 1a ,  1 1a t , 2a t  where t  is arbitrary.  

Consequently, the family of all second-degree polynomials that pass through  0,1  and  1,2  can be 

represented by        21 1p x t x tx  where t  is an arbitrary real number. 
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 (b)  

 

 

 

 

True-False Exercises 

(a) False. In general, networks may or may not satisfy the property of flow conservation at each node (although the ones 
discussed in this section do). 

(b) False. When a current passes through a resistor, there is a drop in the electrical potential in a circuit. 

(c) True. 

(d) False. A chemical equation is said to be balanced if for each type of atom in the reaction, the same number of atoms 
appears on each side of the equation. 

(e) False. By Theorem 1.10.1, this is true if the points have distinct x -coordinates. 

 

1.11 Leontief Input-Output Models 

1. (a) 
 

  
 

0.50 0.25

0.25 0.10
C  

 (b) The Leontief matrix is 
     

             

1 0 0.50 0.25 0.50 0.25

0 1 0.25 0.10 0.25 0.90
I C ; 

  the outside demand vector is 
 

  
 

7,000
d

14,000
. 

  The Leontief equation   x dI C  leads to the linear system with the augmented matrix 

 
  

0.50 0.25 7,000

0.25 0.90 14,000
. Its reduced row echelon form is 

   
   
  

784,000
31

700,000
31

1 0 25,290.321 0

0 1 22,580.650 1
. 

  To meet the consumer demand, M  must produce approximately $25,290.32 worth of mechanical work and B  
must produce approximately $22,580.65 worth of body work. 

2. (a) 
 

  
 

0.30 0.20

0.10 0.60
C  

 (b) The Leontief matrix is 
     

             

1 0 0.30 0.20 0.70 0.20

0 1 0.10 0.60 0.10 0.40
I C ; 
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  the outside demand vector is 
 

  
 

130,000
d

130,000
. 

  The Leontief equation   x dI C  leads to the linear system with the augmented matrix 

 
  

0.70 0.20 130,000

0.10 0.40 130,000
. Its reduced row echelon form is 

 
 
 

1 0 300,000

0 1 400,000
. 

  To meet the consumer demand, the economy must produce $300,000 worth of food and $400,000 worth of 
housing. 

3. (a) 

 
   
  

0.10 0.60 0.40

0.30 0.20 0.30

0.40 0.10 0.20

C  

 (b) The Leontief matrix is 

      
               
           

1 0 0 0.10 0.60 0.40 0.90 0.60 0.40

0 1 0 0.30 0.20 0.30 0.30 0.80 0.30

0 0 1 0.40 0.10 0.20 0.40 0.10 0.80

I C ; 

  the outside demand vector is 

 
   
  

1930

d 3860

5790

. 

  The Leontief equation   x dI C  leads to the linear system with the augmented matrix 

  
   
   

0.90 0.60 0.40 1930

0.30 0.80 0.30 3860

0.40 0.10 0.80 5790

.  

Its reduced row echelon form is 

 
 
 
  

1 0 0 31,500

0 1 0 26,500

0 0 1 26,300

.  

  The production vector that will meet the given demand is 

 
   
  

$31,500

$26,500

$26,300

x . 

4. (a) 

 
   
  

0.40 0.20 0.45

0.30 0.35 0.30

0.15 0.10 0.20

C  

 (b) The Leontief matrix is 

      
               
           

1 0 0 0.40 0.20 0.45 0.60 0.20 0.45

0 1 0 0.30 0.35 0.30 0.30 0.65 0.30

0 0 1 0.15 0.10 0.20 0.15 0.10 0.80

I C ; 

  the outside demand vector is 

 
   
  

5400

d 2700

900

. 
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  The Leontief equation   x dI C  leads to the linear system with the augmented matrix 

  
   
   

0.60 0.20 0.45 5400

0.30 0.65 0.30 2700

0.15 0.10 0.80 900

.  

Its reduced row echelon form is 

   
      
     

9378000
479

7830000
479

3276000
479

1 0 0 1 0 0 19578.29

0 1 0 0 1 0 16346.56

0 0 1 0 0 1 6839.25

.  

  The production vector that will meet the given demand is 

 
   
  

$19578.29

$16346.56

$6839.25

x . 

5. 
 

    

0.9 0.3

0.5 0.6
I C ;      

     
   

20 10
1 13 13

50 30
39 13

0.6 0.3100

0.5 0.939
I C   

        
          

      

20 10 1600
1 13 13 13

50 30 7900
39 13 39

50 123.08
x d

60 202.56
I C   

6. 
 

    

0.7 0.1

0.3 0.3
I C ;      

     
   

5 5
1 3 9

5 35
3 9

0.3 0.1100

0.3 0.718
I C   

        
          

      

5 5 400
1 3 9 9

5 35 820
3 9 9

22 44.44
x d

14 91.11
I C   

7. (a) The Leontief matrix is 
 

   
 

1
2 0

0 0
I C . 

  The Leontief equation    
   

 

2

0
I C x  leads to the linear system with the augmented matrix 

 
 
 

1
2 0 2

0 0 0
. Its 

reduced row echelon form is 
 
 
 

1 0 4

0 0 0
 therefore a production vector can be found (namely, 

 
 
 

4

t
 for an 

arbitrary nonnegative t ) to meet the demand. 

  On the other hand, the Leontief equation    
   

 

2

1
I C x  leads to the linear system with the augmented matrix 

 
 
 

1
2 0 2

0 0 1
. Its reduced row echelon form is 

 
 
 

1 0 0

0 0 1
; the system is inconsistent, therefore a production 

vector cannot be found to meet the demand. 

 (b) Mathematically, the linear system represented by 
    

    
     

1
1 12

2 2

0

0 0

x d

x d
 can be rewritten as 

  
   

   

1
112

20

dx

d
. 

  Clearly, if 2 0d  the system has infinitely many solutions: 1 12x d ; 2x t  where t  is an arbitrary 

nonnegative number. 

If 2 0d  the system is inconsistent. (Note that the Leontief matrix is not invertible.) 
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  An economic explanation of the result in part (a) is that 
 

  
 

2

0

1
c  therefore the second sector consumes all of 

its own output, making it impossible to meet any outside demand for its products. 

8. 

  
     
   

1 1 1
2 4 4

71 1
2 8 4

71 1
2 4 8

 I C  

 If the open sector demands k  dollars worth from each product-producing sector, i.e. the outside demand vector is 

 

 
   
  

d

k

k

k

. The Leontief equation   x dI C  leads to the linear system with the augmented matrix 

  
   
   

1 1 1
2 4 4

71 1
2 8 4

71 1
2 4 8

 

k

k

k

. Its reduced row echelon form is 

 
 
 
  

1 0 0 18

0 1 0 16

0 0 1 16

k

k

k

. 

 We conclude that the first sector must produce the greatest dollar value to meet the specified open sector demand. 

9. From the assumption  21 12 111c c c , it follows that the determinant of 

 
   

         

11 12
11 12 21

21

1
det det 1

1

c c
I C c c c

c
 is nonzero. Consequently, the Leontief matrix is invertible; its 

inverse is    

 
    11 12 21

1 121
1

21 11

1

1c c c

c
I C

c c
. Since the consumption matrix C  has nonnegative entries and 

  11 21 121 0c c c , we conclude that all entries of  
1

I C  are nonnegative as well. This economy is productive (see 

the discussion above Theorem 1.10.1) - the equation  Cx x d  has a unique solution   
1

I Cx d  for every 

demand vector d . 

True-False Exercises 

(a) False. Sectors that do not produce outputs are called open sectors. 

(b) True. 

(c) False. The i th row vector of a consumption matrix contains the monetary values required of the i th sector by the 

other sectors for each of them to produce one monetary unit of output. 

(d) True. This follows from Theorem 1.11.1. 

(e) True. 

 

Chapter 1 Supplementary Exercises 

1. The corresponding system of linear equations is 
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1 2 4

1 3 4

3   4 1

2   3 3 1

x x x

x x x
 

  
  

3 1 0 4 1

2 0 3 3 1
   

 

 

  
The original augmented matrix. 
 

   
  

1 1 3 1 2

2 0 3 3 1
   

 

 
1  times the second row was added to the first row. 

   
  

1 1 3 1 2

0 2 9 1 5
   

 

 
2  times the first row was added to the second row. 

 
  

  
9 51
2 2 2

1 1 3 1 2

0 1
   

 

 
The second row was multiplied by 1

2 . 

  
 This matrix is in row echelon form. It corresponds to the system of equations 

 
   

   

1 2 3 4

2 3 4

3 2

9 1 5
  

2 2 2

x x x x

x x x
 

 Solve the equations for the leading variables 

   1 2 3 43 2x x x x  

   2 3 4

9 1 5

2 2 2
x x x  

 

 then substitute the second equation into the first 

   1 3 4

3 3 1

2 2 2
x x x

 

   2 3 4

9 1 5

2 2 2
x x x  

 If we assign 3x  and 4x  the arbitrary values s  and t , respectively, the general solution is given by the formulas 

          1 2 3 4

3 3 1 9 1 5
,   ,        ,        

2 2 2 2 2 2
x s t x s t x s x t  

2. The corresponding system of linear equations is 

  
  

  


1 2

1 2

1 2

4 1

2 8 2

3 12 3

 0 0

x x

x x

x x
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1 4 1

2 8 2

3 12 3

0 0 0

   
 

 

  
The original augmented matrix. 
 

 

 
 
 
 
 
 

1 4 1

0 0 0

0 0 0

0 0 0

   
 

 

 
2  times the first row was added to the second row and 3  
times the first row was added to the third row. 

  
 This matrix is both in row echelon form and in reduced row echelon form. It corresponds to the system of equations 

 

  




1 24 1

 0 0

 0 0

 0 0

x x

 

 If we assign 2x  an arbitrary value t , the general solution is given by the formulas 

    1 21 4 ,   x t x t  

3. The corresponding system of linear equations is 

  
   

 

1 2 3

1 3

2 3

2 4 6

4   3 1

 3

x x x

x x

x x

 

 
 

   
  

2 4 1 6

4 0 3 1

0 1 1 3

   
 

 

  
The original augmented matrix. 
 

 
 

   
  

1
21 2 3

4 0 3 1

0 1 1 3

   
 

 
The first row was multiplied by 1

2 . 

 
 

  
  

1
21 2 3

0 8 5 11

0 1 1 3

   
 

 
4  times the first row was added to the second row. 

 
 

  
  

1
21 2 3

0 1 1 3

0 8 5 11

   
 

 
The second and third rows were interchanged. 
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1
21 2 3

0 1 1 3

0 0 3 35

   
 

 
8  times the second row was added to the third row. 

 
 

  
  

1
2

35
3

1 2 3

0 1 1 3

0 0 1

   
 

 
The third row was multiplied by  1

3 . 

  
 This matrix is in row echelon form. It corresponds to the system of equations 

 

  

 

 

1 2 3

2 3

3

1
2 3

2
  3

35
    

3

x x x

x x

x

 

 Solve the equations for the leading variables 

  1 2 3

1
2 3

2
x x x

 

 2 3 3x x    

 3

35

3
x

  
 

 then finish back-substituting to obtain the unique solution  

      1 2 3

17 26 35
,       ,        

2 3 3
x x x  

 

4. The corresponding system of linear equations is 

  
  

 

1 2

1 2

1 2

3 2

9 3 6

6 2 1

x x

x x

x x

 

 
 

   
  

3 1 2

9 3 6

6 2 1

   
 

 

  
The original augmented matrix. 
 

 
 

 
 
  

3 1 2

0 0 0

0 0 5

   
 

 

 
3  times the first row was added to the second row and 
2  times the first row was added to the third row. 

  
 Although this matrix is not in row echelon form yet, clearly it corresponds to an inconsistent linear system  
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1 23 2

 0 0

 0 5

x x

 

 since the third equation is contradictory. (We could have performed additional elementary row operations to obtain a 

 matrix in row echelon form 

 
 
 
  

1 2
3 31

0 0 1

0 0 0

.)  

5. 
 

 
 

3 4
5 5

34
5 5

x

y
   

 

 

  
The augmented matrix corresponding to the system. 
 

 
 

 
 

54
3 3

34
5 5

1 x

y
   

 

 
The first row was multiplied by 5

3 . 

 
 

   

54
3 3

5 4
3 3

1

0

x

x y
   

 

 
 4

5  times the first row was added to the second row. 

 
 

   

54
3 3

34
5 5

1

0 1

x

x y
   

 

 
The second row was multiplied by 3

5 . 

 
 

   

3 4
5 5

34
5 5

1 0

0 1

x y

x y
   

 

 

4
3  times the second row was added to the first row. 

  

 The system has exactly one solution:   3 4
5 5x x y  and    34

5 5y x y . 

6. We break up the solution into three cases: 

 Case I:  cos 0  and  sin 0  

  
 

 
 
 

cos sin

sin cos

x

y
   

 

 

  
The augmented matrix corresponding to the system. 
 

 

 

 
 

 
 

sin
cos cos1

sin cos

x

y
   

 

 
The first row was multiplied by 

1
cos . 

 

 


 

 
  

sin
cos cos

sin1
cos cos

1

0

x

y x
   

 

 

 sin  times the first row was added to the second 

(  
   

2 2sin cos 1
cos cos cos ).  

 

 

 
 

  

sin
cos cos1

0 1 cos sin

x

y x
   

 

 
The second row was multiplied by cos . 

  
 
 

  

1 0 cos sin

0 1 cos sin

x y

y x
   

 

 




sin
cos  times the second row was added to the first row 

(  
      
2 2sin cos

cos cos cos cos )x x x x . 
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 The system has exactly one solution:    cos sinx x y  and     sin cosy x y . 

 Case II:  cos 0  which implies  2sin 1. The original system becomes   sinx y ,  siny x . Multiplying 

both sides of the each equation by sin  yields    sin ,   sinx y y x . 

 Case III:  sin 0,  which implies  2cos 1 . The original system becomes  cosx x ,  cosy y . Multiplying 

both sides of each equation by cos  yields   cosx x ,   cos .y y  

 Notice that the solution found in case I 

   cos sinx x y  and     sin cosy x y . 

 actually applies to all three cases. 

7.  
 
 

1 1 1 9

1 5 10 44
   

 

 

  
The original augmented matrix. 
 

  
 
 

1 1 1 9

0 4 9 35
   

 

 
1  times the first row was added to the second row. 

  
 
 

9 35
4 4

1 1 1 9

0 1
   

 

 
The second row was multiplied by 1

4 . 

  
 
 

5 1
4 4

9 35
4 4

1 0

0 1
   

 

 
1  times the second row was added to the first row. 

  

 If we assign z  an arbitrary value t , the general solution is given by the formulas 

     
1 5 35 9

,   ,        
4 4 4 4

x t y t z t  

 

 The positivity of the three variables requires that  51
4 4 0t ,  35 9

4 4 0t , and  0t . The first inequality can be 

 rewritten as   1
4t , while the second inequality is equivalent to  35

9t . All three unknowns are positive whenever 

   35
90 t . There are three integer values of t z  in this interval: 1 , 2 , and 3 . Of those, only   3z t  yields integer 

 values for the remaining variables:  4x ,  2y . 

8. Let ,  ,x y  and z  denote the number of pennies, nickels, and dimes, respectively. Since there are 13 coins, we must 

have 

   13.x y z  

 On the other hand, the total value of the coins is 83 cents so that 

   5 10 83.x y z  
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 The resulting system of equations has the augmented matrix 
 
 
 

1 1 1 13

1 5 10 83
 whose reduced row echelon form is 

  
 
 

5 9
4 2

9 35
4 2

1 0

0 1
 

 If we assign z  an arbitrary value t , the general solution is given by the formulas 

      
9 5 35 9

,   ,        
2 4 2 4

x t y t z t  

 However, all three unknowns must be nonnegative integers.  

 The nonnegativity of x  requires the inequality   9 5
2 4 0t , i.e.,  18

5t . 

 Likewise for y ,  35 9
2 4 0t  yields  70

9t . 

 When  18 70
5 9t , all three variables are nonnegative. Of the four integer t z  values inside this interval ( 4 , 5 , 6 , 

 and 7 ), only   6t z  yields integer values for x  and y .  

 We conclude that the box has to contain 3 pennies, 4 nickels, and 6 dimes. 

9. 
 
 
 
  

0 2

4 4

0 2

a b

a a

a b

   
 

 

  
The augmented matrix for the system. 
 

 
 
  
  

0 2

0 4 2

0 2

a b

a b

a b

   
 

 
1  times the first row was added to the second row. 

 
 
  
   

0 2

0 4 2

0 0 2 2

a b

a b

b b

   
 

 
1  times the second row was added to the third row. 

 

 (a) the system has a unique solution if  0a  and  2b  (multiplying the rows by 1
a , 1

a , and 
1

2b , respectively, 

yields a row echelon form of the augmented matrix 

 
 
 
  

2

4 2

1 0

0 1

0 0 1 1

b
a a

b
a a

). 

 (b) the system has a one-parameter solution if  0a  and  2b  (multiplying the first two rows by 
1

a
 yields a 

reduced row echelon form of the augmented matrix 

 
 
 
  

2 2

2 2

1 0

0 1

0 0 0 0

a a

a a
). 
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 (c) the system has a two-parameter solution if  0a  and  2b   

(the reduced row echelon form of the augmented matrix is 

 
 
 
  

0 0 1 1

0 0 0 0

0 0 0 0

). 

 (d) the system has no solution if  0a  and  2b   

(the reduced row echelon form of the augmented matrix is 

 
 
 
  

0 0 1 0

0 0 0 1

0 0 0 0

). 

 

10. 
 
 
 
   

2

1 1 1 4

0 0 1 2

0 0 4 2a a

.  
 

 

  
The augmented matrix for the system. 
 

 
 
 
 
    

2

1 1 1 4

0 0 1 2

0 0 0 2 6a a

   
 

 
 2 4a  times the second row was added to the third. 

 

 From quadratic formula we have         2 3
22 6 2 2 .a a a a   

 The system has no solutions when  2a  and   3
2a  (since the third row of our last matrix would then correspond to 

a contradictory equation). 

 The system has infinitely many solutions when  2a  or   3
2a . 

 No values of a  result in a system with exactly one solution. 

11. For the product AKB  to be defined, K  must be a 2 2  matrix. Letting 
 

  
 

a b
K

c d
 we can write 

        
                                                  

1 4 1 4 2 8 4 4
2 0 0 2

2 3 2 3 4 6 2 3 2 3
0 1 1 2

1 2 1 2 2 4 2 2

a c b d b d
a b a b b

ABC a c b d b d
c d c d d

a c b d b d

. 

 The matrix equation AKB C  can be rewritten as a system of nine linear equations 
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2   8   8

   4 6

  4 6

4   6   6

2   3 1

 2   3 1

2   4   4

   2 0

  2 0

a c

b d

b d

a c

b d

b d

a c

b d

b d

 

 which has a unique solution  0a ,  2b ,  1c , 1d . (An easy way to solve this system is to first split it into two 

 smaller systems. The system  2 8 8a c ,   4 6 6a c ,   2 4 4a c  involves a  and c  only, whereas the 

 remaining six equations involve just b  and d .) We conclude that 
 

  
 

0 2

1 1
K . 

12. Substituting the values 1,x   1y , and  2z  into the original system yields a system of three equations in the 

 unknowns , ,a b  and c : 

 

  
  

  

   
    

    

3 2 3

2 1 2 1

3 1 2 3

a b

b c

a c

 

 that can be rewritten as 

 

 
 
 

 3

  2 1

 2 0

a b

b c

a c

 

 The augmented matrix of this system has the reduced row echelon form 

 
  
  

1 0 0 2

0 1 0 1

0 0 1 1

. We conclude that for the 

 original system to have 1x ,  1y , and  2z  as its solution, we must let  2,a   1b , and  1c . 

 (Note that it can also be shown that the system with  2,a   1b , and  1c  has 1x ,  1y , and  2z  as its only 

 solution. One way to do that would be to verify that the reduced row echelon form of the coefficient matrix of the 

 original system with these specific values of , a b  and c  is the identity matrix.) 

13. (a) X  must be a 2 3  matrix. Letting 
 

  
 

a b c
X

d e f
 we can write 

    
                                

1 0 1 1 0 1
3

1 1 0 1 1 0
3

3 1 1 3 1 1

a b c a b c b c a c
X

d e f d e f e f d f
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therefore the given matrix equation can be rewritten as a system of linear equations: 

   
 
 

    
 
 

3       1

        2

        0

     3 3

        1

        5

a b c

b c

a c

d e f

e f

d f  

  The augmented matrix of this system has the reduced row echelon form 

 
 
 
 
 
 
 
 
  

1 0 0 0 0 0 1

0 1 0 0 0 0 3

0 0 1 0 0 0 1

0 0 0 1 0 0 6

0 0 0 0 1 0 0

0 0 0 0 0 1 1

 

  so the system has a unique solution 

   1a ,  3b ,  1c ,  6d ,  0e , 1f  and 
  

  
 

1 3 1

6 0 1
X . 

  (An alternative to dealing with this large system is to split it into two smaller systems instead: the first three 

equations involve a , b , and c  only, whereas the remaining three equations involve just d , e , and f . 

Since the coefficient matrix for both systems is the same, we can follow the procedure of Example 2 in 
Section 1.6; the 

   reduced row echelon form of the matrix 

  
 
 
  

1 1 3 1 3

0 1 1   2    1 

1 0 1 0 5

 is 

 
 
 
  

1 0 0 1 6

0 1 0    3    0  

0 0 1 1 1

.)  

  Yet another way of solving this problem would be to determine the inverse  


     
        
       

1
1 0 1 1 1 1

1 1 0 1 2 1

3 1 1 2 1 1

 using the method introduced in Section 1.5, then multiply both sides of the 

given matrix equation on the right by this inverse to determine X : 

  
                 

1 1 1
1 2 0 1 3 1

1 2 1
3 1 5 6 0 1

2 1 1

X  

 (b) X  must be a 2 2  matrix. Letting 
 

  
 

a b
X

c d
 we can write 

           
                 

1 1 2 1 1 2 3 2

3 0 1 3 0 1 3 2

a b a b a a b
X

c d c d c c d  

  therefore the given matrix equation can be rewritten as a system of linear equations: 
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3     5

     1

2     0

    3 6

     3

    2 7

a b

a

a b

c d

c

c d  

  The augmented matrix of this system has the reduced row echelon form 

 
  
 
 
 
 
 
  

1 0 0 0 1

0 1 0 0 2

0 0 1 0 3

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

 so the system has 

a unique solution 1a ,  2b ,  3c , 1d . We conclude that 
 

  
 

1 2

3 1
X . 

  (An alternative to dealing with this large system is to split it into two smaller systems instead: the first three 

equations involve a  and b  only, whereas the remaining three equations involve just  c and d . Since the 

coefficient matrix for both systems is the same, we can follow the procedure of Example 2 in Section 1.6;  

the reduced row echelon form of the matrix 

 
    
  

1 3 5 6

1 0    1   3  

2 1 0 7

 is 

 
  
  

1 0 1 3

0 1    2    1 

0 0 0 0

.) 

 (c) X  must be a 2 2  matrix. Letting 
 

  
 

a b
X

c d
 we can write 

           
                         

3 1 1 4 3 1 1 4

1 2 2 0 1 2 2 0

a b a b
X X

c d c d  

    

     
           

3 3 2 4

2 2 2 4

a c b d a b a

a c b d c d c  

   

     
        

2 2 4 3

2 4 2

a b c a b d

a c d b c d  

 

 

  therefore the given matrix equation can be rewritten as a system of linear equations: 

  
    
   

   

2 2   2

4 3   2

 2 5

 4 2 4

a b c

a b d

a c d

b c d  
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  The augmented matrix of this system has the reduced row echelon form 

 
  
 
 

  

113
37

160
37

20
37

46
37

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 so the 

system has a unique solution   113
37a ,   160

37b ,   20
37c ,   46

37d .  

We conclude that 
  

    

113 160
37 37

20 46
37 37

X . 

14. (a) By Theorem 1.4.1, the properties  AI IA A  (Section 1.4) and the assumption 4 0A , we have 

            

     








2 3 2 3 2 3

2 3 2 3 4

I A I A A A II IA IA IA AI AA AA AA

I A A A A A A A

I

 

  This shows that      
1 2 3I A I A A A . 

 (b) By Theorem 1.4.1, the properties  AI IA A  (Section 1.4) and the assumption  1 0nA , we have 

  
  

 

     

           



 

2 1

2 1 2 1

n n

n n n n

I A I A A A A

II IA IA IA IA AI AA AA AA AA  

  
             2 1 2 3 1n n n nI A A A A A A A A A  

   I  

15. We are looking for a polynomial of the form 

     2p x ax bx c  

 such that   1 2,p    1 6p , and   2 3p . We obtain a linear system 

 

  
  
  

2

6

4 2 3

a b c

a b c

a b c

 

 Its augmented matrix has the reduced row echelon form 

 
  
  

1 0 0 1

0 1 0 2

0 0 1 3

.  

 There is a unique solution 1a ,  2b ,  3c . 

16. Since   1 0p  and    2 9p  we have the equations    0a b c  and    4 2 9a b c . 

 From calculus, the derivative of     2p x ax bx c  is     2p x ax b . 

 For the tangent to be horizontal, the derivative    2 4p a b  must equal zero. This leads to the equation  4 0.a b  

 We proceed to solve the resulting system of two equations: 
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0

4 2 9

4   0

a b c

a b c

a b

 

 The reduced row echelon form of the augmented matrix of this system is 

 
  
  

1 0 0 1

0 1 0 4

0 0 1 5

. Therefore, the values 

 1a ,  4b , and  5c  result in a polynomial that satisfies the conditions specified. 

17. When multiplying the matrix nJ  by itself, each entry in the product equals n . Therefore,  .n n nJ J nJ  

       1
1n nnI J I J      

      2 1 1
1 1n n n nn nI I J J I J J    Theorem 1.4.1(f) and (g) 

   I    1 1
1 1n n n nn nJ J J J   Property  AI IA A  in Section 1.4 

   I   
 
1 1

1 1n n n nJ J J J
n n

  Theorem 1.4.1(m) 

   I    1
1 1

n
n n nn nJ J J   n n nJ J nJ   

   
    1

1 11 n
nn nI J    Theorem 1.4.1(j) and (k) 

   
     11

1 1 1
n n

nn n nI J     

   I     

 


