Chapter 1: Systems of Linear Equations and Matrices

Multiple Choice Questions

1. Which of the following equations is linear?

(A)
$$2x_1^2 + 3x_2^3 + 4x_3^4 = 5$$

(B) $\sqrt{3}x_1 - \sqrt{2}x_2 + x_3 = 5$

(C)
$$\sqrt{5x_1} + 5\sqrt{x_2} - x_3 = 1$$

(D) $2^2x_1 + \cos(x_2) + 4x_3 = 7$

2. Which system corresponds to the following augmented matrix?

$$\begin{bmatrix} 1 & 11 & 6 & 3 \\ 9 & 4 & 0 & -2 \end{bmatrix}$$

(A)
$$\begin{aligned} x_1 + 11x_2 &= -3\\ 9x_1 + 4x_2 &= -2 \end{aligned}$$

(B)
$$\begin{aligned} x_1 + 11x_2 + 6x_3 &= 3\\ 9x_1 + 4x_2 &= -2 \end{aligned}$$

(C)
$$\begin{aligned} x_1 + 11x_2 + 6x_3 + 3x_4 &= 0\\ 9x_1 + 4x_2 &- 2x_4 &= 0 \end{aligned}$$

(D)
$$\begin{aligned} 11x_1 + 4x_2 &= 0\\ 6x_1 &= 0\\ 3x_1 - 2x_2 &= 0 \end{aligned}$$

3. Which of the following statements best describes the following augmented matrix?

$$A = \begin{bmatrix} 1 & 2 & 6 & 5 \\ -1 & 1 & -2 & 3 \\ 1 & -4 & -2 & 1 \end{bmatrix}$$

- (A) A is consistent with a unique solution.
- (B) A is consistent with infinitely many solutions.
- (C) A is inconsistent.
- (D) none of the above.

4. Which of the following matrices is in *reduced* row echelon form?

(A)	1	0	-1	1	
	0	1	2	0	
	0	1	3	1	
	1	0	2	5]
(B)	1 0	1	-7	5	
	0	0	1	14	:
(C)	1	0	0 1	11	-3
	0	0	0	1	4
(D)	[1	0	-5		
	1 0	1	3		
	0	0	0		

5. If the matrix A is 4×2 , B is 3×4 , C is 2×4 , D is 4×3 , and E is 2×5 , which of the following expressions is *not* defined?

(A) $A^T D + CB^T$ (B) $(B + D^T)A$ (C) $CA + CB^T$ (D) DBAE

6. What is the second row of the product AB?

$$A = \begin{bmatrix} 0 & 2 & 3 \\ 5 & 4 & 8 \\ 9 & 7 & 2 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 & 7 \\ 6 & 3 & 2 \\ 2 & 9 & 7 \end{bmatrix}$$
(A) $\begin{bmatrix} 18 & 33 & 25 \end{bmatrix}$ (B) $\begin{bmatrix} 64 & 48 & 91 \end{bmatrix}$ (C) $\begin{bmatrix} 50 & 89 & 99 \end{bmatrix}$ (D) $\begin{bmatrix} 48 & 89 & 33 \end{bmatrix}$

7. Which of the following is the determinant of the 2 × 2 matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$?

(A)
$$ad - bc$$
 (B) $bc - ad$ (C) $\frac{1}{bc - ad}$ (D) $\frac{1}{ad - bc}$

8. Which of the following matrices is *not* invertible?

(A)
$$\begin{bmatrix} 3 & 6 \\ 2 & 4 \end{bmatrix}$$
 (B) $\begin{bmatrix} 7 & 7 \\ 2 & 3 \end{bmatrix}$ (C) $\begin{bmatrix} 9 & 0 \\ 4 & 4 \end{bmatrix}$ (D) $\begin{bmatrix} 9 & 3 \\ 6 & 5 \end{bmatrix}$

9. Which of the following matrices is *not* an elementary matrix?

(A)
$$\begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$$
 (B) $\begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$ (C) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (D) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Chapter 1

_

10. For which elementary matrix E will the equation EA = B hold?

$$A = \begin{bmatrix} 1 & 4 & 6 \\ 0 & 0 & 1 \\ 2 & 10 & 9 \end{bmatrix}, B = \begin{bmatrix} 1 & 4 & 6 \\ 0 & 0 & 1 \\ 0 & 2 & -3 \end{bmatrix}$$

(A)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
 (B)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 (C)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$
 (D)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

11. Which matrix will be used as the inverted coefficient matrix when solving the following system?

$$3x_1 + x_2 = 4$$

$$5x_1 + 2x_2 = 7$$

(A) $\begin{bmatrix} 2 & -1 \\ -5 & 3 \end{bmatrix}$ (B) $\begin{bmatrix} -2 & 1 \\ 5 & -3 \end{bmatrix}$ (C) $\begin{bmatrix} 2 & 1 \\ 5 & 3 \end{bmatrix}$ (D) $\begin{bmatrix} -2 & -1 \\ -5 & -3 \end{bmatrix}$

12. What value of b makes the following system consistent?

(A)
$$b = -1$$
 (B) $b = 0$ (C) $b = 1$ (D) $b = 2$

13. If A is a 3×3 diagonal matrix, which of the following matrices is *not* a possible value of A^k for some integer k?

$$(A) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix} (B) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 16 & 0 \\ 4 & 0 & 25 \end{bmatrix} (C) \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & -1 \end{bmatrix} (D) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$14. The matrix \begin{bmatrix} 3 & 0 & 0 \\ 0 & -7 & 0 \\ 0 & 0 & 1 \end{bmatrix} is:$$

$$(A) upper triangular.$$

(B) lower triangular.

(C) both (A) and (B).

(D) neither (A) nor (B).

15. If A is a 4×5 matrix, find the domain and codomain of the transformation $T_A(\mathbf{x}) = A\mathbf{x}$.

- (A) Not enough information
- (B) Domain: R^4 , Codomain: R^5
- (C) Domain: R^5 , Codomain: R^5
- (D) Domain: R^5 , Codomain: R^4

16. Which of the following is a matrix transformation?

- (A) $T(x, y, z) = (yx^2, yz^2)$
- (B) T(x, y, z, w) = (xy, yz, zw, wx)
- (C) T(x, y, z) = (x + 1, x + 2, x + z, y + z)
- (D) T(x,y) = (4x, 5x, -x, 0)

17. Which matrix represents reflection about the xy-plane?

$$(A) \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (B)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 (C)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 (D)
$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

18. Use matrix multiplication to find the image of the vector (2, 1) when it is rotated counterclockwise about the origin through an angle $\theta = 45^{\circ}$.

(A)
$$\left(\frac{\sqrt{2}}{2}, \frac{3\sqrt{2}}{2}\right)$$
 (B) $\left(\frac{3\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$ (C) $\left(-\frac{\sqrt{2}}{2}, \frac{3\sqrt{2}}{2}\right)$ (D) $\left(-\frac{3\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$

19. Which of the following pairs of operators $T_1, T_2 : \mathbb{R}^2 \to \mathbb{R}^2$ commute? (That is, for which pair is it true that $T_1 \circ T_2 = T_2 \circ T_1$?)

- (A) T_1 is the reflection about the x-axis. T_2 is the reflection about line y = x.
- (B) T_1 is the orthogonal projection onto the x-axis. T_2 is the reflection about line y = x.
- (C) T_1 is the counterclockwise rotation about the origin through an angle of π . T_2 is the projection onto the *y*-axis.
- (D) T_1 is the reflection about the *x*-axis. T_2 is the counterclockwise rotation about the origin through an angle of $\pi/2$.

Free Response Questions

1. Find the relationship between a and b such that the following system has infinitely many solutions.

$$-x + 2y = a$$
$$-3x + 6y = b$$

2. Solve the following system and use parametric equations to describe the solution set.

$$x_1 + 2x_2 + 3x_3 = 11$$

$$2x_1 - x_2 + x_3 = 2$$

$$3x_1 + x_2 + 4x_3 = 13$$

3. Determine whether the following system has no solution, exactly one solution, or infinitely many solutions. $2\pi + 2\pi = 2$

$$2x_1 + 2x_2 = 2$$

$$x_1 + x_2 = 4$$
4. Find the value of k that makes the system
$$\begin{bmatrix} 15 & -3 & 6 \\ -10 & k & 9 \end{bmatrix}$$
 inconsistent.

5. Solve the following system using Gaussian elimination.

$$x_1 - x_2 - 5x_3 = -1$$

$$-2x_1 + 2x_2 + 11x_3 = 1$$

$$3x_1 - x_2 + x_3 = 3$$

6. Solve the following system for x, y, and z.

$$\frac{1}{x} - \frac{1}{y} - \frac{1}{z} = 0$$

$$\frac{2}{x} + \frac{1}{y} + \frac{1}{z} = 3$$

$$\frac{3}{x} - \frac{1}{z} = 0$$

7. The curve $y = ax^3 + bx^2 + x + c$ passes through the points (0,0), (1,1), and (-1,-2). Find and solve a system of linear equations to determine the values of a, b, and c.

8. Solve the following system for x and y.

$$x^2 + y^2 = 6$$
$$x^2 - y^2 = 2$$

9. Given $C = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$, find CC^T .

10. Express the following matrix equation as a system of linear equations.

$$\begin{bmatrix} -1 & 7 & 0 \\ 0 & 4 & 3 \\ 6 & 0 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Chapter 1

- 11. Find the 3 × 3 matrix $A = [a_{ij}]$ whose entries satisfy the condition $a_{ij} = i^2 j$.
- **12.** Let A and B be $n \times n$ matrices. Prove that $\operatorname{tr} (c \cdot A B) = c \cdot \operatorname{tr} (A) \operatorname{tr} (B)$.

13. What is the inverse of $\begin{bmatrix} 4 & 0 \\ 9 & 2 \end{bmatrix}$?

14. Given the polynomial $p(x) = x^2 - 3x + 1$ and the matrix $A = \begin{bmatrix} 4 & 4 \\ 6 & 1 \end{bmatrix}$, compute p(A).

15. Let A, B, C, and D be $n \times n$ invertible matrices. Solve for A given that the following equation holds.

$$C^2 D A^{-1} C B^{-1} = B C B^{-1}$$

- **16.** Prove that for any $m \times n$ matrices A and B, $(A B)^T = A^T B^T$.
- 17. Use the inversion algorithm to find the inverse of the following matrix.

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$

18. Which elementary row operation will transform the following matrix into the identity matrix?

1	0	0	0
0	1	0	0
0	0	1	0
0	-9	0	1

19. Find the 3×3 elementary matrix that adds c times row 3 to row 1.

20. Find the elementary matrix E that satisfies

$$E\begin{bmatrix}1 & 4 & 6\\0 & 0 & 1\\2 & 10 & 9\end{bmatrix} = \begin{bmatrix}1 & 4 & 6\\0 & 0 & 1\\0 & 2 & -3\end{bmatrix}$$

21. Solve the following system by inverting the coefficient matrix.

$$7x + 2y = 1$$
$$3x + y = 5$$

Chapter 1

22. Solve the following matrix equation for X.

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{bmatrix} X = \begin{bmatrix} 2 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 3 & 1 & 1 & 1 \end{bmatrix}$$
23. Given that $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$, solve the system $A^2 \mathbf{x} = \mathbf{b}$.

24. Find a nonzero solution to the following equation.

$$\begin{bmatrix} 1 & 3 \\ 4 & -3 \end{bmatrix} \mathbf{x} = 3 \, \mathbf{x}$$

25. Find the values of a, b, and c that make the following matrix symmetric.

$$\begin{bmatrix} 3 & a & 2-b \\ 4 & 0 & a+b \\ 2 & c & 7 \end{bmatrix}$$
26. Let $A = \begin{bmatrix} 3 & 4 & 3 \\ 0 & 0 & 6 \\ 0 & 0 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -7 & 6 \\ -4 & 5 & 0 \\ 1 & 0 & 2 \end{bmatrix}$, and $AB = [c_{ij}]$.

Find the diagonal entries c_{11}, c_{22} , and c_{33} .

27. Let the entries of a matrix $A = [a_{ij}]$ be defined as $a_{ij} = 2i^2 - i + j + g(j)$, where g is a function of j. If A is a symmetric matrix, what is g(j)?

28. Prove that for any square matrix A, the matrix $B = (A + A^T)$ is symmetric.

29. Find the domain and codomain of the transformation defined by

$$\begin{bmatrix} 5 & 7 & 6 & 0 \\ 1 & 0 & -2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

30. Find the standard matrix for the operator $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$3x_1 + x_2 = w_1$$
$$4x_2 = w_2$$

Chapter 1

31. Find the standard matrix for the transformation T defined by the formula

$$T(x_1, x_2, x_3) = (x_1, -x_3, x_2 - x_1, 3x_2 + x_3)$$

32. Find the standard matrix A for the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ for which

$$T\left(\begin{bmatrix}2\\-1\end{bmatrix}\right) = \left(\begin{bmatrix}3\\-4\end{bmatrix}\right), T\left(\begin{bmatrix}-1\\1\end{bmatrix}\right) = \left(\begin{bmatrix}5\\2\end{bmatrix}\right)$$

33. Prove that the composition of two rotation operators about the origin of R^2 is another rotation about the origin.

34. Prove that if $T_A : R^3 \to R^3$ and $T_A(\mathbf{x}) = \mathbf{0}$ for every vector \mathbf{x} in R^3 , then A is the 3×3 zero matrix.

35. Write a balanced equation for the following chemical reaction.

$$C_3H_8 + O_2 \rightarrow H_2O + CO_2$$

36. Find the quadratic polynomial whose graph passes through the points (0, 3), (-1, 8), and (1, 0).

37. Use matrix inversion to find the production vector \mathbf{x} that meets the demand \mathbf{d} for the consumption matrix C.

$$C = \begin{bmatrix} 0.1 & 0.3 & 0.2 \\ 0.5 & 0.1 & 0.2 \\ 0.2 & 0.4 & 0.3 \end{bmatrix}; \mathbf{d} = \begin{bmatrix} 18 \\ 40 \\ 26 \end{bmatrix}$$

Answers

Multiple Choice Answers

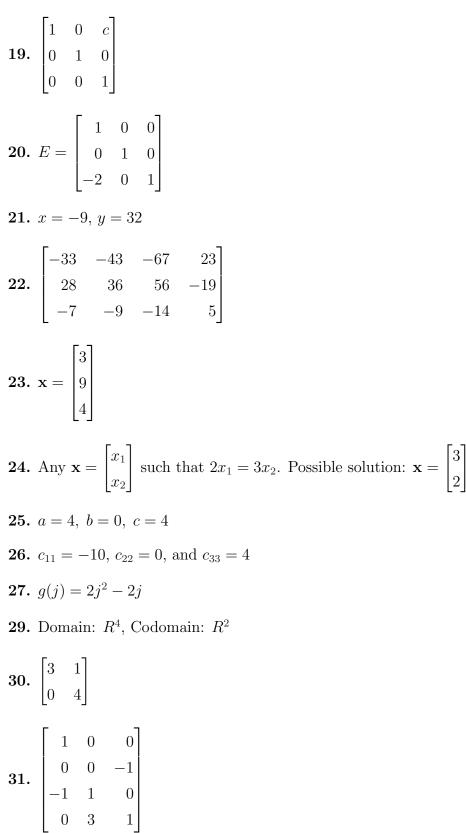
- **1.** (B)
- **2.** (B)
- **3.** (C)
- **4.** (D)
- **5.** (C)
- **6.** (C)
- **7.** (A)
- **8.** (A)
- **9.** (B)
- **10.** (C)
- **11.** (A)
- **12.** (B)
- **13.** (B)
- **14.** (C)
- **15.** (D)
- **16.** (D)
- **17.** (C)
- **18.** (A)
- **19.** (C)

Free Response Answers

1. 3a = b

2. $x_1 = -t + 3$, $x_2 = -t + 4$, $x_3 = t$ 3. no solution **4.** k = 2**5.** $x_1 = 5, x_2 = 11, x_3 = -1$ 6. $x = 1, y = -\frac{1}{2}, z = \frac{1}{3}$ c = 0**7.** System: a + b + c = 0-a + b + c = -1Solution: $a = \frac{1}{2}, b = -\frac{1}{2}, c = 0$ 8. $x = \pm 2, y = \pm \sqrt{2}$ **9.** $CC^T = \begin{bmatrix} 2 & 2 \\ 2 & 4 \end{bmatrix}$ -x + 7y = 0**10.** 4y + 3z = 0 $6x \qquad -2z = 0$ **11.** $A = \begin{bmatrix} 0 & -1 & -2 \\ 3 & 2 & 1 \\ 8 & 7 & 6 \end{bmatrix}$ **13.** $\begin{vmatrix} \frac{1}{4} & 0 \\ -\frac{9}{2} & \frac{1}{2} \end{vmatrix}$ **14.** $\begin{bmatrix} 29 & 8 \\ 12 & 23 \end{bmatrix}$ **15.** $A = B^{-1}C^2D$ **17.** $\begin{bmatrix} 1 & -1 & \frac{1}{4} \\ 0 & \frac{1}{2} & -\frac{1}{4} \\ 0 & 0 & \frac{1}{4} \end{bmatrix}$

18. Add 9 times row 2 to row 4



32.
$$\begin{bmatrix} 8 & 13 \\ -2 & 0 \end{bmatrix}$$

35. $C_3H_8 + 5O_2 \rightarrow 4H_2O + 3CO_2$
36. $3 - 4x + x^2$
37. $\mathbf{x} \approx \begin{bmatrix} 91.85 \\ 125.50 \\ 135.10 \end{bmatrix}$