Signals and Systems

SIGNALS AND THEIR PROPERTIES

Solution 2.1
@ 8, ) =32 T% dx—my—n) =Yg o 8x—m)- 37 8(y —n), therefore it is
a separable signal.

(b) 8;(x, y) is separable if sin(26) = 0. In this case, either sinf = 0 or cos® = 0, §;(x, y) is a product
of a constant function in one axis and a 1-D delta function in another. But in general, §;(x, y) is not
separable.

(¢) e(x,y) = exp[j2m(uox + voy)] = exp(j2muox) - exp(j2nvoy) = eip(x; up) - en(y; vo), where
e1p(r; w) = exp(j2rwt). Therefore, e(x, y) is a separable signal.

(d) s(x, y) is a separable signal when uovg = 0. For example, if ug = 0, s(x,y) = sin(mvgy) is the
product of a constant signal in x and a 1-D sinusoidal signal in y. But in general, when both ug and vy
are nonzero, $(x, y) is not separable.

Solution 2.2

(a) Not periodic. 8(x, y) is non-zero only when x = y = 0.
(b) Periodic.

comb(x, y) = Z Z §x—m,y—n)

m=—00 n=—00

For arbitrary integers M and N

Z Z S(x—m+M,y—n+N)

m=—00 n=—00

comb(x + M,y + N)

x oo
= ) D da-py-—qlletp=m—Mg=n—N]

p=—00 g=-—00

= comb(x, y)
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So the smallest period is 1 in both x and y directions.
(¢) Periodic. Let f(x + Ty, y) = f(x, y), we have
sin(2x) cos(4my) = sin(2w (x + Tx)) cos(4my).

Solve the above equation, we have 2n Ty = 2k for arbitrary integer k. So the smallest period for x is
Tyo = 1. Similarly we can find the smallest period for y is Typ = 1/2.

(d) Periodic. Let f(x + Ty, y) = f(x, y), we have
sin2rr (x + y)) = sin(2r(x + T, + y)).

So the smallest period for x is T,g = 1 and the smallest period for y is Tyg = 1.
(e) Not periodic. We can see this by contradiction. Suppose f(x, y) = sin(2m (x2 + y?)) is periodic, then
there exist some 7 such that f(x + T, y) = f(x, y)

sinQ27 ((x + To)* + y2)
= sin(271(x2 + y2 +2xT + sz))

sin(2m (x% + y2))

In order for the above equation to hold, we must have 2x T, + sz = k for some integer k. The solution
for T, dependson x. So f(x,y) = sin(27t(x2 + y2)) is not periodic.

(f) Periodic. Let fy(m + M, n) = fy;(m, n), we have

sin (%m) cos (%n) = sin (%(m + M)) cos (%n)

Solve for M, we have M = 10k for any integer k. The smallest period for both m and n is 10.

(g) Not periodic. Analog to part (f), by letting fy(m + M, n) = f4(m, n), we have

A 1 (1 i 1
sin (gm) cos (E”) = sin (g(m + M)) cos (E”)

The solution for M is M = 10kn. Since fy(m, n) is a discrete signal, its period must be an integer
if it is periodic. There is no integer k that solves the equality for M = 10kz for some M. So,
fa(m, n) = sin (%m) cos (%n) is not periodic.

Solution 2.3

(a)

o0 o0
Ex(ds) = / / 82(x, y)dxdy
—00 J—00

X Y o0 oo
h li 8(x —m,y—n)dxd
le 1m/;X[ Z(x m,y —n)dxdy

—0o0 Y —>0o0 Y HM=—0C h=—00
= lim lim Q[X|+ DY+
X—»ooY—oo
= o0

where | X | is the greatest integer that is smaller than or equal to X.
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(b)

1 X Y
) = lim lim — 82(x, y)dxd
Pw(as) XgnooYLmoo 4XY [X/;y s(x y) ray
1 X Yy o S
= lemelemm/_xﬁy _Z _Z 8(x —m,y —n)dxdy
m=—00 n=—0
- fim lim QX+ DY+ 1
T X500 Yooo 4XY
o [ALXILY] | 2lX] +2|Y] 1
= 1 |
xi“ooylmoo{ axy T axr  ‘taxy
Poo(‘ss) = 1
oo (o 0]
Eso(8) = f / 18(x cosO + ysind — )|>dxdy
—0Q v —00

o0 o0
= f f 8(xcosf + ysin® — 1) dxdy
-0 VvV =00

o0
/ mimdx, sinf # 0
—0Q
o0
I.
o0

I[S)

;dy, cos8 £0

| cos 6]

Ex(d) =

(® comes from the scaling property of the point impulse. The 1-D version of Eq. (2.8) in the text is
é(ax) = ﬁ&(x).

Suppose cos8 # 0,

8(xcosf + ysin® — 1) Y (L L
X 1 — R —— X —
Y | cosé| ycosB cos @

therefore,

oo 1
/_Oo 8(xcosf + ysin@ —)dx = [cost]’

1 X Y
Pool®) = Jim_ y'imooZ)_(?/_X /_Y |6(x cos6 + ysin® — )|>dxdy

1 X Y
= X]i_r)nooylimoom/;xf_ys(xcos()+ysin9—-l)dxdy

without loss of generality, assume ¢ = 0 and [ = 0, so we have sin6 = 0 and cos6 = 1. Therefore:

1 X Y
_ li i
Pooé1) XL)moo Yl>moo 4XY f_x ,/_y 5(x) dXdy
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= ] .
memy'LmoMXY/ {/ ‘S(x)dx}d’

= I m ——— ld
X1—>moo Yl»moo 4XY *
. . 2Y
= lim lm ——
XoooY->00d4XY

=  lim —
X—oo002X
Poo(al) = 0
(c)
o0 X
B = [ [ lexplizniwor +wy)? dedy
—o0 J—00
o0 o0
/ / 1dxdy
—00 v —00
Exle) = o0
Pyo(e) = xlfloylimooM/ / |exp[12n(uox+v0y)]| dxdy
= lim 1d
Xl—>oo Y—>oo 4XY _/ / Xdy
Py(e) = 1
(d)
Es(s) = / / sin [2n(uox+v0y)]dxdy
o0 o0
@ /o" /‘oo l—cos[4n(u0x+v0y)]
o0 o
_ /oo fw%dxdy /‘ /‘ cos[4n(u(;x+voy)] dxdy
o0 o
Eso(s) @ o0

@ comes from the trigonometric identity: cos(26) =1 — 2 sin2(9).

® holds because the first integral goes to infinity. The absolute value of the second integral is bounded,
although it does not converge as X and ¥ go to infinity.

li 22
X1_>moo Yl—>oo 4XY,/ / sin“[27 (uox + voy)ldxdy

m lim f fx 1- cos[471(uox + voy)]
m
X—o0 Y—»oo 4XY

Poo(s)
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6 CHAPTER 2: SIGNALS AND SYSTEMS

sm[4n(u0X + vpy)] — sin[4w(—uoX + voy)]] y

Im Jlim [
8mup

X—>o0oY—>00 4XY

@ _ sin(4mugX) cos(4mvpy)
= lim lim — dy
X—o0Y-—>00 4XY I
X
= Jlim fim Syy _ 2sin@rugX) sin(4nwl)
X—>00Y—>00 4XY (47[)2“0”0

1
Pol(s) = 5

In order to get @), we have used trigonometric identity sin(a + 8) = sina cos § + cos a sin . The rest
of the steps are straightforward.

Since s(x, y) is a periodic signal with periods Xo = 1/ug and Yo = 1/vo, we have an alternative way to
compiute Py, by considering only one period in each dimension:

Xo
Po(s) = / sin?[27 (uox + voy)l dxd
* 4X0Y0 -Xo /Yo Y Y
_ 2XoYo — 2 sin(dmugXo) sin(dmwvgYp)
4X()Y() (477)214()1)0
_ | (2X0 Yo — 2sin(4m) sin(47r))
4XoYo (4m)2ugvo
1
Px(s) = E

SYSTEMS AND THEIR PROPERTIES

Solution 2.4 Suppose two LSI systems §; and 42 are connected in cascade. For any two input signals fi(x, y),
f2(x, y), and two constants a; and az, we have the following:

$[81la) filx, y) + a2 i, NI = Sladilfitx, N+ adilf2(x, N
= a1&08 A1, N+ @881 f2(x, Y]

So the cascade of two LSI systems is also linear. Now suppose for a given signal f(x, y), we have
81 (x, )] = g(x,y), and &[g(x, y)] = h(x, y). By using the shift-invariance of the systems, we can
prove that the cascade of two LSI systems is also shift invariant:

HI8[fx—Ey—ml=4%&gx-Ey—mMl=hx—-§y—n.

Eq. (2.47):

ha(x, y) * [hi(x, y) * f(x, )]
hz(x,y)*/ / G MG — .y — m)dEdn

- f f hz(u.v)[/ f m@-,n)f(x—u—s,y—v—n)dsdn]dudv

= _/ / / f hz(“'”)h‘(s”’)f(x—“—é,y—v—n)dgdndudv

gx,y)
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20 o0 o0 o<
// hl(E,n)[/ f /zz(u,v)f(x—g—u,y—n—v)dudv]d{-‘dn

hi(x, y) *[ha(x, y) * f(x, y)]

By letting« = u + &, and 8 = v + 5, we have

[o.@] o0 o0 0
gx,y) = [ / f f hao(u, Y (E, ) f(x —u—E&,y —v—n)dédndudv

// [/ f hz(a—E,ﬂ—n)hn(&n)d&'dn]f(x—a,y—ﬂ)dadﬂ

[hi(x, y) = ha(x, )1+ f(x, y)

It

Solution 2.5 1. Suppose the PSF of an LSI system is absolutely integrable.

o o0
/ / lh{x, y)|dxdy < C < o0 (S2.1)
—00 J—o0

where C is a finite constant. For a bounded input signal f(x, y)
[f(x,y)] < B <00, forevery(x,y), (82.2)
for some finite B, we have
g, M = |h(x,y)* f(x, y)]
o o
- V | ne =gy —nse mazan
—00 Vv -

IA

/ f h(x — &,y = m]- | £ (&, m)|dEdn

o0 o0
B/ f |h(x, ¥)|dxdy

< BC <oo, forevery(x,y) (82.3)

A

So g(x, y) is also bounded. The system is BIBO stable.

2. We use contradiction to show that if the LSI system is BIBO stable, its PSF must be absolutely integrable.
Suppose the PSF of a BIBO stable LSI system is A (x, y), which is not absolutely integrable, i.e.,

o0 [0 0]
/ / Ih(x, ) dxdy
—00 —00

is not bounded. Then for a bounded input signal f(x, y) = 1, the output is

o0 o0
Ig(x,y)l=Ih(x,,v)*f(x,y)l=[ f Ih(x, y)l dxdy,

which is also not bounded. So the system can not be BIBO stable. This shows that if the LSI system is BIBO
stable, its PSF must be absolutely integrable.
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8 CHAPTER 2: SIGNALS AND SYSTEMS

Solution 2.6

(a) If g’(x, y) is the response of the system to input Zle wy fr(x, y), then

K K
gy = Y wfilr, =D+ wifi(©,y)

k=1 k=1

K
= Z wil fie(x, =) + fx (0, y)]

k=1
K
= Z Wi gk (X, y)
k=1
where gi(x, y) is the response of the system to input fi(x, y). Therefore, the system is linear.
(b) If g'(x, y) is the response of the system to input f(x — x0, y — yo), then
g'(x,y) = f(x —xo0,—1 = yo) + f(—x0,y — yo);

while
gx —xg,y —y0) = f(x —x0,— 1)+ f(0,y — yo).

Since g'(x, y) # g(x — x0, y — Yo), the system is not shifi-invariant.

Solution 2.7

(a) If g’(x, y) is the response of the system to input Zf:l wy fx(x, y), then

K K
(Zwkfk(x, y)) (Zwkfk(x — X0,y — ye))

k=1 k=1
K K
= Zzwiwjfi(x, v fix —x0,y — yo),

i=l j=1

g'(x,y)

while

K K
) wege(x, y) =Y wifilx, y) filx — x0, y = yo).

k=1 k=1

Since g'(x, y) # Z,f:, gk(x, y), the system is non-linear.
On the other hand, if g’(x, y) is the response of the system to input f(x —a, y — b), then

gx,y) = flx—a,y—bfx—a—xoy—b-yo)
= glx—a,y—»b)

and the system is thus shift-invariant.
(b) If g’(x, y) is the response of the system to input Z,f=1 wy fr(x, y), then

~ K
gy = f > we filx, mydn

0 k=1
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K

Zwk (f:” fk(x,n)dn)

k=1

K
Zwkgk(x, ADR
k=1

It

where g (x, y) is the response of the system to input fi (x, y). Therefore, the system is linear.
On the other hand, if g’(x, y) is the response of the system to input f(x — xo, y — yo), then

gy = f Jx —x0,m—yo)dn

/ flx —x0, 1~ yo)d(n — yo)
-0

/ f(x — X0, 7?) d77

Since g(x — x9,y — yo) = ffooo f(x — xq, 1) dn, the system is shift-invariant.

Solution 2.8 From the results in Problem 2.5, we know that an LSI system is BIBO stable if and only if its PSF is
absolutely integrable.

(a) Not stable. The PSF A(x, y) goes to infinite when x and/or y go to infinity. [ [ |h(x, y)|dxdy =
S0 o2+ yHdxdy = [0 [0, x2dx)dy+ % [ [ y2dy]dx. Since S0 x2dx = [ yidy
is not bounded, then [0 (%0 (x?+ y?)dxdy is not bounded.

2
(b) Stable. [ [ |h(x, y)dxdy = 100 o0 (exp{—-(xz—l-yz)})dxdy =/ e‘*‘zdx = n, which
o0 o0 o0 o o
is bounded. So the system is stable.
(c) Notstable. The absolute integral [°°_ ffoooxze“-vzdxdy = [% x* [f_oooo e‘yzdy] dx = [ Jmxldx
is unbounded. So the system is not stable.

Solution 2.9
(@ g(x) = [ fx — 1) f(ndr.

(b) Given an input as af|(x) + bf2(x), where a, b are some constant, the output is

g'(x) = [lafi(x)+bfa(x)] *[afi(x) + bfr(x)]
= a2 fi(x) * fi(x) + 2abfi(x) * fr(x) + B2 fr(x) * fo(x)
# agi(x) + bga(x),

where g)(x) and g2(x) are the output corresponding to an input of f](x) and f2(x) respectively.
Hence, the system is nonlinear.

(¢) Given a shifted input f1(x) = f(x — xp), the corresponding output is
gix) = filx)* fi(x)
= f Hix —1) fi(r)dt
—0o0
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10 CHAPTER 2: SIGNALS AND SYSTEMS

]
= f flx — 1 —x0) fit — xo)dt.
-0
Changing variable t' = ¢ — xg in the above integration, we get
o<
gix) = f fx—2x0 =) fi(t)dt’
-0
= g(x — 2x0).
Thus, if the input is shifted by xo, the output is shifted by 2x¢. Hence, the system is not shift-invariant.
CONVOLUTION OF SIGNALS

Solution 2.10

(a)

fU,2)8(x—1,y-2)
A+228(x—1,y—2)

F,y)8x—1,y-2)

= 55(c—1,y—2)
(b)
F ) 8 —1,y—2) = f f FEMSG—E — 1,y —n—2)dédn
_ f f F—1,y—D8(x —& — 1,y —n—2)dédn
- f(x—l,y—z)f f S(x—& — 1,y —n—2)dedn
= f(x_lvy_z)
= x-D+(y-27
()

/oo/ 8(x — 1,y —2)f(x,3)dxdy @ /w/ S(x—1,y—-2)f{,3)dxdy

o0 o0
_ ‘/ /' 5 — 1,y —2)(1 + 3)dxdy
-0 v —00

o0 oo
= 10/ f §(x — 1,y —2)dxdy
—0Q v —00
10

[[®)

Equality @ comes from the Eq. (2.7) in the text. Equality @) comes from the fact:

o0 oo o o0
/ f 8(x—1,y—2)dxdy=/ / 3(x, y)dxdy = 1.
—00 V=00 —00 v 00
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@
Sx—Ly=2) % f(x+1,y+2) @ /_2[25(x—5—l,y—n—z)f(é+l,n+2)dsdn
@ f:f_zrsu—s—l,y—n—z)f«x—1>+1,(y—2>+2>dsdn
- f:;f_za(x—s—l,y—n—2>f<x,y)dsdn
®

fO,y) =x+y°

(® comes from the definition of convolution; (@ comes from the Eq. (2.7) in text; ) is the same as @) in
part (¢). Alternatively, by using the sifting property of §(x, y) and defining g(x, y) = f(x + 1, y +2),

we have
dx—Ly—2x*gkx,y) = glx—-1,y-2)
= f(x—-14+1,y—-242)
= flx,y)
= x+y2.
Solution 2.11

(a)

fo,y)xg(x,y) / / fE. mMeglx —&, y—n)dédn

= / / fi&) f2(mg1(x —&)ga(y — n) dédy

(/ fn(E)gl(x—S)dé) (f fz(n)gz(y—n)dn),

hence their convolution is also separable.

(b)

flx,y)xgx,y)

FOy)xg(x, y) = (fi(x) *g1(x)) (f2(y) * g2(y)) .
Solution 2.12

glx,y) = flx,y)xh(x,y)
= / f fx —& y—nh&, n)dédn

f f (x — &+ y — mexpl— (&2 + n?)}dEdn

(x+ ) f / e g / f £~ dedy - / f ne=E " dtdn
(x+y)[/_oo dg]z—f [/ ge—sds}dn_/_ooe—s U_w"e 'ldn]dé

© 2006 Pearson Education, inc., Upper Saddle River, NJ. All rights reserved. This material is protected
under all copyright laws as they currently exist. No portion of this material may be reproduced, in any
form or by any means, without permission in wrm from the publisher.




12 CHAPTER 2: SIGNALS AND SYSTEMS

= w(x+y) (82.4)

/oo ge 5 dE =0

. . . g2 . .
since £ is an odd function and e &% is an even function. Also,

We get (82.4) by noticing that

R 2
/ e 5 de = 7.
—00
FOURIER TRANSFORMS AND THEIR PROPERTIES
Solution 2.13

(a) See the solution to part (b) below. The Fourier transform is

F2{8s(x, y)} = 85 (u, v)
(b)

o0 o0 .
F2{8s(x, y; Ax, Ay)} = / / 8s(x, y; Ax, Ay)e I FTUT gy
-0 J =0

8s(x, y; Ax, Ay) is a periodic signal with periods Ax and Ay in x and y axes. Therefore it can be
written as a Fourier series expansion (Please review Oppenheim, A.V.,Willsky, A. S., and Nawad, S. H.,
Signals and Systems for the definition of Fourier series expansion of periodic signals.):

— > i mx ny
8s(x,y; Ax, Ay) = Z Z Cm,,eﬂ”(ﬂ’LZ?)

m=—00 H=-00
where
1 ¥ 7 (m L)
Conn 8;(x,y; Ax, Ay)e axtay) dxdy
AXAy _ A y

Ax Av 00 00
_2_ T ' (I"I V)

= - — J Ax

B AxAy ) Z _Z 8(x —mAx,y —nAy)e dxdy.

m=—00 H=—0Q

In the integration region — 4% < x < &% and —8Y -y < &Y there is only one impulse correspondin
2 2 2 2 2 y 3 y p P g

to m = 0, n = 0. Therefore, we have:

1 _A% _Af! i (9 y
Con = f f 8(x, y)e ' (%+ A)dxdy
AxAy J_a J &
= AxAy
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We have:
] et o0 .2]((,,,; +:n )
8y(x,y; Ax, Ay) = Z e’ ay
Ax Ay M=—00 H=—X
Theretore,
x0 o0 .
Flé} = / / 8y(x, y; Ax, Ay)e S0y gy
— /oo / Z Z jlm "AL z"“ e j2n(u,\‘+u'v)dxdy
o 00 Ax Ay M=—o00 N=—00
o0 ”X ny
— Z f / A_ Z“)e5i2n(ux+v,\')dxdy
Ax Ay

? 1277 mt+z)_)
AxAy

i m n
> Slu——,v—- —
AxAy Ax’ Ay

It
™

m=—00C H=—0Q

@ o0 o0 ]

= Z Z AxdAy - AxAyS(uAx —m,vAy — n)
mM=—00 N=—0C

Fofds} = 8(uAx,vAy)
Equality (® comes from the property 8(ax) = al Ls(x).
(©)
o0 o0 .
Fafsx, )} = / f s(x, y)e /2RI gy

—00 J—00

o0 o
/ / Sin[27 (uox + voy)le /2T W) gy gy
—00 J —00
00 oo | " 4 ! .
— / / 2_ [ej T (uox +ovgy) e—_;Zn(um +U()y):| e—_12ﬂ(ux+uy) a’xdy
J
1 [ po0 x0 . .
- / / ed2mluox+wy) ,—j 2w (ux+uvy) dxdy
2.] v/ — 00 o0
00 po0 ) )
_f / e—_/27r(u(;x+vny)e—ﬂn(ux+uy) dxdy]
—o00 J—o00

1 [ 00 o0
- / / e*ﬁﬂl(ll—uo)xﬂv—vn).\’ldxdy
2j Lo S0

o0 o0
-/ /‘ eﬁj2n|(u+ll())x+(”+v“)'vldxdy:l
—o0 J -0

1
Fols(x, )} = 2—j[8(u—uo,v—vo)—8(u+uo,v+vo)].

We used Eq. (2.70) twice to get the last equality.
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(d)
xX0 [o¢] i
Falc)(u,v) = f f c(x, y)e 2t gy dy
-0 V=0

0o poo .
/ / cos[2m (ugx + voy)]e“ﬂ"(“””y)dxdy
—00 J —00

Il

Il

1[ > [~ . .
- / f ej271(unx+vuy)e—127I(ux+vy)dxdy
2 LJ —00 v —00
o0 xX X .
+/ f e—J27r(u()X+vo_v)e—127r(ux+vy)dxdy]
—00 J —00
[ o0 X0 R
f / e~ /2l u—u)x+ =¥l g gy
L/ —00 J —00

0o poo
+/ f e—j2nl(u+u())x+(v+v0)y]dxdy]
-0 J—0

-

1
Fa(c)(u,v) = 5[8(14 —ug, v — vg) + 8(u + uo, v+ vo)l.

We used Eq. (2.70) twice to get the last equality.
(e)

F(f)u,v) = f f f(x, y)e JF@xv grdy

i i 1 —(X2+ 2)/202 —j2n(ux+vy)
5€ M e/ Ydxdy
oo J—oo 2O

00 poo
/ / l 2e—(x2+j47razux)/202e—(y2+j4n02uy)/202 dxdy
—o0 J—o0 2O

_ 1 e—(x2+j4n02ux)/202 dx:l I:foo 1 e—(}’2+j4””2”)/)/202 dy]
L0 V2702 —o0 M 2mo?
_ /°° 1 - Hizmatu? /202 (j2mau)? /20 dx] )
|/ V2702
/00 1 o—UrHitme?v)?/20? (j2mo?v)? /207 dy]
| /o0 /202
[ —2n20242? /00 1 —(Jr—+—'27u12u)2/2a2 :l
— e L CSY) dx |-
—00 V2102
[e—2n202u2 foo __I__e—(y+j2nazu)2/202 dy]
—00 27TO’2
— 6—271202142 . e-—27r2172v2
2,202 2
B(HHu,v) = e 2mia (U +v)
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/ f %[ejbr(u()x+v()y) + e—j2n(uux+v()y)]e~j2n(ux+uy) dxdy
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Solution 2.14 The Fourier transform of f(x) is

F{u) = f f(x)ef-"zm‘“dx.

(a)
F*u) = f_: [f(x)e‘-/'z””]*dx
_ /OO Fr el Mgy
= / PR Ee P g, ot = —x

= / fE)e I de | since f(—x) = f(x) and f(x) real

= F)

(b) Similarly,

Fru) = / ” fr(—&)e e g

/ —fE)e I g since f(—x) = —f(x)

—0oQ

—F)

Solution 2.15 In deriving the symmetric property F*(u) = F(u), we have used the fact that f(x) is real. If f(x)
is a complex signal, we have f*(—§) = f*(£), instead of f*(—§) = f(&):

foo [f(x)e_jz’“‘"]* dx

—00

f FA(—E)e I gE et = —x

F*(u)

I

i

/ ) fr@E)e 1 g,
Flrmx}

Solution 2.16

(a) Conjugate property: Fo(f*)(u, v) = F*(—u, —v).

00 00 ]
?Z(f*)(u, v) — / / f*(x, y)e~12n(14x+v_v)dxdy
—00 J—00

00 o . *
— I:f / f(x, y)eJZJr(ux+Uy) dxdy]
—o0 J—00

© 2006 Pearson Education, Inc., Upper Saddie River, NJ. All rights reserved. This material is protected
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o o0 *
[/ / f(x’ y)e—jZJTI(—ll)X+(—v)y]dxdy:l
—00 J—~00

= [F(-u,-v)]*
F(fHwu,v) = F*(—u,—v)

Conjugate symmetry property: If f(x, y)isreal, F(u,v) = F*(—u, —v).
Since f(x, y)isreal, f*(x,y) = f(x,y). Therefore,

F(—u, —v) = R{f*(x, )} = R{f(x. y)} = Fu, v).

(b) Scaling property: F2(f**)(u, v) = ITIIFI‘%(f) (%, 3)-

o0 o0 .
F(f Py, v) = / f F(ax, by)e= 1w+ gigy
- V=0

i

/00 /OO f(ax’by)e_jzn[u(ax)/a+v(by)/b]L d(ax)d(by)
—00 J—00 ab
1 0 poo .
— __.__/ / f(p q)e—lzﬂl(u/a)P-Hv/b)qldpdq
labl J 0o J—co ,
1 u v
ab . » v
U@ = e (55)
(¢) Convolution property: F2(f * g)(u, v) = F2(8)(u, v) - F2(f)(u, v).

Fo(f *8)u, v) = / / U / f(s,n)g(x—s,y—n)d&dn]e*ﬁ"(mwuxdy.

Interchange the order of integration, we get

Fo(f % g)(u,v) = f f f(é,n)[f f g(x—E,y—n)e_-’z”(“*Jf”y’dxdy]dédn

NN N

e—j2ﬂlu(x—E)+v(y—n)le~j2ﬂ(u$+vn)dxdy:| dedn
00 poo ) [ o0 OO
/ f s me s | [ " ggy -
—00 J—00 LJ —00 Vv —00
e—j2ﬂ[u(x—é)+v(_v—n)ldxdy] dédn

o0 o 0] [ o oo
/ / (&, mye it ton f f 2(p, q)e—ﬂ”'“"“‘”dpdq] dtdn
—00 —0C L J —O0 —00

0 poo .
f f £, meT2TUERI £ (034 v dEdn

Fa(g)(u, v) - f f F&, meIAmwsem gegy
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under all copyright laws as they currently exist. No portion of this material may be reproduced, in any
form or by any means, without permission in writing from the publisher.
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F(f*xg)u,v) = Fog)u,v) F2(f)u,v).

(d) Product property: F2(fg)(u, v) = F(u,v) * G(u, v).

Fr(fe)u,v) = f / Fx, g, y)e--jln(:4x+11)')dxdy

o o0 %) 00
= [ / [/ f G(¢, n)e-f2n(x'5+)'r))dédn:| f(x,y)e*j2n(ux+uy)dxdy
~o00 J—o0 LS—00 S -0 :
xX o0 00 o
= / / G&.n) [/ f fx, y)ejZn(xE+}‘rl)e'f2n(ux+u_v) dxdy] dédn
o0 Voo —o0 J—~00

o0 oo oo o0 R
= f / GE.n) [/ f fx, y)e—./2ﬂ|<u—s)x+(v—'l>.vldxdy] dédn
—00 J —00 —ox J—00

- f f G(E, m)Fu — £, v — ) dédn
= F(u,v)*Gu,v).

Solution 2.17 Since both the rect and sinc functions are separable, it is sufficient to show the result for 1-D rect and
sinc functions. A 1-D rect function is

1
1, for < =
x| 7
rect(x) =

|
0, for -
[x] > 3

Flrect(x)} = f rect(x)e /2TUx g x

—0C

1/2
— / e—j2m¢xdx
-1/2

172 1/2 .
/ cosRmux)dx — j/ sinQrux)dx, e/ =cos6 + jsinf
~12 —1/2

1/2
= / cos(Qmux)dx
~1/2

_ sin(ru)

U
= sinc(u)

Therefore, we have F {sinc(x)} = rect(u).

Using Parseval’s Theorem, we have

o0 o0
Eoo [ / I rect(x, y)[2dxdy
-0 —0oQ

/2 pl1/2
= / / dxdy
—1/2J-172
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For the sinc function, Py, = 0, because E is finite.
Solution 2.18 Since the signal is separable, we have
Ffx, y)] = Fiplsin(max)]Fiplcos2nby)].
1
Fip[sin(Rmrax)] = T [6(u—a)—38u+a)l
J
1
Fiplcos(2nby)] = 3 [(v—>b)+48(v+b)
So,
1
Flfx, = E [t —a)s(v —b) — 8(u+a)s(v—b)+8u—a)s(v+b) —8(u+a)s(v+b)].

Now we need to show that §(u)8(v) = 8(u, v) (in a generalized way):

S(uyd(w) =0, foru#£0, orv#0

/ / fu, v)8(u)s(w)dudv = / [f fu, v)S(u)du] S(v)dv = /00 O, v)8(w)dv = f(0,0)

Based on the argument above 8(#)3(v) = §(u, v), and

.T[f(x,y)]-—-4Lj[8(u—a,v—b)—8(u+a,v—b)+8(u—a,v+b)—8(u+a,v+b)].

The above solution can also be obtained by using the relationship:

sin(2mwax) cos(2nwby) = % [sin(2w (ax — by)) + sin(2r (ax + by))].

Solution 2.19 A function f(x, y) can be expressed in polar coordinates as:
f(x,y)= f(rcosf,rsin®) = f,(r,0).

If it is circularly symmetric, we have f,(r, #) is constant for fixed r. The Fourier transform of f(x, y) is
defined as:

0 poo )
Fu,v) = / f f(x, y)e 2mwx g dy
o0 Vv —00

0o p2m ) .
— f f fp(r’g)e—jZH(urcoséH»vrsmé))rdrdo
0 0

00 2 . .
f fp(r, 0 [f e—]27r(urcosfl+vrsmf))d9] rdr.
0 0
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Letting 4 = q cos ¢ and v = g sin ¢, the above equation becomes:

00 2 )
Flu,v) = f Fp(r, 0) [ / e“ﬂ”"’”"“(""“de] rdr.
0 0

Since F(u,v) is also circularly symmetric, it can be written as F,(q,¢) and is constant for fixed ¢g. In
particular, F, (g, ¢) = F,(gq, 7/2), and therefore

o0 2n )
F([(q,¢): Fz[(q,ﬂ'/z)Z/ f,,(r,G) l:f e—j2nqrsmﬁd9:lrdr.
0 0

Now we will show that (2.109) holds:
/ et 2mqr sdee
0

2 2n
= / cos(2mgrsin8)do — j f sin(2m gr sin )
0 0

()

s

2/ cos(2mgr sin6)do
0

= 2nJoQnugqr)

Equality (@ holds because cos(—8) = cos(8), and sin(8) = — sin(6).

Based on the above derivation, we have (2.109).

Solution 2.20 The unit disk is expressed as f(r) = rect(r), its Hankel transform is:

F(gq) = 271’/ f(r)JoQugryrdr
0

oo
2 f rect(r)Jo(Qmgrirdr
0

172
= 2 f JoQuqryrdr
0

Change of variable

s = 2mngr
s

r = —
2nq
d

dr = £
2nq

Apply the change of variable to the above equation

1 T
F@g) = 2[ Jo(s)sds
2ng° Jy
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Note that
X
/ Jo(e)ede = xJi(x)
0
So
Ji(m
F = 00
q
= jinc(q)
TRANSFER FUNCTION
Solution 2.21

(a) The impulse response function is shown in Figure S2.1.

A
AT
P
g
il

Figure S2.1 Impulse response function of the system. [Problem 2.21(a)]

(b) The transfer function of the function is the Fourier transform of the impulse response function:

H@u,v) = Flh(x,y}
= }'{e_”"z}.‘i-'{e_"yz/“}, since h(x, y) is separable
4e—n(u2+4u2)'

Solution 2.22
(a) The 1D profile of the bar phantom is:

»
t

1 Sw <x < w
— 4 2 -7 =2
x - £
S [ 0, "—*z"wSx < k——’?w

where k is an integer.
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The response of the system to the bar phantom is:

mnzfunun:/ Flx = E)(EE.

At the center of the bar, we have

g0 = f O - E)(E)d

w/2
/ cos{wé)dE

w/2

= gsin (%)

At the point halfway between two adjacent bars, we have
o0

sw = [ -
—oQ

w/2 w+m /20
/ cos(aé)dE + / cos(at)dé

w71 /2 3w/2

w/2
= 2/ cos(a&)dé

71/ 20
= 2 [sin (%) — sin (oew — %)] .

(b) From the line spread function alone, we cannot tell whether the system is isotropic. The line spread
function is a “projection” of the point spread function. During the projection, the information along the
y-direction is lost.

(c) Since the system is separable with A(x, y) = hp(x)hp(y), we know that

o ¢]
) = / hix, y)dy

I

th(X)/ hip(y)dy

So hip(x) = cl(x) where 1/¢ = [ hip(y)dy. Hence,

o0

e = [ coay
-0
/2

l/c2 = / cos(ay)dy
—n/2a

l/c2 = 2/a

Theretfore,

hd cos{ax)cos{ay) |ax| <m/2and oy} < /2
h(x,y) =3 2
0

otherwise
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The transfer function is
H(u,v) = Fplh(x,y)}

o r o0 . n .
= / / h(x,y)eﬂ”'”dx eI dy

—00 LJ —00 4

I o0 i .
= f / th(x)hm(y)eﬂ”’”dx] el dy
|/ —O0

-0

x© o0 . T .
= f / hip(X)e! 74 dx [ hip(y)e/ W dy

—00 LJ —00 =

w . w .
= f th(x)eﬂ”“xdxf hm(y)eﬂ”“ydy

—00 —00

= Hijp(w)Hp()

which is also separable with H (4, v) = Hip(u) Hip(v).

\/gfm{l(x)}
= \/gfm{cos(ax)} * Fip [rect (%)l
= ‘/g[sinc (g(u —a/2n)) + sinc (g(u +a/27t))].

Hip

It

The transfer function is

H(u,v)

i

% [sinc (g (u — a/27r)) + sinc (g (u+ a/ZJT))]

[sinc (;i v — a/27t)) + sinc (g— v+ a/2n))] .

SAMPLING THEORY
Solution 2.23
(a)
@) = fO)s(; AT)
o0
= Y f(©)s@ —mAT)
o
= Y. f(mAT)s¢t —mAT)
Since
. 2wt
sm(—T—), O0<t<T
f@ =
0, otherwise
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and AT = 0.257, we have
filt) = 8(t — 0.25T) — 8(t — 0.757T).

I, m=1
fum) = fmAT) =1 -1, m=3
0, otherwise

(b) The signal f,(¢) is referred to as a zero-order hold. By definition,

I, 025T <t <0.5T
)y = -1, 075T<t<T
0, otherwise

t —0.375T t —0.825T
rect| ——— |} —rect| —— |.
0.5T 0.5T

Using the properties of the Fourier transform, we have

() = Ff@)
oo . .
/ fa(tye i3 gy
—00
= 0.25T sinc(0.25T f)e 12" O375TS) _ 0.25T sinc(0.25T f )e ~1270825T/)
= 0.257 sinc(0.25Tf) [e‘-" OIS e—-i’—’”“’-””f’]

(¢) For AT = 0.5T, we have

S5 0

fa(m) = 0

) = 0

Fu(f) 0.
Solution 2.24 Since the Nyquist sampling periods for 1 D band-limited signals f(x) and g(x) are A y and A, the
highest frequency of f(x) and g(x) are 55— A and 5. In order to find the Nyquist sampling periods, we need

to find the highest frequency for each of the sngnals

(a) A shiftin location does not change the frequency components of a signal, so the magnitude spectrum of
f(x — xo) is the same as that of f(x). The Nyquist sampling period of f(x — xg)is Ay.

(b) The Fourier transform of f(x) +g(x)is FIf () +g(x)] = F[f(x)}+ Flg(x)]. The highest frequency
of f(x)+g(x)is max(7A -, 21 ), so the Nyquist sampling period of f(x) + g(x) is min(A s, Ap).

(¢) The Fourier transtorm of f(x) * f(x) is jv""[f()c)]2 The highest frequency of f(x) x f(x) is 2A -, The
Nyquist sampling period of f(x) * f(x)is Ay.

(d) The Fourier transform of f (x)g(x)is F[f(x)]* F[g(x)], The highest frequency of f(x)g(x)is ﬁf +

Afhg .

AL

@ If fix) =0, [f() = f(x), the Nyquist sampling period of || f(x)|| is Ay. But in general, the
operation of taking absolute value will reverse part of the original signal f(x), and therefore introduce
high frequency component. In general case, || f (x){ is no more band-limit signal, even though f(x) is.

2A » and the Nyquist sampling period is +
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Solution 2.25 The sampling frequencies are ﬁ = 1.5 and —Al— = 1.5. From the Sampling Theorem, in order to

avoid aliasing the cutoff frequencies of the low-pass filtered signal f * h must satisfy:

1 1
U< —=075 andV < — =0.75.
2Ax 2Ay

Thus, the ideal low-pass filter £ (x, y) that gives the maximum possible frequency content must have a frequency

response as
1,if [u| <0.75and |v| < 0.75
0, otherwise

Hu,v)= {

H (u, v) is one inside a square region and zero outside.

The PSF of the required anti-aliasing low-pass filter can be computed as:

o0 o
hix,y) = ?Z‘I(H(u,v))=/ / H(u, v)ed 7@+ dudy
—00 v —00
075 p0.75
= ed T UxTY) gy 4y
—0.75 J-0.75

0.75 0.75
/ ej271ux dul . / ej2m)y dv
—0.75 —0.75
explj27(0.75)x] — explj2m (—0.75)x] exp[j2m (0.75)y] — expl j27(—0.75)y]

j2mx j2my
sin(1.57x) sin(1.5my)

X wy

From Table 2.1, we know that -
Fo(f)u, v) = e 7T,

Thus, the total spectrum energy of f(x, y) is

Eotal = f_ f_ |F2(f)(u, v)|* dudv

X0 o0 2 2 2
= f f e 2D gy dy
—00 J—00

2y _ U [T % w02 o2 1
= (27[0 ) / / e~ W HVI20% gudy witho® = —
202 J_oo J_o 47

1
= 2. —
4

= 0.5.

The spectrum that is kept by the low pass filter has energy of

0.75 (075 -
Epreserve = e 270 dudy
—0.75J-0.75

0.75 2 0.75 2
= / e 2mu du-f e dy
-0.75 -0.75
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2

i 0.75V21 s “
= | —= e U dr
27 J-0.75v3%
2
|
= [—\/—E2ert‘(0.75v2n)]
2r 2
1 2
= E[ert (() 75v2n)]
~ l[o 9921
5 [0
~ 0.492,

where erf(-) is the error function.

Thus, the percentage of the spectrum energy that is preserved is

E . 0.492
preserve = 98.4%
Eotal 03

Since the spectrum of f(x, y), which is F2(f)(u, v) = e_”(”2+”2), is non-zero for all (u, v) € (—o0, 00) x
(—00, 00), it is impossible to sample f(x, y) free of aliasing without using an anti-aliasing filter.

APPLICATIONS, EXTENSIONS AND ADVANCED TOPICS

Solution 2.26

(a) The system is separable. h(x, y) = e I¥IHPD — o= lxlp—I¥l,

(b) The system is not isotropic since A(x, y) is not a function of r = /x2 + y2.
Additional comments: An easy checkis topluginx =1, y = landx =0, y = +/2 into h(x, y). By
noticing that (1, 1) # h(0, v/2), we can conclude that h(x, y) is not rotationally invariant, and hence
not isotropic.
Isotropy is rotational symmetry around a point, not just symmetry about a few axes, for example x- and
y-axes. h(x, y) = e”WI+I¥D js symmetric about a few lines, but it is not rotationally invariant.

When we studied the properties of Fourier transform, we learned that if a signal is isotropic, than its
Fourier transform has a certain symmetry. Note that the symmetry of the Fourier transform is only a
necessary, but not sufficient, condition for the signal to be isotropic.

(c) Modulation transformation function of a anisotropic system is defined as

H(u,v)
MTF(u, v) =
Y= 50.0
where H (u, v) is the Fourier transform of h(x, y).
H@u,v) = |g2(h(x,y)|

- ‘ﬂ (e-<nx|+|,v|))l
- ] )
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= & (ez—ixl) ) (Z—Iyl)

1+ Qru)? 1+ (2av)?
4

I+ Qru)?)(d + 2rv)?)’

So the MTF is
H(u,v) 1

H©,0) (14 Qru)®>)(1+ 2rv)2)’

MTF(u, v) =

(d) The response is

glx,y) = hx,y)* f(x,y)
- / f hE ) f(x — £y — n)dEdn

— / / e—(lEH—InI)s(x — £)dedn

[o o]
_ / e—Ust+in gy
—o0
x
_ e—lxlf ey
—0o0

0 0o
= e M l:f e'ldn +/ e"’dn]
—00 0

= 2¢ M

(e) The response is

8(x,)’) = h(x,)’)*f(x,)’)
= f f h&, nf(x~§,y—n)dédn

0 poo
— / / e—(IE|+In|)3(x —& —y+n)dEdn
—00 J—00

= foo eI Uoo eBlg(x —&—y+ n)ds] dn

o
_ f oMl g—lx=y+nl g,
—00

1. Now assume x — y < 0, then x — y + n < n. The range of integration in the above can be divided
into three parts (see Fig. S2.2):

1L.ne (—00,0). Inthisinterval, x —y+n <y <O0. jpl=—n,lx —y+nl=—(x—y+n)
I.ype[0,—(x —y)). Inthisinterval, x —y+n <0<n. Inl=n|x—y+nl=—(x—-y+n)
1L p € [—(x — y),00). Inthisinterva,l 0 <x —y+np<n. Inl=n,|lx —y+nl=x—y+n.
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n<0 n>0 n>0
x-y4+n<0 o xyin<0 x-y+n>0

9

0 -(x-y)

v

=

Figure §2.2 For x — y < 0, integration interval (—o00, 00) can be partitioned into three segments. [Problem 2.26(¢)}

Based on the above analysis, we have:

o0
glx,y) = / eAlrlle—]x—_H-,”dn
—00

0 —(x—y) 00
— / e-(lrll+lx—)'+'1|)dn+/ e—(hll+|X~_V+r1|)+/‘ e Unl+la=y+nl
—o0 0 —(x=y)

0 —(x—y) ! [es) ”
f ex~y+2r,dn+f0 ea—ydn_*_f e—(x—y+-1,)dn

-0 —(x—y)

. . 1
¢ (e 4 e

= [l=-yl

b —

2. Forx —y = 0,n < x — y + 5. The range of integration in the above can be divided into three parts
(see Fig. S2.3):

n<0 n<0 1>0
x-y+n<0 . x-p+n>0 x-y+m>0

-(x-y) 0 n

A\

Figure 82.3 For x — y > 0, integration interval (—00, 00) can be partitioned into three segments. [Problem 2.26(e)]
Lnpe(—00,—(x—y)). Inthisinterval, n <x —y+n < 0. |pl=—n, |x —y+75|=—(x -y +n);

ILnpe[—(x—y),0. Inthisinterval, n <O <x—y+n. [pl==-n,x —y+n=x—y+un;
III.n € [0,00). Inthisinterva, 0 < n <x—y+n. |nl=n|x—y+nl=x—y+n.

o0
g(x,y) = / e—lr)le~|x~y+n|d17
—00

—(x=y) 0 o0
[ e‘(""*"‘“-"*"“dn+f e“'"‘*'“”"'hrf o =y+a)
—00 —(x—y) - Jo

—(x—y) , 0 oo
- / ex—,v+-ndn+/ eA(x—_v)dn+f e~(x—y+2n)d,7
~ 0

00 —(x—V)

1 . |
— —(x—y) —(x=y) —(x=y)
= —e : X —ye : —e :
2 +( ¥) + 3
= [+ —yle &
Based on the above two steps, we have:

gx,y)=0+}x — y|)e“|)‘*.\’l
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Solution 2.27

(a) Yes, it is shift invariant because its impulse response depends on x — &.
(b) By linearity, the output is

—(x 2 —(x 2 —(x— 2
gx)y=e ca +e_(%+e(7l).
(¢) We need to find the Fourier transform in order to find the MTFE. From Table 2.1, we know that

2 2
e o e

Using the scaling property of the Fourier transform, we have
LY 2
e/ = e_”(/T) o V2w

H@W _ o2

MTF = =
W= TH0)

Solution 2.28

(a) The impulse response of the filter is the inverse Fourier transform of H (#), which can be written as

u
H@u) =1 —rect (ﬂ)

Using the linearity of the Fourier transform and the Fourier transform pairs

Fls@} = 1
F {sinc(t)} = rect(u)
We have
he) = FHHwW)

8(t) — 2Up sincRUpt?)

(b) The system response to f(f) = c is 0, since f(t) contains only DC component while h(t) passes only
high frequency components.

f*ht) = f@) *[8(r) —2Ugsinc(2Upt))
= f(t) —2Uo f(t) * sinc(2Uot)

o0
= ¢— c/ 2Up sincRUpt)dt

—00

[e ¢}
= c—cf sinc(t)dt

—0Q
= 0
Th b =0
e system response to f(¢) = 0, t<0 is
f@=ht) = f()*[8() —2Ugsinc(QUpt)]
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= f@) —2Up f(r) = sinc(2Upt)
= f@) - / F(x)2Uy sincRUp(t — x))dx

o0

= f(t)—/ 2Ug sincRUp(t — x))dx
0

= f(t)+/_ 2Uq sinc(2Uy(y))dy
t

t
= f(t)—/ 2Uy sincQUo(y))dy

—oC

0 0
1 —/ 2Up sincQUp(y))dy +/ 2Up sincRQUg(y))dy t <0
t

—00

0 1
1 —/ 2Up sincRQUp(y))dy —/ 2Upsinc(QUg(y))dy ¢ >0
0

-0

1 0
—3 +f 2UpsincQUp(y)dy 1t <0
f

t
I — 3 —f 2Up sincQUp(y))dy t >0
0

1 0
—3 +/ 2Up sincQUp(y))dy t <0
t

l r
— —/ 2Ugy sincQUp(y))dy t >0
0

2
Solution 2.29
(a) The rect function is defined as
W L e =1/2
rect® = { 0, otherwise
So we have
et (LYo L l=T/2
T) | 0, otherwise
and
rect 1+0.75T\ [ 1, |t +0.75T| <T/4
0.5T ] 0, otherwise
So,
-1/T, =T <t<-T/2
hay=1 YT =T2<t<T/2
B -1/T, T2<t<T
0, otherwise

The impulse response is plotted in Fig. $2.4.

The absolute integral of 4(¢) is ffooo |h(t)|?dt =2/T. SoThe system is stable when T > (. The system
is not causal, since h(t) # O for —T <t < 0.
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h(f)
uT
T |lm 2 T
t
TUT

Figure S2.4 The impuise response i(z). {Problem 2.29(a)]

(b) The response of the system to a constant signal f(f) = ¢ is
o0 oo
gty = f@)xh(t) = / f —t)h(r)ydr = c/ h(r)dt = 0.
—00 —00
(¢) The response of the system to the unit step function is

t

() = £(O) xhit) = f £t = Dh@)de = f h(o)dr

—0Q
0, t < -T
—t/)T -1, -T<t<-T/2
gt)=13 ¢/T, T2 <t<T/2
—t/T+1, TR2<t<T
0, t>T
The response of the system to the unit step signal is plotted in Figure S2.5.
g
172
-T -T2 172 T
t
-1/2

Figure S2.5 The response of the system to the unit step signal. [Problem 2.29(c)]

(d) The Fourier transform of a rect function is a sinc function (see Problem 2.17). By using the properties
of the Fourier transform (scaling, shifting, and linearity), we have,

Hw) = F{h®)
—  —0.5¢/2u0T5T) ginc(0.5uT) + sinc(uT) — 0.5~/ 731 5inc(0.5uT)
= sinc(uT) — cos(1.5wuT) sinc(0.5uT)
(e) The magnitude spectrum of h(t) is plotted in Figure S2.6.

(f) From the calculation in part (d) and the plot in part (c), it can be seen that |[H (0)] = 0. So the output
of the system does not have a DC component. The system is not a low pass filter. The system is not

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected
under all copyright laws as they currently exist. No portion of this material may be reproduced, in any
form or by any means, without permission in writiry from the publisher.




31

|H(u)|

Figure $2.6 The magnitude spectrum of #(¢). [Problem 2.29(e)]

a high-pass filter since it also filters out high frequency components. As T — 0, the pass band of the
system moves to higher frequencies, and the system tends toward a high-pass filter.

Solution 2.30
(a) The inverse Fourier transform of ﬂ(g) is
F'{H (@)

w ~ .
- / H(o)e/dg
—00

(]

- f lele’™edg
—00

Qo . 0 .
— / Qe-’zdeQ _/ Qe-’zdeQ
0 QU
00 i —00 oy
= / oe’ ’"ng+/ ge e q,
0 0
Q0 s s
= L Q[el ﬂrQ+e—j ”rQ:IdQ
Q0
= 2/ ocos(2mro)dg
0
_ - osin(2rro) |¢ /‘9" sin(2nrg)d
2nr 0=0 0 2nr e
(4]
0=0

i
= 333 [cos(2mreo) + 27rgo sin2mrop) — 1]

h(r)

_ 9 osin(2mwrog) cos(2mro)
2nr 472r2

© 2006 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected
under all copyright laws as they currently exist. No portion of this material may be reproduced, in any
form or by any means, without permission in writing from the publisher.




32 CHAPTER 2: SIGNALS AND SYSTEMS

(b) The response of the filter is g(r) = f(r) * f,(r), hence G(Q) = F(Q)fl(g). i) A constant function
f(r) = c has a Fourier transform of
F(o) = c8(0)

The transfer function of a ramp filter has a value zero at ¢ = 0. So the system response has a Fourier
transform of

Gg) =

Therefore, the responses of a ramp filter to a constant function is g(r) = 0. ii) Fourier transform of a
sinusoid function f(r) = sin(wr) if

F©) = 3= [~ 520~ 3+ 5]

Hence,

G = %[5(9‘%)—8(“%)] 00 =
0

otherwise

Therefore, the response of a ramp filter to a sinusoid function is

w

— sin{wr =w
¢y =1 2= (wr) o

0 otherwise

Solution 2.31 Suppose the Fourier transform of f(x,y)is F(u,v). Using the scaling properties, we have that the
Fourier transform of f(ax, by) is Iubl F (a b) The output of the system is g(x, y):

{Iabl a'b }
—1271(ux+vv)d d
f f wlabl \a G3)e Hew

I—‘I]f f F(E,n)eﬂn(as(’XHb"(_'v))lab|d§dr)
—00 J~00

g(x,y)

Note that
[s,9 o0 .
flx,y)= f / F(u, v)e! W+ gydy
—0Q J =00

we have

o] o0 R
f f F (&, n)el @0t apldedy = |ab| f (—ax, —by).
o0 V00

Therefore, g(x, y) = f(—ax, —by) is a scaled and inverted replica of the input.

Solution 2.32 The Fourier transform of the signal f(x, y) and the noise n(x, y) are:

Ffx, »)
lab|F {sinc(ax, by)}

labj| {ﬁ rect (Z -Z)}

F(u,v)
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l(u v)
= rect{—, -
a b

I, x| <lal/2and |y| < |b]|/2
0, otherwise

E(u,v) = F{n(x,y)}
= %[8(u—A,v—B)+8(u+A,v+B)]

Using the linearity of Fourier transform, the Fourier transform of the measurements g(x, y) is:
u v 1
Gu, v) = rect (—, E) + 58— A v = B)+ 5+ A, v+ B)]
a .
which is plotted in Figure S2.7.

1728(u-A,v-B)

rect(u/a,v/b ] B____

25 viB) | a2 4 i

.
e 4
i ’
’ L ___ L.
’
’
.
v
’

Figure 82.7 The Fourier transform of g(x, y). [Problem 2.32]

In order for an ideal low pass filter to recover f(x, y), the cutoff frequencies of the filter must satisfy

lal/2<U <Aand|b]/2 <V < B

The Fourier transform of h(x, y) is rect (7% 2‘—‘,) The impulse response is
u

hix,y) = F! [rect (2U’

51"7)] = 4UV sinc(2Ux) sinc(2V y).

For given a and b, we need A > |a|/2 and B > |b|/2. Otherwise we can not find an ideal low pass filter to
exactly recover f(x, y).

Solution 2.33

(a) The continuous Fourier transform of a rect function is a sinc function. Using the scaling property of the
Fourier transform, we have:
Gu) = Fip{gx)} = 2sincCu).

A sinc function, sinc(x), is shown in Figure 2.4 (b).
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(b) If the sampling period is Ax; = 1/2, we have

I, 2<m<?2
gi(m) = g(m/2) = [ 0, otherwise

Its DTFT is

G{w) Forrrlgi(m)}
ej2w+ejw+1ej0w+e—jw+2e—j2w

1 4+ 2cos(w) + 2 cos(Qw).

The DTFT of g;(m) is shown in Figure S2.8.

G, (@)

-2 -1 0 1 2
 (in w)

Figure S2.8 The discrete-time Fourier transform gy (m). [Problem 2.33(b)]

(¢) If the sampling period is Axz = 1, we have

1, -1l<m<l
g2(m) = g(m) = { 0, otherwise

Its DTFT is

Ga(w) Foreriga(m)}
el? 4 16100 4 I

1 4 2 cos(w).

i

The DTFT of g2(m) is shown in Figure S2.9.
(d) The discrete version of signal g(x) can be written as:

gi(m) = g(x —mAx)), m=-00,---,-1,0,1,---,+00.
The DTFT of g1 (m) is

Gi(w) = Fprrrigi(m)}
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-2 -15 -1 -05 0 05 1 15 2
 (in )

Figure 82.9 The discrete-time Fourier transform g»(m). [Problem 2.33(c)]

+00

Z g (m)e—ja)m

m=-0Q

+o0

Z g(mAxl)e—jwm

m=—0c

o0 . R
/ g(X)8s(x; Axy)e 'UBidx.
—00

In the above, 8, (x; Ax)) is the sampling function with the space between impulses equal to Ax;. Because
of the sampling function, we are able to convert the summation into integration. The last equation
in the above is the continuous Fourier transform of the product of g(x) and 8,(x; Ax;) evaluated as
u = w/(2m Axy). Using the product property of the continuous Fourier transform, we have:

Gilw) = Flg)}* FL:(x; AxD)} ymw/nax)
= G(u) xcombUAX1)y=w/2rax) -

The convolution of G (u) and comb(u#Ax1) is o replicate G(u) 10 u = k/Ax). Since u = w/(2mw Ax)),
G (w) is periodic with period = 2.

(e) The proofis similar to that for the continuous Fourier transform:

Forer{x(m) x y(m)} = Fprer (x(m) x y(m)}
= fm.:-r[ > x(m—n)y(n)]
H=—0Q
o0 . o<
= Z e /oM Z x(m—n)y(n)
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> { D e am —n)] y()

n=—o0 Lm=—0o0

i e—jam[: i e—.iwkx(k):l y(n)

n=—00 k=—00

(letk =m —n)

> eI Forerix(m)}y(n)

n=-—00

Forrrix (m)}Forrri{y(m)}.

(f) First we evaluate the convolution of g|(m) with g2(m):

3, ~l=mx<1
e e
0, otherwise
Then by direct computation, we have
Forrr{g1(m) x g2(m)} = 3+ 3 x 2cos(w) + 2 x 2cos(2w) + 2 cos(3w)

3 4+ 6 cos(w) + 4 cos(2w) + 2 cos(Bw).

On the other hand, we have

Forer{gi1(m)} = 1 + 2cos(w) + 2 cos(2w)

and

Forerig2(m)} = 1 + 2 cos(w).

So, the product of the DTFT’s of g (m) and g2(m) is

Forrr{g1(m)}Forrrig2(im)} =

Therefore,

[1 4+ 2cos(w)][1 + 2 cos(w) + 2cos(2w)}
1 + 4 cos(w) + 2 cos(Zw)
+4 cos? (w) + 4 cos(w) cos(2w)

1 + 4 cos(w) + 2 cos(2w)

N 4l + C(;s(2a)) + 4cos(a)) —; cos(3w)

3 4 6 cos(w) + 4 cosRw) + 2 cos(3w).

Forrri{gi1(m) * g2(m)} = Forrrig1(m)}Forrr{g2(m)}.
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