Chapter 1: MEASUREMENT

- 1. The SI standard of time is based on:
 - A. the daily rotation of the earth
 - B. the frequency of light emitted by \mathbb{R}^{86}
 - C. the yearly revolution of the earth about the sun
 - D. a precision pendulum clock
 - E. none of these

Ans: E

- 2. A nanosecond is:
 - A. 10^9 s
 - B. 10^{-9} s
 - C. 10^{-10} s
 - D. 10^{-10} s
 - E. 10^{-12} s

Ans: B

- 3. The SI standard of length is based on:
 - A. the distance from the north pole to the equator along a meridian passing through Paris
 - B. wavelength of light emitted by Hg¹⁹⁸
 - C. wavelength of light emitted by Kr⁸⁶
 - D. a precision meter stick in Paris
 - E. the speed of light

Ans: E

- 4. In 1866, the U. S. Congress defined the U. S. yard as exactly 3600/3937 international meter. This was done primarily because:
 - A. length can be measured more accurately in meters than in yards
 - B. the meter is more stable than the yard
 - C. this definition relates the common U. S. length units to a more widely used system
 - D. there are more wavelengths in a yard than in a meter
 - E. the members of this Congress were exceptionally intelligent

Ans: C

- 5. Which of the following is closest to a yard in length?
 - A. 0.01 m
 - B. 0.1 m
 - C. 1 m
 - D. 100 m
 - E. 1000 m

Ans: C

6. There is no SI base unit for area because:

- A. an area has no thickness; hence no physical standard can be built
- B. we live in a three (not a two) dimensional world
- C. it is impossible to express square feet in terms of meters
- D. area can be expressed in terms of square meters
- E. area is not an important physical quantity

Ans: D

7. The SI base unit for mass is:

- A. gram
- B. pound
- C. kilogram
- D. ounce
- E. kilopound

Ans: C

8. A gram is:

- A. 10^{-6} kg
- B. 10^{-3} kg
- C. 1 kg
- D. 10^{3} kg
- $E. 10^6 \text{ kg}$

Ans: B

9. Which of the following weighs about a pound?

- A. 0.05 kg
- B. 0.5 kg
- C. 5 kg
- D. 50 kg
- E. 500 kg

Ans: B

10.
$$5.0 \times 10^4 \times 3.0 \times 10^6 =$$

- A. 1.5×10^9
- B. 1.5×10^{10}
- C. 1.5×10^{11}
- $D.~~1.5\times10^{12}$
- E. 1.5×10^{13}

Ans: C

11. $5.0 \times 10^4 \times 3.0 \times 10^{-6} =$

- A. 1.5×10^{-3}
- B. 1.5×10^{-1}
- C. 1.5×10^{1}
- D. 1.5×10^3
- E. 1.5×10^5

Ans: B

- 12. $5.0 \times 10^5 + 3.0 \times 10^6 =$
 - A. 8.0×10^5
 - B. 8.0×10^6
 - C. 5.3×10^5
 - D. 3.5×10^5
 - E. 3.5×10^6
 - Ans: E
- 13. $7.0 \times 10^6 / 2.0 \times 10^{-6} =$
 - A. 3.5×10^{-12}
 - B. 3.5×10^{-6}
 - C. 3.5
 - D. 3.5×10^{6}
 - E. 3.5×10^{12}
 - Ans: E
- 14. The number of significant figures in 0.00150 is:
 - A. 2
 - B. 3
 - C. 4
 - D. 5
 - E. 6
 - Ans: B
- 15. The number of significant figures in 15.0 is:
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - E. 5
 - Ans: C
- 16. $3.2 \times 2.7 =$
 - A. 9
 - B. 8
 - C. 8.6
 - D. 8.64
 - E. 8.640
 - Ans: C
- 17. 1.513 + 27.3 =
 - A. 29
 - B. 28.8
 - C. 28.9
 - D. 28.81
 - E. 28.813
 - Ans: B

- 18. 1 mi is equivalent to 1609 m so 55 mph is:
 - A. 15 m/s
 - B. 25 m/s
 - C.~66~m/s
 - D. 88 m/s
 - E. 1500 m/s
 - Ans: B
- 19. The order of magnitude of the number 0.0649 is:
 - A. -2
 - B. 6×10^{-2}
 - C. 10^{-2}
 - D. 10^{-1}
 - E. 0.06
 - Ans: D
- 20. A marble has a radius of 2 mm. The order of magnitude of the number of these marbles that can be placed in a jar with a radius of 3 cm and a height of 10 cm is:
 - A. 10
 - B. 10^2
 - C. 10^4
 - D. 10^6
 - E. 19^8
 - Ans: C
- 21. A sphere with a radius of 1.7 cm has a volume of:
 - A. $2.1 \times 10^{-5} \text{ m}^3$
 - B. $9.1 \times 10^{-4} \text{ m}^3$
 - C. $3.6 \times 10^{-3} \text{ m}^3$
 - D. 0.11 m^3
 - $E. 21 \text{ m}^3$
 - Ans: A
- 22. A sphere with a radius of 1.7 cm has a surface area of:
 - A. $2.1 \times 10^{-5} \text{ m}^2$
 - B. $9.1 \times 10^{-4} \text{ m}^2$
 - $C.~~3.6\times10^{-3}~m^2$
 - D. 0.11 m^2
 - $E. 36 m^2$
 - Ans: C

- 23. A right circular cylinder with a radius of 2.3 cm and a height of 1.4 m has a volume of:
 - A. 0.20 m^3
 - B. 0.14 m^3
 - C. $9.3 \times 10^{-3} \text{ m}^3$
 - $D.~~2.3\times10^{-3}~m^3$
 - E. $7.4 \times 10^{-4} \text{ m}^3$
 - Ans: D
- 24. A right circular cylinder with a radius of 2.3 cm and a height of 1.4 cm has a total surface area of:
 - A. $1.7 \times 10^{-3} \text{ m}^2$
 - B. $3.2 \times 10^{-3} \text{ m}^2$
 - $C.~~2.0\times10^{-3}~m^3$
 - D. $5.3 \times 10^{-3} \text{ m}^2$
 - E. $7.4 \times 10^{-3} \text{ m}^2$
 - Ans: D
- 25. A cubic box with an edge of exactly 1 cm has a volume of:
 - A. 10^{-9} m^3
 - B. 10^{-6} m^3
 - $C. 10^{-3} m^3$
 - D. 10^3 m^3
 - E. 10^6 m^3
 - Ans: B
- 26. A square with an edge of exactly 1 cm has an area of:
 - A. 10^{-6} m^2
 - B. 10^{-4} m^2
 - $C. \quad 10^2 \ \mathrm{m}^2$
 - D. 10^4 m^2
 - E. 10^6 m^2
 - Ans: B
- 27. 1 m is equivalent to 3.281 ft. A cube with an edge of 1.5 ft has a volume of:
 - A. $1.2 \times 10^2 \text{ m}^3$
 - B. $9.6 \times 10^{-2} \text{ m}^3$
 - C. 10.5 m^3
 - $D.~~9.5\times10^{-2}~m^3$
 - E. 0.21 m^3
 - Ans: B

- 28. During a short time interval the speed v in m/s of an automobile is given by $v = at^2 + bt^3$, where the time t is in seconds. The units of a and b are respectively:
 - A. $m \cdot s^2$; $m \cdot s^4$
 - B. s^3/m ; s^4/m
 - C. m/s^2 ; m/s^3

 - D. m/s³; m/s⁴ E. m/s⁴; m/s⁵
 - Ans: D
- 29. If A = BC, where A has the dimension length/mass and C has the dimension length/time, then B has the dimension:
 - A. time/mass
 - B. length²/time·mass
 - C. time mass/length²
 - D. length²·time/mass
 - E. mass/length²·time
 - Ans: A
- 30. Suppose $A = B^n C^m$, where A has dimensions length-time, B has dimensions length²-time⁻¹, and C has dimensions length time². Then the exponents n and m have the values:
 - A. 2/3; 1/3
 - B. 2; 3
 - C. 4/5; -1/5
 - D. 1/5; 3/5
 - E. 1/2; 1/2
 - Ans: D