
1. Let a function f be represented symbolically by $f(x) = 7 - x^2$. Find f(-3). 1. _____ (A) 16 (B) 13 (C) 1 (D) –2 2. Use the graph of f to determine its domain. 2. (A) $\{x | x \ge -1\}$ (B) $\{x \mid -1 \le x < 2\}$ (C) $\{x | x \ge -2\}$ (D) All real numbers 3. Lake Buchanan, one of the Highland lakes located in central Texas, covers 3. _____ 1.12×10^8 square feet and contains a total volume of 4.10×10^9 cubic feet of water. Find the average depth of Lake Buchanan. (A) 3.66 feet (B) 366 feet (C) 3.66×10^{-1} feet (D) 36.6 feet 4. If possible, find the slope of the line passing through (-2.8, 6.3) and (-4.3, 1.5). 4. (B) -3.2 (A) 0.3125 (C) undefined (D) 3.2 5. Determine which set of ordered pairs does not represent a function. 5. (B) $\{(1, 1), (2, 2), (3, 3), (4, 2)\}$ (A) $\{(1,1), (0,2), (1,3), (0,2)\}$ (C) $\{(1, 4), (2, 3), (3, 1), (4, 1)\}$ (D) $\{(1, 1), (2, 0), (3, 1), (4, 0)\}$ 6. The table displays the monthly rainfall for Hilo, Hawaii, for the first six months 6. ____ in a typical year. Find the mean rainfall to the nearest tenth of an inch for these six months.

Month	Jan	Feb	Mar	Apr	May	Jun	
Rainfall (inches)	26.1	19.0	10.8	7.4	15.0	7.2	
(A) 12.9 in.(C) 18.7 in.	(B) 14.3 in.(D) 85.5 in.						

Name _____

7. Use the graph of f to evaluate f(2).

8. Find the domain of $f(x) = \frac{1}{\sqrt{x+3}}$. (A) $\{x | x = -3\}$ (B) $\{x | x \le -3\}$ (C) $\{x | x > -3\}$ (D) $\{x | x \neq -3\}$

9. Find the midpoint of the line segment joining the points (5.3, -6.1) and (-2.8, 1.1).

- (A) (1.25, -2.5)(B) (4.05, -3.6)
- (C) (-0.4, -0.85)(D) (5.7, -195)
- 10. Find the equation of the circle.
 - (A) $(x-2)^2 + (y+1)^2 = 4$ (B) $(x+2)^2 + (y-1)^2 = 16$ (C) $(x+2)^2 + (y-1)^2 = 4$ (D) $(x-2)^2 + (y+1)^2 = 16$
- 11. Find the distance between the points (12.1, 13.5) and (-5.6, -10.1) to the nearest tenth. 11. _____
 - (A) 53.8 (B) 29.5 (D) 9.9
 - (C) 41.3
- 12. Find the domain and range of the relation

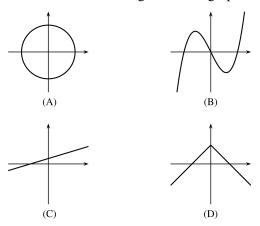
 $S = \{(-5.2, 1.6), (3.5, -2.9), (-4.9, 3.2), (6.5, -1.0), (-2.1, 6.1)\}.$

- (A) $D = \{-5.2, 1.6, 3.5, -2.9, -4.9\}$ (B) $D = \{1.6, -2.9, 3.2, -1.0, 6.1\}$ $R = \{3.2, 6.5, -1.0, -2.1, 6.1\}$ (C) $D = \{-1.5, -6.0, 1.2, 9.4, 1.7\}$ (D) $D = \{-5.2, 3.5, -4.9, 6.5, -2.1\}$
- $R = \{4.9, -1.4, -6.2, 1.2, 4.1\}$
- $R = \{-5.2, 3.5, -4.9, 6.5, -2.1\}$ $R = \{1.6, -2.9, 3.2, -1.0, 6.1\}$
- 2

12.

10. _____

9.


14. _____

13. In 1980 the population of Jun	eau, Alaska was 19,528 and in 2000 it was 30,711.	13
Use the midpoint formula to	estimate Juneau's population in 1990.	
(A) 11,183	(B) 25,120	

- (C) 22,366 (D) 29,292
- 14. The data displayed in the table are linear. State the slope m of the line passing through the data points.

						_
x	-1	0	1	2	3	-
у	-8	-5	-2	1	4	- -
(A)	m = -3				(B)	$m = \frac{1}{3}$
(C)	m = 3				(D)	$m = -\frac{1}{3}$

15. Which of the following is **not** the graph of a function?

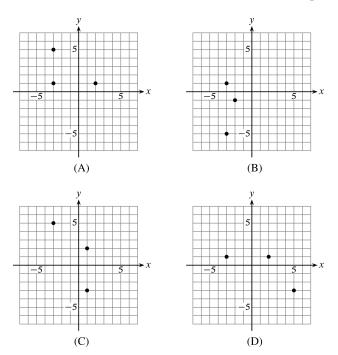
- 16. Write a symbolic representation (formula) of a function *g* that computes the number of dollars in *x* dimes.
 - (A) $g(x) = \frac{x}{10}$ (B) g(x) = 10x

(C)
$$g(x) = \frac{x}{0.10}$$
 (D) $g(x) = \frac{10}{x}$

17. The function *P* defined by

$P(t) = t^2 + 4t + 33$

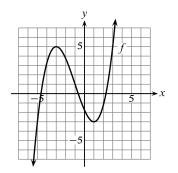
models the number of diagnostic machines produced by a medical equipment manufacturer yearly, where t = 0 corresponds to the first year of production, 1996. Find the average rate of change in the number of machines produced per year between 2000 and 2005.


(A) 85 machines/year(B) 17 machines/year(C) 9 machines/year(D) 4009 machines/year

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.

15. _____

17. _____


18. Plot the relation $\{(-3, 1), (2, 1), (5, -3)\}$ in the *xy*-plane.

19. The table shows the *Pizzazz-Zee* corporation's monthly income for the first 6 months of last year in thousands of dollars. Find its median monthly income for this period to the nearest thousand dollars.

Month	Jan	Feb	Mar	Apr	May	Jun
Income	32	312	92	212	272	188
(A) \$185,0	000			(B) \$	554,000	
(C) \$200,0	000			(D) \$2	280,000	

20. Use the graph to determine the intervals on which f is increasing and where it is decreasing.

- (A) Increasing: $(-\infty, 5] \cup [-3, \infty)$ Decreasing: [-3, 1]
- (B) Increasing $(-\infty, -3] \cup [1, \infty)$ Decreasing: [-3, 1]
- (C) Increasing: $[-3, \infty)$ Decreasing: $[5, -\infty)$
- (D) Increasing: $[1, \infty)$ Decreasing: $[-3, -\infty)$

19. ____

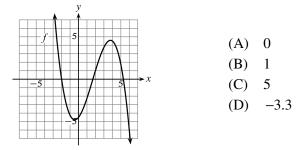
20.

18. _____

Test Page 4

Rockswold *College Algebra* Chapter 1 Test–Form B

6. _____


1. Let a	a function f be represented symbolical	ly by ƒ	$f(x) = 9 - x^2$. Find $f(-5)$.	1
(A)	34	(B)	-16	
(C)	19	(D)	-1	
2. Use	the graph of f to determine its domain	l .		2
		(A)	$\{x \mid -6 \le x \le 5\}$	
	f	(B)	$\{x \mid -3 < x < 6\}$	
	-5	. ,	All real numbers	
	- $ -$. ,	$\{x \mid -2.7 < x < 5.7\}$	
squa	e Mead, formed by the construction of re feet and contains a total volume of the average depth of Lake Mead.			3
(A)	180.5 feet	(B)	1,805 feet	
(C)	1.805×10^{-3} feet	(D)	18.05 feet	
4. If po	ossible, find the slope of the line passing	ng thro	ugh (2.1, -5.3) and (5.6, -10.9).	4
(A)	-1.6	(B)	-0.625	
(C)	undefined	(D)	1.6	
5. Dete	rmine which set of ordered pairs does	not re	present a function.	5
(A)	$\{(1, -2), (2, 0), (3, 0), (4, 4)\}$	(B)	$\{(1, -4), (2, 0), (3, 0), (4, 2)\}$	
(C)	$\{(4,1), (0,2), (0,3), (4,4)\}$	(D)	$\{(1,1), (2,0), (3,0), (4,-4)\}$	
		. ,		

6. The table displays the monthly rainfall for Hilo, Hawaii, for the last six months in a typical year. Find the mean monthly rainfall to the nearest tenth of an inch for these six months.

Month	Jul	Aug	Sep	Oct	Nov	Dec
Rainfall (inches)	7.0	13.7	8.1	6.5	2.9	10.5
(A) 48.7 in.			(B)	7.6 in		
(C) 24.4 in.			(D)	8.1 in		

5

7. Use the graph of f to evaluate f(2).

- 8. Find the domain of $f(x) = \frac{1}{\sqrt{x-5}}$.
 - (A) $\{x | x = 5\}$ (B) $\{x | x \le 5\}$ (C) $\{x | x \ge 5\}$ (D) $\{x | x \ne 5\}$

9. Find the midpoint of the line segment joining the points (-3.1, -6.5) and (6.8, -3.7).

- (A) (-4.95, -1.4) (B) (-4.8, 1.55)
- (C) (1.7, 5.25) (D) (1.85, -5.1)
- 10. Find the equation of the circle.
 - (A) $(x-1)^2 + (y+1)^2 = 25$ (B) $(x+1)^2 + (y-1)^2 = 5$ (C) $(x+1)^2 + (y-1)^2 = 25$ (D) $(x-1)^2 + (y+1)^2 = 5$
- 11. Find the distance between the points (-7.3, -1.47) and (-4.5, 1.47) to the nearest hundredth.
 - (A) 5.74 (B) 16.48
 - (C) 11.80 (D) 4.06
- 12. Find the domain and range of the relation

$$S = \{(1.7, -3.2), (-3.7, -2.3), (-2.5, 3.7), (5.3, 4.1), (2.9, -1.2)\}.$$
(A) $D = \{-3.2, -2.3, 3.7, 4.1, -1.2\}$ (B) $D = \{1.7, -3.7, -2.5, 5.3, 2.9\}$
 $R = \{1.7, -3.7, -2.5, 5.3, 2.9\}$ (B) $D = \{1.7, -3.7, -2.5, 5.3, 2.9\}$
(C) $D = \{1.7, -3.2, -3.7, -2.3, -2.5\}$ (D) $D = \{-1.5, -6.0, 1.2, 9.4, 1.7\}$
 $R = \{3.7, 5.3, 4.1, 2.9, -1.2\}$ (D) $D = \{-1.5, -6.0, 1.2, 9.4, 1.7\}$
 $R = \{4.9, -1.4, -6.2, 1.2, 4.1\}$

6

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.

Test Page 2

7. _____

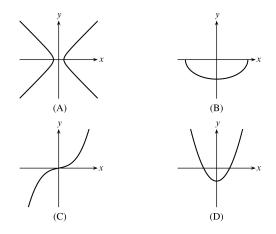
8. _____ 9. _____

10. _____

12. _____

13. _____

14. ____


13. In 1980 the population of Albuquerque, New Mexico was 332,920 and in 2000 it was 448,362. Use the midpoint formula to estimate Albuquerque's population in 1990. (A) 386 353 (B) 351 208

(A)	380,333	(B)	331,298
(C)	115,442	(D)	390,641

14. The data displayed in the table are linear. State the slope *m* of the line passing through the data points.

r	-2	0	2	4	6	-
x	=2	0	Δ	4	0	<u>-</u>
у	4	1	-2	-5	-8	_
(A)	$m = -\frac{3}{2}$				(B)	$m = \frac{2}{3}$
(C)	$m = -\frac{2}{3}$				(D)	$m = \frac{3}{2}$

15. Which of the following is **not** the graph of a function?

- 16. Write a symbolic representation (formula) of a function *g* that computes the number of dimes in x dollars.
 - (B) $g(x) = \frac{x}{10}$ (A) g(x) = 0.10x

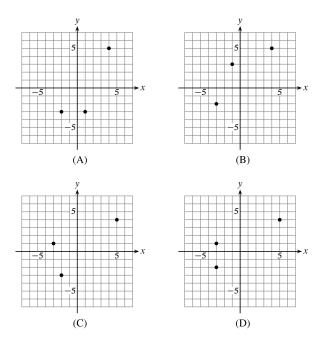
(C)
$$g(x) = 10x$$
 (D) $g(x) = \frac{x}{0.10}$

17. The function *P* defined by

$$P(t) = 2.5t^2 + 0.5t + 12$$

models the number of diagnostic machines produced by a medical equipment manufacturer yearly, where t = 0 corresponds to the first year of production, 1998. Find the average rate of change in the number of machines produced yearly between 2000 and 2005.

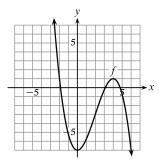
- (A) 23 machines/year (B) 10,013 machines/year
- (C) 115 machines/year
- - (D) 13 machines/year


Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.

15. _____

16. _____

Test Page 4


18. Plot the relation $\{(-3, 1), (-3, -2), (5, 4)\}$ in the *xy*-plane.

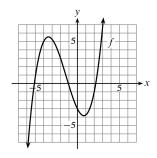
19. The table shows the *Pizzazz-Zee* corporation's income for the first 6 months of last year in thousands of dollars. Find its median monthly income for this period to the nearest thousand dollars.

Month	Jan	Feb	Mar	Apr	May	Jun
Income	193	171	257	329	379	221
(A) \$23 (C) \$20	9,000 8,000			. ,	\$258,000 \$920,000	

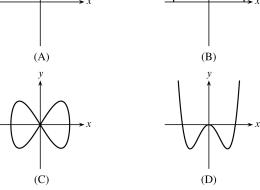
20. Use the graph to determine the intervals on which f is increasing and which it is decreasing.

- (A) Increasing: [-7, 1]Decreasing: $(\infty, -7] \cup [1, -\infty)$
- (B) Increasing: $[-7, \infty)$ Decreasing: $[1, -\infty)$
- (C) Increasing: [0, 4]Decreasing: $[-\infty, 0] \cup [4, \infty)$
- (D) Increasing: $[0, -\infty)$ Decreasing: $[4, \infty)$

18. _____


19. ____

20.


Rockswold *College Algebra* Chapter 1 Test–Form C

1. Let a function f be	represente	d symbo	olically by	f(x) =	$6 - x^2$. Fin	d f(-4).	1.		
2. Use the graph of f t	o determi	ne its do	main.				2.		
	× X								
covers 3.98×10 ⁸ se	B. Lake Roosevelt, formed by the construction of the Grand Coulee Dam, covers 3.98×10^8 square feet and contains a total volume of 2.51×10^{10} cubic feet of water. Find the average depth of Lake Roosevelt to the nearest tenth of a foot.								
4. If possible, find the (0.1, -9.8).	slope of t	he line p	bassing th	rough (-	-1.7, -5.3) and	4.		
 5. Determine which so (A) {(1, 2), (2, 4), (C) {(-1, 1), (-2, -2)} 	(3,0),(4,2	2)}	(B) {(1, -	-8), (2, 2),	, (3, 0), (4, 4)}	5.		
first six months in a	. The table displays the monthly rainfall for Tampa, Florida, for the first six months in a typical year. Find the mean monthly rainfall to the nearest hundredth of an inch for these six months.								
Month	Jan	Feb	Mar	Apr	May	Jun			
Rainfall (inches)	2.2	2.7	2.8	1.8	2.9	5.5			

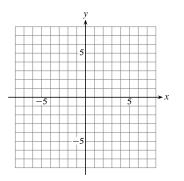
7. Use the graph of f to evaluate f(-2).

8.	Find the domain of $f(x) = \sqrt{9 - x}$.	8.	
9.	Find the midpoint of the line segment joining the points $(4.1, 1.9)$ and $(6.1, -3.5)$.	9.	
10.	Find the equation of the circle.	10.	
	y -5 $A \bullet$ -5 $A \bullet$ -5		
11.	Find the distance between the points $(11.2, -8.9)$ and $(2.7, 11.5)$ to the nearest tenth.	11.	
12.	Find the domain and range of the relation	12.	
	$S = \{(-4.8, -1.2), (1.5, -2.7), (3.2, 5.4), (1.9, 5.1), (2.9, -1.7)\}.$		
13.	In 1980 the population of Austin, Texas was 345,890 and in 2000 it was 659,627. Use the midpoint formula to estimate Austin's population in 1990.	13.	
14.	The data displayed in the table are linear. State the slope m of the line passing through the data points.	14.	
	x -4 -2 0 2 4		
	y -13 -8 -3 2 7		
15.	Which of the following is not the graph of a function?	15.	
	\xrightarrow{y}_{x}		

10

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.

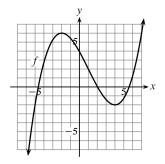
- Test Page 3
- 16. Write a symbolic representation (formula) of a function f that computes the number of ounces in x pounds.
- 17. The function *P* defined by


 $P(t) = 1.5t^2 + 2.5t + 42$

models the number of diagnostic machines produced by a medical equipment manufacturer yearly, where t = 0 corresponds to the first year of production, 1993. Find the average rate of change in the number of machines produced yearly between 1995 and 2000.

18. Plot the relation

$$S = \{(-3, 7), (-1, 3), (-5, -3), (8, -1), (2, 2)\}$$

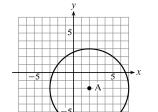

in the *xy*-plane.

19. The table shows the *Pizzazz-Zee* corporation's income for the first 6 months of last year in thousands of dollars. Find its median monthly income for this period to the nearest thousand dollars.

Month	Jan	Feb	Mar	Apr	May	Jun
Income	127	93	173	125	137	149

20. Use the graph to determine the intervals on which f is increasing and on which it is decreasing.

16. _____


17. _____

18. _____

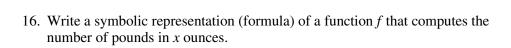
Name _										<i>College Algebra</i> 1 Test–Form D
1. Let	t a function f be re	epresent	ed symbo	olically b	by $f(x) =$	$11 - x^2$. F	ind $f(-5)$		1.	
2. Us	e the graph of f to	determ	ine its do	main.					2.	
	y 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	→ x								
7.7	ke Powell, formed $^{78}\times10^{8}$ square fee ter. Find the avera	t and co	ntains a	total volu	ume of 9	$.84 \times 10^{10}$	cubic fee	t of	3.	
4. If p	possible, find the	slope of	the line j	passing t	hrough (4.2, -1.3)	and (7.4	, 3.5).	4.	
5. De	termine which set	of orde	red pairs	does no	t represe	nt a functi	on.		5.	
(A)			-		-			,1)}		
(C)) $\{(-1,\pi), (-2, \pi)\}$	π), (-3,	π), (-4,	π)} (I	D) $\{(\pi,$	1), $(\pi, 2)$	$,(\pi,3),(\pi,$	$(au, 4)\}$		
in a	e table displays th a typical year. Fin inch for these six	d the m	ean mon						6.	
	Month	Jul	Aug	Sep	Oct	Nov	Dec			
R	ainfall (inches)	6.4	7.6	6.5	2.4	1.6	2.3			
7. Us	e the graph of f to	evaluat	f(-2).						7.	
		→ x								
8. Fin	nd the domain of <i>f</i>	$f(x) = \sqrt{x}$	3+x.						8.	
	nd the midpoint of d (4.6, 2.1).	the line	segmen	t joining	the point	rs (–1.3, 5.	7)		9.	

10. Find the equation of the circle.

(A)

(C)

- 11. Find the distance between the points (1.81. 8.13) and (-5.11, 2.94) to the nearest hundredth.
- 12. Find the domain and range of the relation


$$S = \{(4.8, 2.1), (5.2, 1.9), (-1.7, -4.3), (2.2, -3.9), (-4.9, -1.1)\}.$$

Rockswold College Algebra

- 13. In 1980 the population of Portland, Oregon was 368,148 and in 2000 it was 529,209. Use the midpoint formula to estimate Portland's population in 1990.
- 14. The data displayed in the table are linear. State the slope m of the line passing through the data points.

x	-9	-5	-1	3	7
у	3	2	1	0	-1

15. Which of the following is **not** the graph of a function?

(D)

(B)

16. _____

13

Test Page 2

10.

11.	 	
12.	 	

14.

13.

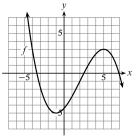
Rockswold College Algebra

17. The function *P* defined by

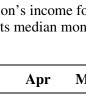
 $P(t) = 0.5t^2 + 3.5t + 25$

models the number of diagnostic machines produced by a medical equipment manufacturer yearly, where t = 0 corresponds to the first year of production, 1997. Find the average rate of change in the number of machines produced per year between 2000 and 2005.

18. Plot the relation


$$S = \{(-4, 1), (2.5), (-1, 1), (3, 6), (4, -1)\}$$

in the *xy*-plane.


- 19. The table shows the *Pizzazz-Zee* corporation's income for the first 6 months of last year in thousands of dollars. Find its median monthly income for this period to the nearest thousand dollars.

Month	Jan	Feb	Mar	Apr	May	Jun
Income	231	113	387	217	285	309

20. Use the graph to determine the intervals on which f is increasing and on which it is decreasing.

14

17. _____

19. _____

20. _____

Test Page 3

Form A	Form B	Form C	Form D
1. D	1. B	1. –10	1. –14
2. C	2. B	2. $\{x -5 < x < 5\}$	2. $\{x \mid -4 \le x \le 1\}$
3. D	3. A	3. 63.1 feet	3. 126.5 feet
4. D	4. A	42.5	4. 1.5
5. A	5. C	5. C	5. D
6. B	6. D	6. 2.98 in	6. 4.47 in.
7. A	7. B	7.3	7.0
8. C	8. C	8. $\{x \mid x \le 9\}$	8. $\{x \mid x \ge -3\}$
9. A	9. D	9. (5.1, -0.8)	9. (1.65, 3.9)
10. B	10. A	10. $(x + 1)^2 + (y + 3)^2 = 9$	10. $(x-2)^2 + (y+2)^2 = 25$
11. B	11. D	• • • • • • • • • • • • • • • • • • •	
12. D	12. B	11. 22.1	11. 8.65
13. B	13. D	12. $D = \{-4.8, 1.5, 3.2, 1.9, 2.9\}$	12. $D = \{4.8, 5.2, -1.7, 2.2, -4.9\}$
14. C	14. A	$\mathbf{R} = \{-1.2, -2.7, 5.4, 5.1, -1.7\}$	$R = \{2.1, 1.9, -4.3, -3.9, -1.1\}$
15. A	15. A	13. 502,759	13. 448,679
16. A	16. C	14. $m = \frac{5}{2}$	14. $m = -\frac{1}{4}$
17. B	17. A	2	
18. D	18. D	15. C	
19. C	19. A	16. $f(x) = 16x$	$16. f(x) = \frac{x}{16}$
20. B	20. C	17. 16 machines/year	17. 9 machines/year
			18. <i>y</i>

Test 1 Solutions

19. \$132,000

20. Increasing: $(-\infty, -2] \cup [4, \infty)$ Decreasing: [-2, 4] \$258,000
 Increasing: [-1, 5]

Decreasing: $(-\infty, -1] \cup [5, \infty)$

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.