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CHAPTER 1 
 
FIRST-ORDER DIFFERENTIAL EQUATIONS 
 
 
SECTION 1.1 
 
DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS 
 
The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of 
differential equations, and to show the student what is meant by a solution of a differential 
equation.  Also, the use of differential equations in the mathematical modeling of real-world 
phenomena is outlined. 
 
 
Problems 1–12 are routine verifications by direct substitution of the suggested solutions into the 
given differential equations.  We include here just some typical examples of such verifications. 
 
 
3. If  1 2cos2 and sin 2y x y x= = ,  then  1 22sin 2 and 2cos 2y x y x′ ′= − =  so 
 

1 14cos2 4y x y′′ = − = −      and     2 24sin 2 4 .y x y′′ = − = −  
 
 Thus  1 14 0y y′′+ =  and  2 24 0.y y′′ + =  
 
4. If  3 3

1 2andx xy e y e−= = ,  then  3 3
1 23 and 3x xy e y e−= = −   so 

 
3

1 19 9xy e y′′ = =      and     3
2 29 9 .xy e y−′′ = =  

 
5. If  x xy e e−= − ,  then  x xy e e−′ = +  so  ( ) ( ) 2 .x x x x xy y e e e e e− − −′ − = + − − =   Thus 

 2 .xy y e−′ = +  
 
6. If  2 2

1 2andx xy e y x e− −= = ,  then  2 2 2 2
1 1 22 , 4 , 2 ,x x x xy e y e y e x e− − − −′ ′′ ′= − = = −  and  

2 2
2 4 4 .x xy e x e− −′′ = − +   Hence 

 
   ( ) ( ) ( )2 2 2

1 1 14 4 4 4 2 4 0x x xy y y e e e− − −′′ ′+ + = + − + =  
 and 
  ( ) ( ) ( )2 2 2 2 2

2 2 24 4 4 4 4 2 4 0.x x x x xy y y e x e e x e x e− − − − −′′ ′+ + = − + + − + =  
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8. If  1 2cos cos2 and sin cos2 ,y x x y x x= − = −   then  1 sin 2sin 2 ,y x x′ = − +   

1 cos 4cos2 ,y x x′′ = − +  and  2 2cos 2sin 2 , sin 4cos2 .y x x y x x′ ′′= + = − +   Hence 
 
  ( ) ( )1 1 cos 4cos2 cos cos2 3cos2y y x x x x x′′+ = − + + − =  
 and 
  ( ) ( )2 2 sin 4cos2 sin cos2 3cos2 .y y x x x x x′′ + = − + + − =  
 
 
11. If  2

1y y x−= =   then  3 42 and 6 ,y x y x− −′ ′′= − =   so 
 
  ( ) ( ) ( )2 2 4 3 25 4 6 5 2 4 0.x y x y y x x x x x− − −′′ ′+ + = + − + =  
 
 If  2

2 lny y x x−= =   then  3 3 4 42 ln and 5 6 ln ,y x x x y x x x− − − −′ ′′= − = − +   so 
 

  
( ) ( ) ( )

( ) ( )
2 2 4 4 3 3 2

2 2 2 2 2

5 4 5 6 ln 5 2 ln 4 ln

5 5 6 10 4 ln 0.

x y x y y x x x x x x x x x x

x x x x x x

− − − − −

− − − − −

′′ ′+ + = − + + − +

= − + + − + =
 

  
 
13. Substitution of  rxy e=   into  3 2y y′ =  gives the equation  3 2rx rxr e e=  that simplifies 

to  3 2.r =   Thus  r = 2/3. 
 
 
14. Substitution of  rxy e=   into  4 y y′′ =  gives the equation  24 rx rxr e e=  that simplifies to  

24 1.r =   Thus  1/ 2.r = ±  
 
 
15. Substitution of  rxy e=   into  2 0y y y′′ ′+ − =  gives the equation  2 2 0rx rx rxr e r e e+ − =  

that simplifies to  2 2 ( 2)( 1) 0.r r r r+ − = + − =   Thus  r = –2  or  r = 1. 
 
 
16. Substitution of  rxy e=   into  3 3 4 0y y y′′ ′+ − =  gives the equation  

23 3 4 0rx rx rxr e r e e+ − =  that simplifies to  23 3 4 0.r r+ − =   The quadratic formula then 

gives the solutions  ( )3 57 / 6.r = − ±  

 
 
The verifications of the suggested solutions in Problems 17–26 are similar to those in Problems 
1–12.  We illustrate the determination of the value of  C  only in some typical cases.  However, 
we illustrate typical solution curves for each of these problems. 
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17. C  =  2 18. C  =  3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19. If  ( ) 1xy x C e= −  then  y(0) = 5  gives  C – 1  =  5,  so   C  =  6.  The figure is on the 
 left below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20. If  ( ) 1xy x C e x−= + −  then  y(0) = 10  gives  C – 1  =  10,  so   C  =  11.  The figure is 
 on the right above. 
 
21. C  =  7.  The figure is on the left at the top of the next page. 
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22. If  ( ) ln( )y x x C= +  then  y(0) = 0  gives  ln C  =  0,  so   C  =  1. The figure is on the 
 right above. 
 
 
23. If  5 21

4( )y x x C x−= +  then  y(2) = 1  gives  the equation  1 1
4 832 1C⋅ + ⋅ =   with 

solution  C = –56.  The figure is on the left below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24. C  =  17.  The figure is on the right above. 
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25. If  2( ) tan( )y x x C= +  then  y(0) = 1  gives  the equation  tan C  =  1.  Hence one value 
of  C  is  / 4C π=  (as is this value plus any integral multiple of  π). 

 

−2 −1 0 1 2
−4

−2

0

2

4

x

y

(0,1)

 
 
 
26. Substitution of  x = π   and  y = 0  into  ( )cosy x C x= +  yields the equation  

0 ( )( 1),Cπ= + −  so  .C π= −  
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27. y x y′ = +  
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28. The slope of the line through  ( , ) and ( / 2,0)x y x   is  ( 0) /( / 2) 2 / ,y y x x y x′ = − − =   
so the differential equation is  2 .x y y′ =  

 
29. If  m y′=  is the slope of the tangent line and  m′  is the slope of the normal line at  

( , ),x y  then the relation  1m m′ = −  yields  1/ ( 1) /( 0).m y y x′ ′= = − −   Solution for  
y′   then gives the differential equation  (1 ) .y y x′− =  

 
30. Here  2and ( ) 2 ,xm y m D x k x′ ′= = + =  so the orthogonality relation 1m m′ = −  gives 

the differential equation  2 1.x y′ = −  
 
31. The slope of the line through  ( , ) and ( , )x y y x−   is  ( ) /( ),y x y y x′ = − − −   so the 

differential equation is  ( ) .x y y y x′+ = −  
 
 
In Problems 32–36 we get the desired differential equation when we replace the "time rate of 
change" of the dependent variable with its derivative, the word "is" with the = sign, the phrase 
"proportional to" with  k,  and finally translate the remainder of the given sentence into symbols. 
 
32. /dP dt k P=     
 
33. 2/dv dt k v=      
 
34. / (250 )dv dt k v= −  
 
35. / ( )dN dt k P N= −     
 
36. / ( )dN dt k N P N= −  
 
37. The second derivative of any linear function is zero, so we spot the two solutions 
 ( ) 1 or ( )y x y x x≡ = of the differential equation  0.y′′ =    
 
38. A function whose derivative equals itself, and hence a solution of the differential 
 equation  y y′ =  is ( ) .xy x e=  
 
39. We reason that if  2 ,y kx=  then each term in the differential equation is a multiple of 2.x  
 The choice  1k =   balances the equation, and provides the solution 2( ) .y x x=   
   
40. If  y  is a constant, then  0y′ ≡  so the differential equation reduces to  2 1.y =  This gives 
 the two constant-valued solutions  ( ) 1 and ( ) 1.y x y x≡ ≡ −  
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41. We reason that if  ,xy ke=  then each term in the differential equation is a multiple of .xe  
 The choice  1

2k =   balances the equation, and provides the solution 1
2( ) .xy x e=   

   
42. Two functions, each equaling the negative of  its own second derivative, are the two 
 solutions  ( ) cosy x x=  and  ( ) siny x x=   of the differential equation  .y y′′ = −  
 
43. (a) We need only substitute  ( ) 1/( )x t C kt= −   in both sides of the differential 
 equation  2x kx′ =  for a routine verification. 
 
 (b) The zero-valued function  ( ) 0x t ≡  obviously satisfies the initial value problem 
 2, (0) 0.x kx x′ = =  
 
44. (a) The figure on the left below shows typical graphs of solutions of the differential 
 equation  21

2 .x x′ =  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (b) The figure on the right above shows typical graphs of solutions of the differential 
 equation  21

2 .x x′ = −   We see that — whereas the graphs with  1
2k =  appear to "diverge 

 to infinity" — each solution with  1
2k = −  appears to approach 0 as  .t → ∞   Indeed, we 

 see from the Problem 43(a) solution  1
2( ) 1/( )x t C t= −  that  ( )x t → ∞  as  2 .t C→   

 However, with  1
2k = −  it is clear from the resulting solution  1

2( ) 1/( )x t C t= +   that  
 ( )x t  remains  bounded on any finite interval, but ( ) 0x t →   as  .t → +∞  
 
45. Substitution of  1 and 10P P′ = =  into the differential equation  2P kP′ =  gives  1

100 ,k =  
 so Problem 43(a) yields a solution of the form  ( ) 1/( /100).P t C t= −   The initial 
 condition  (0) 2P =  now yields  1

2 ,C =  so we get the solution 
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      1 100( ) .1 50
2 100

P t t t
= =

−−
 

 
 We now find readily that  100 when 49,P t= =   and that  1000 when 49.9.P t= =  
 It appears that  P  grows without bound (and thus "explodes") as  t  approaches 50. 
 
46. Substitution of  1 and 5v v′ = − =  into the differential equation  2v kv′ =   gives  
 1

25 ,k = − so Problem 43(a) yields a solution of the form  ( ) 1/( / 25).v t C t= +   The initial 
 condition (0) 10v =  now yields  1

10 ,C =  so we get the solution 
 

      1 50( ) .1 5 2
10 25

v t t t
= =

++
 

 
 We now find readily that  1 when 22.5,v t= =   and that  0.1 when 247.5.v t= =  
 It appears that  v  approaches 0 as  t  increases without bound.  Thus the boat gradually 
 slows, but never comes to a "full stop" in a finite period of time. 
 
47. (a) (10) 10 yields 10 1/( 10), so 101/10.y C C= = − =  
 

(b) There is no such value of  C,  but the constant function  ( ) 0y x ≡  satisfies the 
conditions  2 and (0) 0.y y y′ = =  
 
(c) It is obvious visually (in Fig. 1.1.8 of the text) that one and only one solution 
curve passes through each point  ( , )a b  of the xy-plane, so it follows that there exists a 
unique solution to the initial value problem  2, ( ) .y y y a b′ = =  

 
48. (b) Obviously the functions  4 4( ) and ( )u x x v x x= − = +  both satisfy the differential 

equation  4 .xy y′ =   But their derivatives  3 3( ) 4 and ( ) 4u x x v x x′ ′= − = +  match at   
 x  =  0,  where both are zero.  Hence the given piecewise-defined function  ( )y x  is 

differentiable, and therefore satisfies the differential equation because  ( ) and ( )u x v x  
do so (for  0 and 0,x x≤ ≥  respectively). 

 
 (c) If  a ≥ 0  (for instance), choose  C+  fixed so that  4 .C a b+ =   Then the function 
 

     
4

4

if 0,
( )

if 0
C x x

y x
C x x

−

+

 ≤
=  ≥

 

 
 satisfies the given differential equation for every real number value of   .C−  
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SECTION 1.2 
 
INTEGRALS AS GENERAL AND PARTICULAR SOLUTIONS 
 
This section introduces general solutions and particular solutions in the very simplest situation 
— a differential equation of the form  ( )y f x′= — where only direct integration and evaluation 
of the constant of integration are involved.  Students should review carefully the elementary 
concepts of velocity and acceleration, as well as the fps and mks unit systems. 
 
1. Integration of  2 1y x′ = +   yields  2( ) (2 1) .y x x dx x x C= + = + +∫   Then substitution 

of  0, 3x y= =  gives  3  =  0 + 0 + C  =  C,  so  2( ) 3.y x x x= + +  
 
2. Integration of  2( 2)y x′ = −   yields  2 31

3( ) ( 2) ( 2) .y x x dx x C= − = − +∫   Then 

substitution of  2, 1x y= =  gives  1  =  0 + C  =  C,  so  31
3( ) ( 2) 1.y x x= − +  

 
3. Integration of  y x′ =   yields  3/ 22

3( ) .y x x dx x C= = +∫   Then substitution of  

4, 0x y= =  gives  16
30 ,C= +   so  3/ 22

3( ) ( 8).y x x= −  
 
4. Integration of  2y x−′ =   yields  2( ) 1/ .y x x dx x C−= = − +∫   Then substitution of  

1, 5x y= =  gives  5 1 ,C= − +   so  ( ) 1/ 6.y x x= − +  
 
5. Integration of  1/ 2( 2)y x −′ = +   yields  1/ 2( ) ( 2) 2 2 .y x x dx x C−= + = + +∫   Then 

substitution of  2, 1x y= = −  gives  1 2 2 ,C− = ⋅ +   so  ( ) 2 2 5.y x x= + −  
 
6. Integration of  2 1/ 2( 9)y x x′ = +   yields  2 1/ 2 2 3/ 21

3( ) ( 9) ( 9) .y x x x dx x C= + = + +∫   

Then substitution of  4, 0x y= − =  gives  31
30 (5) ,C= +   so  

2 3/ 21
3( ) ( 9) 125 .y x x = + −   

 
7. Integration of  210 /( 1)y x′ = +   yields  2 1( ) 10 /( 1) 10 tan .y x x dx x C−= + = +∫   Then 

substitution of  0, 0x y= =  gives  0 10 0 ,C= ⋅ +   so  1( ) 10 tan .y x x−=  
 
8. Integration of  cos2y x′ =   yields  1

2( ) cos2 sin 2 .y x x dx x C= = +∫   Then substitution 

of  0, 1x y= =  gives  1 0 ,C= +   so  1
2( ) sin 2 1.y x x= +  

 
9. Integration of  21/ 1y x′ = −   yields  2 1( ) 1/ 1 sin .y x x dx x C−= − = +∫   Then 

substitution of  0, 0x y= =  gives  0 0 ,C= +   so  1( ) sin .y x x−=  
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10. Integration of  xy x e−′ =   yields   
 

( ) ( 1) ( 1)x u u xy x x e dx u e du u e x e C− −= = = − = − + +∫ ∫    

 
(when we substitute  u x= −  and apply Formula #46 inside the back cover of the 
textbook).  Then substitution of  0, 1x y= =  gives  1 1 ,C= − +   so  

( ) ( 1) 2.xy x x e−= − + +  
 
11. If  ( ) 50a t =  then  0( ) 50 50 50 10.v t dt t v t= = + = +∫   Hence 

 
  2 2

0( ) (50 10) 25 10 25 10 20.x t t dt t t x t t= + = + + = + +∫  

 
12. If  ( ) 20a t = −  then  0( ) ( 20) 20 20 15.v t dt t v t= − = − + = − −∫   Hence 

 
  2 2

0( ) ( 20 15) 10 15 10 15 5.x t t dt t t x t t= − − = − − + = − − +∫  

 
13. If  ( ) 3a t t=  then  2 23 3

02 2( ) 3 5.v t t dt t v t= = + = +∫   Hence 

 
  2 3 33 1 1

02 2 2( ) ( 5) 5 5 .x t t dt t t x t t= + = + + = +∫  

 
14. If  ( ) 2 1a t t= +  then  2 2

0( ) (2 1) 7.v t t dt t t v t t= + = + + = + −∫   Hence 

 
  2 3 31 1 1 1

03 2 3 2( ) ( 7) 7 7 4.x t t t dt t t t x t t t= + − = + − + = + − +∫  

 
15. If  2( ) 4( 3) .a t t= +  then  2 3 34 4

3 3( ) 4( 3) ( 3) ( 3) 37v t t dt t C t= + = + + = + −∫  (taking  

C = –37  so that  v(0) = –1).  Hence 
 
  3 4 44 1 1

3 3 3( ) ( 3) 37 ( 3) 37 ( 3) 37 26.x t t dt t t C t t = + − = + − + = + − − ∫  

 
16. If  ( ) 1/ 4a t t= +  then  ( ) 1/ 4 2 4 2 4 5v t t dt t C t= + = + + = + −∫   (taking   

C = –5  so that  v(0) = –1).  Hence 
 
  3/ 2 3/ 2 294 4

3 3 3( ) (2 4 5) ( 4) 5 ( 4) 5x t t dt t t C t t= + − = + − + = + − −∫  

 
 (taking  29 / 3C = −  so that  (0) 1x = ). 
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17. If  3( ) ( 1)a t t −= +  then  3 2 21 1 1
2 2 2( ) ( 1) ( 1) ( 1)v t t dt t C t− − −= + = − + + = − + +∫   

 (taking  1
2C =   so that  v(0) = 0).  Hence 

 
  2 1 11 1 1 1 1

2 2 2 2 2( ) ( 1) ( 1) ( 1) 1x t t dt t t C t t− − −   = − + + = + + + = + + −   ∫  

 
 (taking  1

2C = −  so that  (0) 0x = ). 
 
 
18. If  ( ) 50sin5a t t=  then  ( ) 50sin5 10cos5 10cos5v t t dt t C t= = − + = −∫   (taking   

0C =   so that  v(0) = –10).  Hence 
 
  ( ) ( 10cos5 ) 2sin5 2sin5 10x t t dt t C t= − = − + = − +∫  

 
 (taking  10C = −  so that  (0) 8x = ). 
 
 
19. Note that  ( ) 5v t =  for  0 5t≤ ≤  and that ( ) 10v t t= −  for  5 10.t≤ ≤   Hence   
 1( ) 5x t t C= + for  0 5t≤ ≤  and  21

22( ) 10x t t t C= − +  for  5 10.t≤ ≤  Now  1 0C =  
 because  (0) 0,x =  and continuity of  ( )x t  requires that  ( ) 5x t t=   and  
 21

22( ) 10x t t t C= − + agree when  5.t =   This implies that  25
2 2 ,C = −  and we get the 

 following graph. 
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20. Note that  ( )v t t=  for  0 5t≤ ≤  and that ( ) 5v t =  for  5 10.t≤ ≤   Hence   21
12( )x t t C= +  

 for  0 5t≤ ≤  and  2( ) 5x t t C= +  for  5 10.t≤ ≤  Now  1 0C =  because  (0) 0,x =  and 
 continuity of  ( )x t  requires that  21

2( )x t t=   and  2( ) 5x t t C= +  agree when  5.t =   
 This implies that  25

2 2 ,C = −  and we get the graph on the left below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21. Note that  ( )v t t=  for  0 5t≤ ≤  and that ( ) 10v t t= −  for  5 10.t≤ ≤   Hence   
 21

12( )x t t C= +  for  0 5t≤ ≤  and  21
22( ) 10x t t t C= − +  for  5 10.t≤ ≤  Now  1 0C =  

 because  (0) 0,x =  and continuity of  ( )x t  requires that  21
2( )x t t=   and  

 21
22( ) 10x t t t C= − + agree when  5.t =   This implies that  2 25,C = −  and we get the 

 graph on the right above. 
 
 
22. For 0 3 :t≤ ≤   5

3( )v t t=   so  25
16( ) .x t t C= +   Now  1 0C =   because  (0) 0,x =  so  

 25
6( )x t t=   on this first interval, and its right endpoint value is  1

2(3) 7 .x =  
 
 For 3 7 :t≤ ≤   ( ) 5v t =   so  2( ) 5 .x t t C= +   Now  1

2(3) 7x =  implies that  1
2 27 ,C = −    

 so  1
2( ) 5 7x t t= −   on this second interval, where its right endpoint value is  1

2(7) 27 .x =  
 
 For 7 10 :t≤ ≤   5

35 ( 7),v t− = − −   so  5 50
3 3( ) .v t t= − +   Hence  25 50

36 3( ) ,x t t t C= − + +  
 and  1

2(7) 27x =  implies that  290
3 6 .C = −   Finally,  21

6( ) ( 5 100 290)x t t t= − + −   on this 
 third interval, and we get the graph at the top of the next page. 
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23. v  =  –9.8t + 49,  so the ball reaches its maximum height  (v = 0) after  t = 5 seconds.  Its 
 maximum height then is  y(5) = –4.9(5)2 + 49(5) = 122.5 meters. 
 
24. v  =  –32t  and   y  =  –16t2 + 400,  so the ball hits the ground  (y  =  0)  when   
 t  =  5 sec,  and then  v  =  –32(5)  = –160 ft/sec. 
  
25. a  =  –10 m/s2  and  v0  =  100 km/h  ≈  27.78 m/s,  so  v  =  –10t + 27.78,  and hence 

x(t)  =  –5t2 + 27.78t.  The car stops when  v  =  0,  t  ≈  2.78,  and thus the distance 
traveled before stopping is  x(2.78)  ≈  38.59  meters. 

 
26. v  =  –9.8t + 100  and  y  =  –4.9t2 + 100t + 20. 
 
 (a) v  =  0  when  t = 100/9.8  so the projectile's maximum height is 
 y(100/9.8)  =  –4.9(100/9.8)2 + 100(100/9.8) + 20  ≈  530 meters. 
 
 (b) It passes the top of the building when  y(t)  =  –4.9t2 + 100t + 20  =  20, 
 and hence after  t = 100/4.9  ≈  20.41 seconds. 
 
 (c) The roots of the quadratic equation  y(t)  =  –4.9t2 + 100t + 20  =  0  are   
 t  =  –0.20,  20.61.  Hence the projectile is in the air  20.61 seconds. 
 
27. a  =  –9.8 m/s2  so  v  =  –9.8 t – 10  and 

y  =  –4.9 t2 – 10 t + y0. 
 
 The ball hits the ground when   y  =  0  and 

v  =  –9.8 t – 10  =  –60, 
 so  t ≈ 5.10 s.  Hence 
 
    y0  =  4.9(5.10)2 + 10(5.10) ≈ 178.57 m. 
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   28. v  =  –32t – 40  and   y  =  –16t2 – 40t + 555.  The ball hits the ground  (y  =  0) when  t  ≈  
 4.77 sec,  with velocity  v  =  v(4.77)  ≈  –192.64 ft/sec,  an impact speed of about 131 
 mph. 
 
29. Integration of  dv/dt = 0.12 t3 + 0.6 t,  v(0) = 0  gives  v(t) = 0.3 t2 + 0.04 t3.  Hence 
 v(10) = 70.  Then integration of  dx/dt = 0.3 t2 + 0.04 t3,   x(0) = 0  gives 
 x(t) = 0.1 t3 + 0.04 t4,  so  x(10) = 200.  Thus after 10 seconds the car has gone 200 ft and 

is traveling at 70 ft/sec.  
            
30. Taking  x0  =  0  and  v0  =  60 mph  =  88 ft/sec,  we get   
 
     v  =   –at + 88,  
 
 and  v  =  0  yields  t  =  88/a.  Substituting this value of  t  and  x  =  176  in   
 
     x  =  –at2/2 + 88t,  
 
 we solve for  a  =  22 ft/sec2.  Hence the car skids for  t  =  88/22  =  4 sec. 
 
31. If  a  =  –20 m/sec2  and  x0  =  0  then the car's velocity and position at time  t  are given 

by 
          v  =  –20t + v0,     x  =  –10 t2 + v0t. 
 
 It stops when  v  =  0  (so  v0  =  20t),  and hence when 
         
    x  =  75  =  –10 t2 + (20t)t  =  10 t2. 
 
 Thus  t  =  7.5   sec  so 
 
    v0  =  20 7.5   ≈  54.77 m/sec  ≈  197 km/hr. 
           
32. Starting with  x0  =  0  and  v0  =  50 km/h  =  5×104 m/h,  we find by the method of 

Problem 30 that the car's deceleration is  a  =  (25/3)×107 m/h2.  Then, starting with  x0  =  
0  and  v0  =  100 km/h  =  105 m/h,  we substitute  t  =  v0/a  into   

 
     x  =   – 1

2 at2 + v0t   
 
 and find that  x  =  60 m  when v  =  0.  Thus doubling the initial velocity quadruples the 

distance the car skids. 
 
33. If  v0  =  0  and   y0  =  20  then 
 
    v  =  –at  and   y  =  – 1

2 at2 + 20. 
 
 Substitution of   t  =  2,   y  =  0  yields  a  =  10 ft/sec2.  If  v0  =  0  and    
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 y0  =  200  then 
 
    v  =  –10t  and   y  =  –5t2 + 200. 
 
 Hence   y  =  0  when  t  =  40   =  2 10  sec  and  v  =  –20 10   ≈  –63.25 ft/sec. 
  
34. On Earth:    v  =  –32t + v0,  so  t  =  v0/32  at maximum height (when v  =  0).  

Substituting this value of  t  and   y  =  144  in 
  
     y  =  –16t2 + v0t,  
 
 we solve for  v0  =  96 ft/sec  as the initial speed with which the person can throw a ball 

straight upward.  
 
 On Planet Gzyx:    From Problem 27, the surface gravitational acceleration on planet 

Gzyx is  a  =  10 ft/sec2,  so  
 
    v  =   –10t + 96     and      y  =  –5t2 + 96t.   
 
 Therefore  v  =  0  yields  t  =  9.6 sec,  and thence   ymax  =   y(9.6)  =  460.8 ft  is the 

height a ball will reach if its initial velocity is  96 ft/sec. 
 
35. If  v0  =  0  and   y0  =  h  then the stone′s velocity and height are given by 
 
    v  =  –gt,      y = –0.5 gt2 + h. 
  
 Hence   y  =  0  when  t  =  2 /h g   so 
 
    v  =  –g 2 /h g   =  – 2gh .   
 
36. The method of solution is precisely the same as that in Problem 30.  We find first that, on 

Earth, the woman must jump straight upward with initial velocity  v0  =  12 ft/sec  to 
reach a maximum height of 2.25 ft.  Then we find that, on the Moon, this initial velocity 
yields a maximum height of about 13.58 ft.   

 
37. We use units of miles and hours.  If  x0  =  v0  =  0  then the car′s velocity and position 

after  t  hours are given by 
     v  =  at,      x  =  1

2 t2. 
 
 Since  v  =  60  when  t  =  5/6,  the velocity equation yields  a  =  72 mi/hr2.  Hence the 

distance traveled by  12:50 pm  is 
 
          x  =  (0.5)(72)(5/6)2  =  25  miles. 
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38. Again we have 
     v  =  at,      x  =  1

2 t2. 
 
 But now  v  =  60  when  x  =  35.  Substitution of  a  =  60/t  (from the velocity equation) 

into the position equation yields 
 
     35  =  (0.5)(60/t)(t2)  =  30t, 
 
 whence  t  =  7/6 hr, that is,  1:10 p.m. 
 
 
39. Integration of  y′  =  (9/vS)(1 – 4x2)  yields 
 
     y  =  (3/vS)(3x – 4x3) + C, 
 
 and the initial condition   y(–1/2)  =  0  gives  C  =  3/vS.  Hence the swimmer′s trajectory 

is 
     y(x)  =  (3/vS)(3x – 4x3 + 1). 
 
 Substitution of   y(1/2)  =  1  now gives  vS  =  6 mph. 
 
40. Integration of  y′  =  3(1 – 16x4)  yields 
 
     y  =  3x – (48/5)x5 + C, 
 
 and the initial condition   y(–1/2)  =  0  gives  C  =  6/5.  Hence the swimmer′s trajectory 

is 
     y(x)  =  (1/5)(15x – 48x5 + 6), 
 
 so his downstream drift is   y(1/2)  =  2.4 miles. 
 
41. The bomb equations are  232, 32, and 16 800,Ba v s s t= − = − = = − +  with  0t =  at the 
 instant  the bomb is dropped.  The projectile is fired at time  2,t =  so its corresponding 
 equations are  032, 32( 2) ,a v t v= − = − − +  and 
 
    2

016( 2) ( 2)Ps s t v t= = − − + −  
 
 for  2t ≥  (the arbitrary constant vanishing because  (2) 0Ps = ).  Now the condition  
 2( ) 16 800 400Bs t t= − + = gives  5,t =  and then the requirement that  (5) 400Ps =  also  
 yields  0 544 / 3 181.33v = ≈  ft/s  for the projectile's needed initial velocity. 
 
42. Let  ( )x t  be the (positive) altitude (in miles) of the spacecraft at time  t  (hours), with  
 0t =  corresponding to the time at which its retrorockets are fired; let ( ) ( )v t x t′=  be 
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 the velocity of the spacecraft at time  t.  Then  0 1000v = −  and  0 (0)x x=  is unknown.  
 But the (constant) acceleration is  20000,a = +  so 
 
   2

0( ) 20000 1000 and ( ) 10000 1000 .v t t x t t t x= − = − +  
 
 Now  ( ) 20000 1000 0v t t= − =   (soft touchdown) when  1

20t =  hr (that is, after exactly 
 3 minutes of descent). Finally, the condition 
 
    21 1 1

020 20 200 ( ) 10000( ) 1000( )x x= = − +  
 
 yields  0 25x =  miles for the altitude at which the retrorockets should be fired. 
 
43. The velocity and position functions for the spacecraft are  ( ) 0.0098Sv t t=  and  
 2( ) 0.0049 ,Sx t t=   and the corresponding functions for the projectile are  
 71

10( ) 3 10Pv t c= = × and  7( ) 3 10 .Px t t= ×   The condition that  S Px x=  when the 
 spacecraft overtakes the projectile gives  2 70.0049 3 10 ,t t= ×  whence 
 

   

7
9

9

3 10 6.12245 10 sec
0.0049

6.12245 10 194 years.
(3600)(24)(365.25)

t ×= ≈ ×

×≈ ≈
 

 
 Since the projectile is traveling at 1

10  the speed of light, it has then traveled a distance of 
 about 19.4 light years, which is about 171.8367 10×  meters. 
 
44. Let  0a >   denote the constant deceleration of the car when braking, and take 0 0x =  for 

the cars position at time  0t =  when the brakes are applied.  In the police experiment 
with  0 25v =  ft/s, the distance the car travels in  t  seconds is given by  

 

    21 88( ) 25
2 60

x t at t= − + ⋅  

 
 (with the factor  88

60  used to convert the velocity units from mi/hr to ft/s).  When we solve 
simultaneously the equations  ( ) 45 and ( ) 0x t x t′= =  we find that  1210

81 14.94a = ≈  ft/s2.  
With this value of the deceleration and the (as yet) unknown velocity  0v  of the car 
involved in the accident, its position function is 

 

    2
0

1 1210( ) .
2 81

x t t v t= − ⋅ +  
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 The simultaneous equations  ( ) 210 and ( ) 0x t x t′= =  finally yield  110
0 9 42 79.21v = ≈  

ft/s, almost exactly 54 miles per hour. 
    
 
SECTION 1.3 
 
SLOPE FIELDS AND SOLUTION CURVES 
 
The instructor may choose to delay covering Section 1.3 until later in Chapter 1.  However, 
before proceeding to Chapter 2, it is important that students come to grips at some point with the 
question of the existence of a unique solution of a differential equation –– and realize that it 
makes no sense to look for the solution without knowing in advance that it exists.  It may help 
some students to simplify the statement of the existence-uniqueness theorem as follows: 
 
 Suppose that the function  ( , )f x y   and the partial derivative  /f y∂ ∂  are both 

continuous in some neighborhood of the point  (a, b).  Then the initial value 
problem 

    ( , ), ( )dy f x y y a b
dx

= =  

 
 has a unique solution in some neighborhood of the point  a. 
 
Slope fields and geometrical solution curves are introduced in this section as a concrete aid in 
visualizing solutions and existence-uniqueness questions.  Instead, we provide some details of 
the construction of the figure for the Problem 1 answer, and then include without further 
comment the similarly constructed figures for Problems 2 through 9. 
 
1.  The following sequence of Mathematica commands generates the slope field and the  
 solution curves through the given points.  Begin with the differential equation  
  / ( , )dy dx f x y= where 

f[x_, y_] := -y - Sin[x]

 Then set up the viewing window 
a = -3; b = 3; c = -3; d = 3;

 The components  ( , )u v  of unit vectors corresponding to the short slope field line  
 segments are given by 
 u[x_, y_] := 1/Sqrt[1 + f[x, y]^2] 

v[x_, y_] := f[x, y]/Sqrt[1 + f[x, y]^2]

The slope field is then constructed by the commands
Needs["Graphics`PlotField`"]
dfield = PlotVectorField[{u[x, y], v[x, y]}, {x, a, b}, {y, c, d},

HeadWidth -> 0, HeadLength -> 0, PlotPoints -> 19,
PlotRange -> {{a, b}, {c, d}}, Axes -> True, Frame -> True,
FrameLabel -> {"x", "y"}, AspectRatio -> 1];
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The original curve shown in Fig. 1.3.12 of the text (and its initial point not shown there)  
 are plotted by the commands 
 

x0 = -1.9; y0 = 0;
point0 = Graphics[{PointSize[0.025], Point[{x0, y0}]}];
soln = NDSolve[{Derivative[1][y][x] == f[x, y[x]], y[x0] == y0},

y[x], {x, a, b}];
soln[[1,1,2]];
curve0 = Plot[soln[[1,1,2]], {x, a, b},

PlotStyle -> {Thickness[0.0065], RGBColor[0, 0, 1]}];

 The Mathematica NDSolve command carries out an approximate numerical solution of 
 the given differential equation.  Numerical solution techniques are discussed in Sections 
 2.4–2.6 of the textbook. 
 
 The coordinates of the 12 points are marked in Fig. 1.3.12 in the textbook.  For instance 
 the 7th point is (–2.5, 1).  It and the corresponding solution curve are plotted by the 
 commands 
 

x0 = -2.5; y0 = 1;
point7 = Graphics[{PointSize[0.025], Point[{x0, y0}]}];
soln = NDSolve[{Derivative[1][y][x] == f[x, y[x]], y[x0] == y0},

y[x], {x, a, b}];
soln[[1,1,2]];
curve7 = Plot[soln[[1,1,2]], {x, a, b},

PlotStyle -> {Thickness[0.0065], RGBColor[0, 0, 1]}];

 Finally, the desired figure is assembled by the Mathematica command 
Show[ dfield, point0,curve0,

point1,curve1, point2,curve2, point3,curve3,
point4,curve4, point5,curve5, point6,curve6,
point7,curve7, point8,curve8, point9,curve9,
point10,curve10, point11,curve11, point12,curve12];
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8. 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11. Because both  ( , )f x y   =  2x2y2  and  /f y∂ ∂ =  4x2y  are continuous everywhere, the 

existence-uniqueness theorem of Section 1.3 in the textbook guarantees the existence of a 
unique solution in some neighborhood of  x  =  1. 

 
12. Both  ( , )f x y   =  x ln y  and  /f y∂ ∂ =   x/y  are continuous in a neighborhood of   
 (1, 1),  so the theorem guarantees the existence of a unique solution in some 
 neighborhood of  x  =  1. 
 
13. Both  ( , )f x y   =   y1/3  and  /f y∂ ∂ =   (1/3)y–2/3  are continuous near  (0, 1),  so the 

theorem guarantees the existence of a unique solution in some neighborhood of  x  =  0. 
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14. ( , )f x y   =   y1/3  is continuous in a neighborhood of  (0, 0),  but  /f y∂ ∂ =   (1/3)y–2/3  is 
not, so the theorem guarantees existence but not uniqueness in some neighborhood of   

 x  =  0. 
  
15. ( , )f x y   =  (x –  y)1/2  is not continuous at  (2, 2)  because it is not even defined if   y > x.  

Hence the theorem guarantees neither existence nor uniqueness in any neighborhood of 
the point  x  =  2. 

 
16. ( , )f x y   =  (x –  y)1/2  and  /f y∂ ∂ =   –(1/2)(x –  y)–1/2  are continuous in a neighborhood 

of  (2, 1),  so the theorem guarantees both existence and uniqueness of a solution in some 
neighborhood of  x  =  2. 

 
17. Both  ( , )f x y   =  (x – 1)/y  and  /f y∂ ∂ =   –(x – 1)/y2  are continuous near (0, 1),  so the 

theorem guarantees both existence and uniqueness of a solution in some neighborhood of  
x  =  0. 

 
18. Neither  ( , )f x y   =  (x – 1)/y  nor  /f y∂ ∂ =   –(x – 1)/y2  is continuous near (1, 0),  so the 

existence-uniqueness theorem guarantees nothing. 
 
19. Both  ( , )f x y   =  ln(1 +  y2)  and  /f y∂ ∂ =   2y/(1 +  y2)  are continuous near (0, 0),  so 

the theorem guarantees the existence of a unique solution near  x  =  0. 
  
20. Both  ( , )f x y   =  x2 –  y2  and  /f y∂ ∂ =   –2y  are continuous near (0, 1),  so the theorem 

guarantees both existence and uniqueness of a solution in some neighborhood of  x  =  0.  
 
21. The curve in the figure on the left below can be constructed using the commands 
 illustrated in Problem 1 above.  Tracing this solution curve, we see that  ( 4) 3.y − ≈    
 An exact solution of the differential equation yields the more accurate approximation  
 ( 4) 3.0183.y − ≈  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

(0,0)

(−4,?)

Copyright © 2010 Pearson Education, Inc.  Publishing as Prentice Hall.



 Section 1.3 23 

−2 −1 0 1 2

−2

−1

0

1

2

x

y

(−2,0)

(2,?)

22. Tracing the curve in the figure on the right at the bottom of the preceding page , we see 
 that  ( 4) 3.y − ≈ −   An exact solution  of the differential equation yields the more accurate 
 approximation  ( 4) 3.0017.y − ≈ −  
 
23. Tracing the curve in figure on the left below, we see that  (2) 1.y ≈   A more accurate 
 approximation is  (2) 1.0044.y ≈  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24. Tracing the curve in the figure on the right above, we see that  (2) 1.5.y ≈  A more 
 accurate approximation is  (2) 1.4633.y ≈  
 
25. The figure below indicates a limiting velocity of 20 ft/sec — about the same as jumping 

off a 1
46 -foot wall, and hence quite survivable. Tracing the curve suggests that ( ) 19v t =  

ft/sec when  t  is a bit less than 2 seconds.  An exact solution gives  1.8723t ≈  then. 
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x

y

26. The figure below suggests that there are 40 deer after about 60 months; a more accurate 
value is 61.61.t ≈  And it's pretty clear that the limiting population is 75 deer. 
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27. If 0b <  then the initial value problem  2 , (0)y y y b′ = =   has no solution, because the 
 square root of a negative number would be involved.  If 0b >  we get a unique solution 
 curve through (0, )b  defined for all  x  by following a parabola — in the figure on the left 
 below — down (and leftward) to the  x-axis and then following the x-axis to the left.  But 
 starting at (0,0) we can follow the positive x-axis to the point ( ,0)c  and then branching 
 off on the parabola  2( ) .y x c= −   This gives infinitely many different solutions if  0.b =  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28. The figure on the right above makes it clear initial value problem  , ( )xy y y a b′ = =   has 
 a unique solution off the y-axis where  0;a ≠   infinitely many solutions through the 
 origin  where  0;a b= =  no solution if  0 but 0a b= ≠  (so the point ( , )a b lies on the 
 positive or negative y-axis).  

x

y

(0,0) 
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29. Looking at the figure on the left below, we see that we can  start at the point  ( , )a b  and 
 follow a branch of a cubic up or down to the x-axis, then follow the x-axis an arbitrary 
 distance before branching off (down or up) on another cubic.  This gives infinitely many 
 solutions of the initial value problem  2 / 33 , ( )y y y a b′ = =   that are defined for all  x.  
 However, if  0b ≠  there is only a single cubic 3( )y x c= −  passing through  ( , )a b , so 
 the solution is unique near  .x a=  
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30. The function  ( ) cos( ),y x x c= −  with  ( ) sin( ),y x x c′ = − −   satisfies the differential 

 equation 21y y′ = − −  on the interval  c x c π< < +  where  sin( ) 0,x c− >  so it follows 
 that   
  2 2 21 1 cos ( ) sin ( ) sin( ) .y x c x c x c y− − = − − − = − − = − − =  
 
 If  1b >  then the initial value problem  21 , ( )y y y a b′ = − − =   has no solution because 

 the square root of a negative number would be involved.  If  1b <  then there is only one 
 curve of the form  cos( )y x c= −  through the point ( , );a b  this give a unique solution.  
 But if 1b = ±  then we can combine a left ray of the line 1,y = +  a cosine curve from the 
 line 1y = +  to the line  1y = − , and then a right ray of the line 1.y = −  Looking at the 
 figure on the right above, we see that this gives infinitely many solutions (defined for  
 all  x) through any point of the form ( , 1).a ±  
 
31. The function  ( ) sin( ),y x x c= −  with  ( ) cos( ),y x x c′ = −   satisfies the differential 

 equation 21y y′ = −  on the interval  / 2 / 2c x cπ π− < < +  where  cos( ) 0,x c− >  so it  
 follows that   

       2 2 21 1 sin ( ) cos ( ) sin( ) .y x c x c x c y− = − − = − = − − =  
  

x

y
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 If  1b >  then the initial value problem  21 , ( )y y y a b′ = − =   has no solution because 

 the square root of a negative number would be involved.  If  1b <  then there is only one 
 curve of the form  sin( )y x c= −  through the point ( , );a b  this give a unique solution.  
 But if 1b = ±  then we can combine a left ray of the line 1,y = −  a sine curve from the 
 line 1y = −  to the line  1y = + , and then a right ray of the line 1.y = +  Looking at the 
 figure on the left below, we see that this gives infinitely many solutions (defined for all x) 
 through any point of the form ( , 1).a ±  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32. Looking at the figure on the right above, we see that we can piece together a "left half" of 
 a quartic for x negative, an interval along the x-axis, and a "right half" of a quartic curve 
 for  x   positive. This makes it clear that the initial value problem  4 , ( )y x y y a b′ = =   
 has infinitely many solutions (defined for all x) if  0;b ≥   there is no solution if  0b <  
 because this would involve the square root of a negative number. 
 
33. Looking at the figure provided in the answers section of the textbook, it suffices to 

observe that, among the pictured curves /( 1)y x cx= −  for all possible values of  c,    
 

• there is a unique one of these curves through any point not on either coordinate axis;   
• there is no such curve through any point on the y-axis other than the origin; and 
• there are infinitely many such curves through the origin (0,0). 

 
 But in addition we have the constant-valued solution  ( ) 0y x ≡  that "covers" the x-axis.  
 It follows that the given differential equation has near ( , )a b  
 

• a unique solution if  0a ≠ ;   
• no solution if  0a =  but  0b ≠ ; 
• infinitely many different solutions if  0.a b= =  

−pi/2 pi/2
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x
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x
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34. (a) With a computer algebra system we find that the solution of the initial value 
problem  1, ( 1) 1.2y y x y′ = − + − = −  is  1( ) 0.2 xy x x e += − , whence  (1) 0.4778.y ≈ −  
With the same differential equation but with initial condition ( 1) 0.8y − = −   the solution 
is 1( ) 0.2 xy x x e += + , whence  (1) 2.4778.y ≈  

 
 (b) Similarly, the solution of the initial value problem  1, ( 3) 3.01y y x y′ = − + − = −  

is  3( ) 0.01 xy x x e += − , whence  (3) 1.0343.y ≈ −  With the same differential equation but 
with initial condition ( 3) 2.99y − = −   the solution is 3( ) 0.01 xy x x e += + , whence  

(3) 7.0343.y ≈  Thus close initial values ( 3) 3 0.01y − = − ±  yield  (3)y values that are far 
apart. 

 
35. (a) With a computer algebra system we find that the solution of the initial value 

problem  1, ( 3) 0.2y x y y′ = − + − = −  is  3( ) 2.8 xy x x e− −= + , whence  (2) 2.0189.y ≈  
With the same differential equation but with initial condition ( 3) 0.2y − = +   the solution 
is 3( ) 3.2 xy x x e− −= + , whence  (2) 2.0216.y ≈  

 
 (b) Similarly, the solution of the initial value problem  1, ( 3) 0.5y x y y′ = − + − = −  

is  3( ) 2.5 xy x x e− −= + , whence  (2) 2.0189.y ≈  With the same differential equation but 
with initial condition ( 3) 0.5y − = +   the solution is 3( ) 3.5 xy x x e− −= + , whence  

(2) 2.0236.y ≈   Thus the initial values  ( 3) 0.5y − = ±  that are not close both yield 
(2) 2.02y ≈ . 

 
 
 
SECTION 1.4 
 
SEPARABLE EQUATIONS AND APPLICATIONS 
 
Of course it should be emphasized to students that the possibility of separating the variables is 
the first one you look for.  The general concept of natural growth and decay is important for all 
differential equations students, but the particular applications in this section are optional.  
Torricelli's law in the form of Equation (24) in the text leads to some nice concrete examples and 
problems. 
 

1. 
2 222 ; ln ; ( ) x c xdy x dx y x c y x e C e

y
− + −= − = − + = =⌠


⌡ ∫  

 

2. 2
2 2

1 12 ; ; ( )dy x dx x C y x
y y x C

= − − = − − =
+

⌠ ⌠

⌡⌡
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3. cos cossin ; ln cos ; ( ) x c xdy x dx y x c y x e C e
y

− + −= = − + = =⌠

⌡ ∫  

 

4. 44 ; ln 4 ln(1 ) ln ; ( ) (1 )
1

dy dx y x C y x C x
y x

= = + + = +
+

⌠ ⌠
⌡⌡

 

 

5. ( )1

2
; sin ; ( ) sin

21
dy dx y x C y x x C

xy
−= = + = +

−
⌠ ⌠

 ⌡⌡
 

 

6. ( )23/ 2 3/ 23 ; 2 2 2 ; ( )dy x dx y x C y x x C
y

= = + = +⌠

⌡

∫  

 

7. ( )
3/ 2

1/ 3 2 / 3 4 / 3 4 / 33 3
2 21/ 3 4 ; 3 ; ( ) 2dy x dx y x C y x x C

y
= = + = +⌠


⌡ ∫  

 
8. ( )2 1 2cos 2 ; sin ; ( ) siny dy x dx y x C y x x C−= = + = +∫ ∫  
 

9. 2
2 1 1 (partial fractions)

1 1 1
dy dx dx
y x x x

 = = + − + − 

⌠ ⌠ ⌠
 
⌡ ⌡⌡

 

 1ln ln(1 ) ln(1 ) ln ; ( )
1

xy x x C y x C
x

+= + − − + =
−

 

 

10. 2 2
1 1 1 (1 );

(1 ) (1 ) 1 1 1
dy dx C xC

y x y x x
+ += − = − − = −

+ + + + +
⌠ ⌠


⌡⌡

 

 1 1 (1 )1 ; ( ) 1
1 (1 ) 1 (1 ) 1 (1 )

x x x C xy y x
C x C x C x

+ + − ++ = = − =
+ + + + + +

 

 

11. ( )
2 1/ 22

3 2
1; ; ( )

2 2 2
dy x Cx dx y x C x
y y

−
= − = − = −⌠ ⌠


⌡⌡

 

 

12. ( ) 22 2 21 1 1
2 2 22 ; ln 1 ln ; 1

1
xy dy x dx y x C y C e

y
= + = + + =

+
⌠

⌡ ∫  

 

13. ( )
3

41
44 cos ; ln 1 sin

1
y dy x dx y x C
y

= + = +
+

⌠

⌡

∫  

 
14. ( ) ( ) 3/ 2 3/ 22 2

3 31 1 ;y dy x dx y y x x C+ = + + = + +∫ ∫  
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15. 2 4 2 3
2 1 1 1 2 1 1; ln

3
dy dx x C

y y x x y y x
   − = − − + = + +  

  

⌠ ⌠

⌡⌡

 

 

16. ( )21
22

sin ; ln(cos ) ln 1 ln
cos 1

y dy x dx x x C
y x

= − = + +
+

⌠ ⌠
⌡⌡

 

 ( )2 1 2sec 1 ; ( ) sec 1y C x y x C x−= + = +  

 
17. 1 (1 )(1 )y x y xy x y′ = + + + = + +  

 21
2(1 ) ; ln 1

1
dy x dx y x x C

y
= + + = + +

+
⌠

⌡ ∫  

 
18. 2 2 2 2 2 2 21 (1 )(1 )x y x y x y x y′ = − + − = − +  

 1
2 2

1 1 11 ; tan ; ( ) tan
1

dy dx y x C y x C x
y x x x

−   = − = − − + = − −   +    

⌠ ⌠

⌡⌡

 

 

19. ; ln ln ; ( ) exp( )x x xdy e dx y e C y x C e
y

= = + =⌠

⌡ ∫  

 (0) 2 implies 2 so ( ) 2exp( )xy e C y x e= = = . 
 

20. ( )2 1 3 3
2 3 ; tan ; ( ) tan

1
dy x dx y x C y x x C

y
−= = + = +

+
⌠

⌡ ∫  

 ( )1 3(0) 1 implies tan 1 / 4 so ( ) tan / 4y C y x xπ π−= = = = + . 
 

21. 2 2

2
2 ; 16

16
x dxy dy y x C

x
= = − +

−
⌠ ⌠


⌡⌡

 

 2 2(5) 2 implies 1 so 1 16y C y x= = = + − . 
 

22. ( )3 4 44 1 ; ln ln ; ( ) exp( )dy x dx y x x C y x C x x
y

= − = − + = −⌠

⌡ ∫  

 4(1) 3 implies 3 so ( ) 3exp( )y C y x x x= − = − = − − . 
 

23. 21 1
2 2; ln (2 1) ln ; 2 1

2 1
xdy dx y x C y C e

y
= − = + − =

−
⌠

⌡ ∫  

 ( )2 2 21
2(1) 1 implies so ( ) 1 xy C e y x e− −= = = + . 
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24. cos ; ln ln(sin ) ln ; ( ) sin
sin

dy x dx y x C y x C x
y x

= = + =⌠ ⌠

⌡⌡

 

 2 2 2 2( ) implies so ( ) siny C y x xπ π π π= = = . 
 

25. 2 21 2 ; ln ln ln ; ( ) exp( )dy x y x x C y x C x x
y x

 = + = + + = 
 

⌠ ⌠

⌡⌡

 

 1 2(1) 1 implies so ( ) exp( 1)y C e y x x x−= = = − . 
 

26. ( )2 2 3
2 2 3

1 12 3 ; ; ( )dy x x x x C y x
y y x x C

−= + − = + + =
+ +

⌠ ⌠

⌡⌡

 

 2 3
1(1) 1 implies 1 so ( )

1
y C y x

x x
= − = − =

− −
. 

 
27. ( )2 2 26 ; 3 ; ( ) ln 3y x y x xe dy e dx e e C y x e C= = + = +∫ ∫  

 ( )2(0) 0 implies 2 so ( ) ln 3 2xy C y x e= = − = − . 
 

28. ( )2 1sec ; tan ; ( ) tan
2
dxy dy y x C y x x C

x
−= = + = +⌠ ⌠


⌡⌡

 

 ( )1
4(4) implies 1 so ( ) tan 1y C y x xπ −= = − = − . 

 
29. (a) Separation of variables gives the general solution 

   2

1 1 1; ; ( ) .dy x dx x C y x
y y x C

 − = − = − + = −  − 

⌠ ⌠

⌡⌡

 

 (b) Inspection yields the singular solution  ( ) 0y x ≡  that corresponds to no value of  
  the constant  C. 
 
 (c) In the figure at the top of the next page we see that there is a unique solution  
  curve through every point in the xy-plane.   
 
30. When we take square roots on both sides of the differential equation and separate  
 variables, we get 

   ( )2; ; ( ) .
2
dy dx y x C y x x C

y
= = − = −⌠ ⌠


⌡⌡

 

 This general solution provides the parabolas illustrated in Fig. 1.4.5 in the textbook.   
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Problem 29 Figure 

 
  
 Observe that  ( )y x  is always nonnegative, consistent with both the square root and the 
 original differential equation.  We spot also the singular solution  ( ) 0y x ≡  that 
 corresponds to no value of the constant  C.   
 
 (a)   Looking at Fig. 1.4.5, we see immediately that the differential equation  
 2( ) 4y y′ =  has no solution curve through the point  ( , )a b   if  0.b <  
 
 (b) But if  0b ≥  we obviously can combine branches of parabolas with segments 
 along the x-axis to form infinitely many solution curves through  ( , )a b . 
 
 (c) Finally, if  0b >  then on a interval containing  ( , )a b  there are exactly  two 
 solution curves through this point, corresponding to the two indicated parabolas through 
 ( , )a b , one ascending and one descending from left to right.  
 
31. The formal separation-of-variables process is the same as in Problem 30 where, indeed, 

we started by taking square roots in  2( ) 4y y′ =  to get the differential equation  
2 .y y′ =  But whereas  y′  can be either positive or negative in the original equation, the 

latter equation requires that  y′  be nonnegative.  This means that only the right half of 

each parabola  ( )2y x C= −  qualifies as a solution curve.  Inspecting the figure at the top 
of the next page, we therefore see that through the point  ( , )a b  there passes: 

 
 (a)   No solution curve if  0,b <     
 (b)  A unique solution curve if  0,b >    
 (c) Infinitely many solution curves if  0,b =  because in this case we can pick any   
  c a>  and define the solution  2( ) 0 if , ( ) ( ) if .y x x c y x x c x c= ≤ = − ≥  
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Problem 31 Figure 

 
32. Separation of variables gives 

    1

2
sec

1
dyx y C

y y
−= = +

−
⌠

⌡

 

 if  1,y >  so the general solution has the form  ( ) sec( ).y x x C= ± −  But the original 

 differential equation  2 1y y y′ = −  implies that  0 if 1,y y′ > >  while  0 ify′ <   
 1.y < −   Consequently, only the right halves of translated branches of the curve  
 secy x=  (figure below) qualify as general solution curves.  This explains the plotted 
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 general solution curves we see in the figure below.  In addition, we spot the two singular 
solutions  ( ) 1 and ( ) 1.y x y x≡ ≡ −   It follows upon inspection of this figure that the 

initial value problem  2 1, ( )y y y y a b′ = − =  has a unique solution if  1b >   and has 

no solution if  1.b <   But if  1b =  (and similarly if  1)b = −  then we can pick any  

c a> and define the solution ( ) 1 if ,y x x c= ≤   ( ) sec( )y x x c= −   if  2 .c x c π≤ < +   

So we see that if  1,b = ±  then the initial value problem  2 1, ( )y y y y a b′ = − =   has 
infinitely many solutions. 

 

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x

y

 
 
 

33. The population growth rate is  ln(30000 / 25000) /10 0.01823,k = ≈   so the population 
of the city  t  years after 1960 is given by  0.01823( ) 25000 .tP t e=   The expected year 
2000 population is then  0.01823 40(40) 25000 51840.P e ×= ≈  

 
34. The population growth rate is   ln(6) /10 0.17918,k = ≈   so the population after  t  

hours is given by  0.17918
0( ) .tP t P e=   To find how long it takes for the population to 

double, we therefore need only solve the equation  0.17918
0 02 tP P e=  for  

(ln 2) / 0.17918 3.87t = ≈  hours. 
 
35. As in the textbook discussion of radioactive decay, the number of  14C  atoms after  t  

years is given by  0.0001216
0( ) .tN t N e−=   Hence we need only solve the equation  

0.00012161
0 06

tN N e−=  for  (ln 6) / 0.0001216 14735t = ≈  years to find the age of the 
skull. 
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36. As in Problem 35, the number of  14C  atoms after  t  years is given by  
10 0.0001216( ) 5.0 10 .tN t e−= ×   Hence we need only solve the equation  

10 10 0.00012164.6 10 5.0 10 te−× = ×  for the age  ( )ln (5.0 / 4.6) / 0.0001216 686t = ≈  years 
of the relic.   Thus it appears not to be a genuine relic of the time of Christ 2000 years 
ago. 

 
37. The amount in the account after  t  years is given by  0.08( ) 5000 .tA t e=   Hence the 

amount in the account after 18 years is given by  0.08 18(18) 5000 21,103.48A e ×= ≈  
dollars. 

 
38. When the book has been overdue for  t  years, the fine owed is given in dollars by  

0.05( ) 0.30 .tA t e=   Hence the amount owed after 100 years is given by  
0.05 100(100) 0.30 44.52A e ×= ≈  dollars. 

39. To find the decay rate of this drug in the dog's blood stream, we solve the equation 
 51

2
ke−=  (half-life 5 hours) for  (ln 2) / 5 0.13863.k = ≈   Thus the amount in the dog's 

bloodstream after  t  hours is given by  0.13863
0( ) .tA t A e−=   We therefore solve the 

equation  0.13863
0(1) 50 45 2250A A e−= = × =  for  0 2585A ≈ mg, the amount to 

anesthetize the dog properly. 
 
40. To find the decay rate of radioactive cobalt, we solve the equation  5.271

2
ke−=  (half-life 

5.27 years) for  (ln 2) / 5.27 0.13153.k = ≈   Thus the amount of radioactive cobalt left 
after  t  years is given by  0.13153

0( ) .tA t A e−=   We therefore solve the equation  
0.13153

0 0( ) 0.01tA t A e A−= =  for  (ln100) / 0.13153 35.01t = ≈  and find that it will be 
about 35 years until the region is again inhabitable. 

 
41. Taking  t  =  0  when the body was formed and  t  =  T  now, the amount  Q(t)  of  238U in 

the body at time  t  (in  years) is given by  Q(t)  =  Q0e–kt,  where  k  =  (ln 2)/(4.51×109).  
The given information tells us that 

 

0

( ) 0.9
( )

Q T
Q Q T

=
−

. 

 
 After substituting  Q(T)  =  Q0e–kT,  we solve readily for  ekT  =  19/9,  so  

T  =  (1/k)ln(19/9) ≈ 4.86×109.  Thus the body was formed approximately 4.86 billion  
years ago. 

 
42. Taking  t  =  0  when the rock contained only potassium and  t  =  T  now, the amount  

Q(t)  of potassium in the rock at time  t  (in  years) is given by  Q(t)  =  Q0e–kt,  where   
 k  =  (ln 2)/(1.28×109).  The given information tells us that the amount  A(t)  of argon at 

time  t  is 
1

09( ) [ ( )]A t Q Q t= −  
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 and also that  A(T)  =  Q(T).  Thus 
 

0 ( ) 9 ( )Q Q T Q T− = . 
 
 After substituting 0( ) kTQ T Q e−=  we readily solve for 
 
    9 9(ln10 / ln 2)(1.28 10 ) 4.25 10T = × ≈ × . 

 
 Thus the age of the rock is about 1.25 billion years. 
 
43. Because  A  =  0  the differential equation reduces to  T'  =  kT,  so  T(t)  =  25e–kt.  The 

fact that  T(20)  =  15  yields  k  =  (1/20)ln(5/3),  and finally we solve   
 
          5  =  25e–kt for   t  =  (ln 5)/k  ≈  63 min. 
 
44. The amount of sugar remaining undissolved after  t  minutes is given by  0( ) ;ktA t A e−=   

we find the value of  k  by solving the equation  0 0(1) 0.75kA A e A−= =  for  
ln 0.75 0.28768.k = − ≈   To find how long it takes for half the sugar to dissolve, we solve 

the equation  1
0 02( ) ktA t A e A−= =   for  (ln 2) / 0.28768 2.41t = ≈  minutes. 

 
45. (a) The light intensity at a depth of  x  meters is given by  1.4

0( ) .xI x I e−=   We solve 
the equation  1.4 1

0 02( ) xI x I e I−= =  for  (ln 2) /1.4 0.495x = ≈  meters. 
 
 (b) At depth 10 meters the intensity is 1.4 10 7

0 0(10) (8.32 10 )I I e I− × −= ≈ × .  
 
 (c) We solve the equation  1.4

0 0( ) 0.01xI x I e I−= =  for  (ln100) /1.4 3.29x = ≈   
  meters.  
 
46. (a) The pressure at an altitude of  x  miles is given by  0.2( ) 29.92 .xp x e−=   Hence the 

pressure at altitude 10000 ft is  (10000 / 5280) 20.49p ≈  inches, and the pressure at 
altitude 30000 ft is  (30000 / 5280) 9.60p ≈  inches. 

 
 (b) To find the altitude where  p = 15 in., we solve the equation  0.229.92 15xe− =  for  
 (ln 29.92 /15) / 0.2 3.452 miles 18,200 ft.x = ≈ ≈  
    
47. If  N(t)  denotes the number of people (in thousands) who have heard the rumor after  t  

days, then the initial value problem is 
 
            N′  =  k(100 – N),     N(0)  =  0 
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 and we are given that  N(7)  =  10.  When we separate variables ( /(100 )dN N k dt− = ) 
 and integrate, we get  ln(100 ) ,N kt C− = − +  and the initial condition  (0) 0N =  gives  
 ln 100.C =   Then  ( )100 100 , so ( ) 100 1 .kt ktN e N t e− −− = = −   We substitute t = 7,  
 N = 10  and solve for the value  ln(100 / 90) / 7 0.01505.k = ≈   Finally, 50 thousand 

people have heard the rumor after  (ln 2) / 46.05t k= ≈  days. 
  
48. Let  8( )N t  and  5( )N t  be the numbers of 238U and 235U atoms, respectively, at time  t  (in 

billions of years after the creation of the universe).  Then  8 0( ) k tN t N e−=  and  

5 0( ) c tN t N e−= , where  0N  is the initial number of atoms of each isotope.  Also,  
(ln 2) / 4.51k =   and  (ln 2) / 0.71c =  from the given half-lives.  We divide the equations 

for  8 5andN N  and find that when  t  has the value corresponding to "now", 
 

    ( ) 8

5

137.7.c k t Ne
N

− = =  

 
 Finally we solve this last equation for  (ln137.7) /( ) 5.99.t c k= − ≈   Thus we get an 

estimate of about 6 billion years for the age of the universe. 
 
49. The cake's temperature will be 100° after 66 min 40 sec; this problem is just like 

Example 6 in the text. 
 
50. (a)   15 / 215

2( ) 10 . Also 30 ( ) 10 , sokt kA t e A e= = = so 

     ( )15 / 2 2 /1523; ln 3 ln 3 .
15

ke k= = =  

 Therefore  2 /15( ) 10( ) 10 3 .k t tA t e= = ⋅  

 (b)   After 5 years we have  2 / 3(5) 10 3 20.80 pu.A = ⋅ ≈  

 (c)   ( ) 100A t =   when  2 /15 15 ln(10)( ) 10 3 ; 15.72 years.
2 ln(3)

tA t t= ⋅ = ⋅ ≈  

 
51. (a)   ( ) 15 ; 10 (5) 15 ,kt ktA t e A e− −= = = so 

     3 1 3; ln .
2 5 2

kte k= =  

 Therefore 

   
/5 /53 3 2( ) 15exp ln 15 15 .

5 2 2 3

t ttA t
−

     = − = ⋅ = ⋅     
     

 

 (b)   After 8 months we have 
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8/ 52(8) 15 7.84 su.

3
A  = ⋅ ≈ 

 
 

 (c)   ( ) 1A t =   when 

   
/5 1

15
2
3

2 ln( )( ) 15 1; 5 33.3944.
3 ln( )

t

A t t = ⋅ = = ⋅ ≈ 
 

 

 Thus it will be safe to return after about 33.4 months. 
 
52. If  ( )L t  denotes the number of human language families at time  t  (in years), then  
 ( ) ktL t e= for some constant  k.  The condition that  6000(6000) 1.5kL e= =  gives   

 1 3ln .
6000 2

k =   If  "now" corresponds to time  ,t T=  then we are given that  

 ( ) 3300,kTL T e= = so  1 6000ln 3300ln 3300 119887.18.
ln(3/ 2)

T
k

= = ≈   This result suggests 

 that the original human language was spoken about 120 thousand years ago. 
 
53. If  ( )L t  denotes the number of Native American language families at time  t  (in years), 
 then  ( ) ktL t e=  for some constant  k.  The condition that  6000(6000) 1.5kL e= =  gives   

 1 3ln .
6000 2

k =   If  "now" corresponds to time  ,t T=  then we are given that  

 ( ) 150,kTL T e= = so  1 6000ln150ln150 74146.48.
ln(3/ 2)

T
k

= = ≈   This result suggests that the 

 ancestors of today's Native Americans first arrived in the western hemisphere about 74 
 thousand years ago.  
 
54. With  A(y)  constant, Equation (19) in the text takes the form 
 

dy k y
dt

=  

 
 We readily solve this equation for  2 y kt C= + .  The condition   y(0)  =  9  yields   
 C  =  6,  and then   y(1)  =  4  yields  k  =  2.  Thus the depth at time  t  (in hours) is    
 y(t)  =  (3 – t)2,  and hence it takes  3  hours for the tank to empty. 
 
55. With  2(3)A π=  and  2(1/12)a π= ,  and taking  g  =  32 ft/sec2,  Equation (20) 

reduces to  162 y′  =  – y .  The solution such that   y  =  9  when  t  =  0  is given by 

 324 y   =  –t + 972.  Hence   y  =  0  when  t  =  972 sec  =  16 min 12 sec. 
 
56. The radius of the cross-section of the cone at height   y  is proportional to   y,  so  A(y)  is 

proportional to   y2.  Therefore Equation (20) takes the form 
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2y y k y′ = − , 

 
 and a general solution is given by 
 
     2y5/2  =  –5kt + C. 
 
 The initial condition   y(0)  =  16  yields  C  =  2048,  and then   y(1)  =  9  implies that   
 5k  =  1562.  Hence   y  =  0  when 
 
         t  =  C/5k  =  2048/1562  ≈  1.31 hr. 
 
57. The solution of   y′  =  –k y   is given by 
          
     2 y   =  –kt + C. 
 
 The initial condition  y(0) = h  (the height of the cylinder) yields  C = 2 h .  Then 

substitution of  t = T,  y = 0  gives  k = (2 h )/T.  It follows that 
 
          y  =  h(1 – t/T)2. 
 
 If  r  denotes the radius of the cylinder, then 
 
        2 2 2 2

0( ) (1 / ) (1 / ) .V y r y r h t T V t Tπ π= = − = −  
 
58. Since  x  =   y3/4,  the cross-sectional area is  2 3/ 2( ) .A y x yπ π= =   Hence the  

 general equation  ( ) 2A y y a gy′ = −   reduces to the differential equation  yy k′ = −   
with general solution 

     (1/2)y2  =  –kt + C. 
 
 The initial condition   y(0)  =  12  gives  C  =  72,  and then   y(1)  =  6  yields  k  =  54.  

Upon solving for  y  we find that the depth at time  t  is 
 
     ( ) 144 108y t t= − . 
 
 Hence the tank is empty after  t  =  144/108 hr,  that is, at  1:20 p.m. 
 
59. (a) Since  x2  =  by,  the cross-sectional area is  2( ) .A y x byπ π= =   Hence the 

equation  ( ) 2A y y a gy′ = −   reduces to the differential equation 
 

1/ 2 ( / ) 2y y k a b gπ′ = − = −  
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 with the general solution 
 
     (2/3)y3/2  =  –kt + C. 
 
 The initial condition   y(0)  =  4  gives  C  =  16/3,  and then   y(1)  =  1  yields  k  =  14/3. 

It follows that the depth at time  t  is 
 
     y(t)  =  (8 – 7t)2/3. 
 
 (b) The tank is empty after  t  =  8/7 hr,  that is, at  1:08:34 p.m. 
 
 (c) We see above that  k  =  (a/πb) 2g   =  14/3.  Substitution of  2, 1,a r bπ= =  

 g  =  (32)(3600)2 ft/hr2  yields  r  =  (1/60) 7 /12  ft ≈ 0.15 in  for the radius of the 
bottom-hole. 

  
60. With  g  =  32 ft/sec2  and  2(1/12) ,a π=   Equation (24) simplifies to 
 

     ( )
18

dyA y y
dt

π= − . 

 
 If  z  denotes the distance from the center of the cylinder down to the fluid surface, then   

y  =  3 – z  and  A(y)   =   10(9 – z2)1/2.  Hence the equation above becomes 
 

2 1/ 2 1/ 2

1/ 2

10(9 ) (3 ) ,
18

180(3 ) ,

dzz z
dt

z dz dt

π

π

− = −

+ =
 

 
 and integration yields 
               1/ 2120(3 ) .z t Cπ+ = +  
 
 Now  z  =  0  when  t  =  0,  so  C  =  120(3)3/2.  The tank is empty when  z  =  3  (that is, 

when   y  =  0)  and thus after 
 
         t   =   (120/π)(63/2 – 33/2)  ≈  362.90 sec. 
 
 It therefore takes about  6 min 3 sec  for the fluid to drain completely. 
 
61. 2( ) (8 )A y y yπ= −   as in Example 7 in the text, but now  /144a π=   in Equation (24), 

so the initial value problem is 
 
    18(8y –  y2)y′  =  – y ,     y(0)  =  8. 
 
 We seek the value of  t  when   y  =  0.  The answer is  t ≈ 869 sec  =  14 min 29 sec. 
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62. The cross-sectional area function for the tank is  2(1 )A yπ= −   and the area of the 
bottom-hole is  410 ,a π−=   so  Eq. (24) in the text gives the initial value problem 

 
2 4(1 ) 10 2 9.8 , (0) 1.dyy y y

dt
π π−− = − × =  

 
 Simplification gives 

( )1/ 2 3/ 2 41.4 10 10dyy y
dt

− −− = − ×  

 so integration yields 
 

1/ 2 5/ 2 422 1.4 10 10 .
5

y y t C−− = − × +  

 
 The initial condition  y(0) = 1  implies that  C  =  2 - 2/5  =  8/5,  so  y = 0  after   
   4(8 / 5) /(1.4 10 10) 3614t −= × ≈   seconds.  Thus the tank is empty at about 14 

seconds after 2 pm. 
 
63. (a) As in Example 8, the initial value problem is 
 

2(8 ) , (0) 4dyy y k y y
dt

π π− = − =  

 
 where  2 20.6 2 4.8 .k r g r= =   Integrating and applying the initial condition just in 

the Example 8 solution in the text, we find that 
 

3/ 2 5/ 216 2 448.
3 5 15

y y kt− = − +  

 
 When we substitute  y  =  2 (ft)  and  t  =  1800  (sec, that is, 30 min), we find that   
 k  ≈  0.009469.  Finally,  y  =  0  when   
 

448 3154 sec 52 min 34 sec.
15

t
k

= ≈ =  

 
 Thus the tank is empty at  1:52:34 pm. 
 
 (b) The radius of the bottom-hole is  
 

 / 4.8 0.04442 ft 0.53 in, thus about a half inch.r k= ≈ ≈  
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 64. The given rate of fall of the water level is  dy/dt  =  –4 in/hr  =  –(1/10800) ft/sec.  With  
2 2and ,A x a rπ π= =   Equation (24) is 

 
2 2 2( )(1/10800) ( ) 2 8 .x r gy r yπ π π= − = −  

 
 Hence the curve is of the form   y  =  kx4,  and in order that it pass through  (1, 4)  we 

must have  k  =  4.  Comparing  y   =  2x2  with the equation above, we see that   
 
               (8r2)(10800)  =  1/2,  
 
 so the radius of the bottom hole is  1/(240 3) ft 1/35 in.r = ≈  
 
65. Let  t  =  0  at the time of death.  Then the solution of the initial value problem 
 
    T'  =  k(70 – T),    T(0)  =  98.6 
 is 

( ) 70 28.6 .ktT t e−= +  
 
 If  t  =  a  at 12 noon, then we know that 
 

( 1)

( ) 70 28.6 80,

( 1) 70 28.6 75.

ka

k a

T t e

T a e

−

− +

= + =

+ = + =
 

 
 Hence 

28.6 10 and 28.6 5.ka ka ke e e− − −= =  
 
 It follows that  e–k  =  1/2,  so  k  =  ln 2.  Finally the first of the previous two equations 

yields 
 
   a  =  (ln 2.86)/(ln 2)  ≈  1.516 hr  ≈  1 hr  31 min, 
 
 so the death occurred at 10:29 a.m. 
      
66. Let  t  =  0  when it began to snow, and  t  =  t0  at 7:00 a.m.  Let  x  denote distance along 

the road, with  x  =  0  where the snowplow begins at 7:00 a.m.  If   y  =  ct  is the snow 
depth at time  t,  w  is the width of the road, and  v  =  dx/dt  is the plow′s velocity, then 
"plowing at a constant rate" means that the product  wyv  is  constant.  Hence our 
differential equation is of the form 

 
1.dxk

dt t
=  
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 The solution with  x  =  0  when  t  =  t0  is 
 
          t   =   t0 ekx. 
 
 We are given that  x  =  2  when  t  =  t0 + 1  and  x  =  4  when  t  =  t0 + 3,  so it follows 

that 
 
         t0 + 1  =  t0 e2k       and       t0 + 3  =  t0 e4k. 
 
 Elimination of  t0  yields the equation 
 
    e4k – 3e2k + 2  =  (e2k – 1)(e2k – 2)  =  0, 
 
 so it follows (since  k > 0) that  e2k  =  2.  Hence  t0 + 1  =  2t0,  so  t0  =  1.  Thus it began 

to snow at 6 a.m. 
 
67. We still have  t  =  t0 ekx,  but now the given information yields the conditions 
 
   t0 + 1   =   t0 e4k       and       t0 + 2   =   t0 e7k 
 
 at 8 a.m. and 9 a.m., respectively.  Elimination of  t0  gives the equation 
 
    2e4k – e7k – 1   =   0, 
 
 which we solve numerically for  k  =  0.08276.  Using this value, we finally solve one of 

the preceding pair of equations for  t0  =  2.5483 hr  ≈  2 hr 33 min.  Thus it began to 
snow at 4:27 a.m. 

 
68. (a)   Note first that if  θ  denotes the angle between the tangent line and the horizontal, 
 then  2

πα θ= −   so  2cot cot( ) tan ( ).y xπα θ θ ′= − = =   It follows that 

   
2 2 2 2

sin 1 1sin .
sin cos 1 cot 1 ( )y x

αα
α α α

= = =
′+ + +

 

 Therefore the mechanical condition  (sin ) / constantvα = (positive) with  2v gy=  
translates to 

 

   
2

1 constant,
2 1 ( )gy y

=
′+

  so   2[1 ( ) ] 2y y a′+ =  

 for some positive constant  a.  We readily solve the latter equation for the differential  
 equation 

     2 .dy a yy
dx y

−′ = =  
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 (b)   The substitution  22 sin , 4 sin cosy a t dy a t t dt= =   now gives 
 

   

2

2

2

2 2 sin cos4 sin cos ,
2 sin sin

4 sin .

a a t ta t t dt dx dx
a t t

dx a t dt

−= =

=
 

 Integration now gives 
 
   24 sin 2 (1 cos2 )x a t dt a t dt= = −∫ ∫  

   1
22 ( sin 2 ) (2 sin 2 ) ,a t t C a t t C= − + = − +  

 and we recall that  22 sin (1 cos2 ).y a t a t= = −  The requirement that  0x =  when  0t =  
  implies that  0.C =   Finally, the substitution  2tθ =  (nothing to do with the previously  
  mentioned angle  θ  of inclination from the horizontal) yields the desired parametric  
  equations 
     ( sin ),x a θ θ= −        (1 cos )y a θ= −   
 
  of the cycloid that is generated by a point on the rim of a circular wheel of radius  a  as it  
  rolls along the x-axis. [See Example 5 in Section 9.4 of  Edwards and Penney, Calculus:  
  Early Transcendentals, 7th edition (Upper Saddle River, NJ: Prentice Hall, 2008).] 
  
69. Substitution of  /v dy dx=  in the differential equation for  ( )y y x=  gives    
 

     21 ,dva v
dx

= +  

 
 and separation of variables then yields 
 

  1
1 12

; sinh ; sinh .
1
dv dx x dy xv C C

a a dx av
−  = = + = + 

 +
⌠ ⌠ ⌡⌡

 

  
 The fact that  (0) 0y′ =  implies that  1 0,C =  so it follows that 
 

         sinh ; ( ) cosh .dy x xy x a C
dx a a

   = = +   
   

 

 
 Of course the (vertical) position of the x-axis can be adjusted so that  0,C =  and the units 
 in which  andT ρ  are measured may be adjusted so that  1.a =  In essence, then the 

shape of the hanging cable is the hyperbolic cosine graph  cosh .y x=  
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SECTION 1.5 
 
LINEAR FIRST-ORDER EQUATIONS 
 
1. ( ) ( )exp 1 ; 2 ; 2 ; ( ) 2x x x x x x

xdx e D y e e y e e C y x Ceρ −= = ⋅ = ⋅ = + = +∫   

(0) 0 implies 2 so ( ) 2 2 xy C y x e−= = − = −  

 
2. ( ) ( )2 2 2 2exp ( 2) ; 3; 3 ; ( ) (3 )x x x x

xdx e D y e y e x C y x x C eρ − − −= − = ⋅ = ⋅ = + = +∫   

 2(0) 0 implies 0 so ( ) 3 xy C y x x e= = =  
 
3. ( ) ( )3 3 3 2 2 3exp 3 ; 2 ; ; ( ) ( )x x x x

xdx e D y e x y e x C y x x C eρ −= = ⋅ = ⋅ = + = +∫   

 
4. ( ) ( )2 2 2 2

exp ( 2 ) ; 1; ; ( ) ( )x x x x
xx dx e D y e y e x C y x x C eρ − − −= − = ⋅ = ⋅ = + = +∫  

 
5. ( ) ( )2ln 2 2 2 2 3exp (2 / ) ; 3 ;x

xx dx e x D y x x y x x Cρ = = = ⋅ = ⋅ = +∫   

2 2( ) / ; (1) 5 implies 4 so ( ) 4 /y x x C x y C y x x x= + = = = +  
 
6. ( ) ( )5ln 5 5 6 5 7exp (5/ ) ; 7 ;x

xx dx e x D y x x y x x Cρ = = = ⋅ = ⋅ = +∫   

2 5 2 5( ) / ; (2) 5 implies 32 so ( ) 32 /y x x C x y C y x x x= + = = = +  
 
7. ( ) ( )(ln ) / 2exp (1/ 2 ) ; 5; 5x

xx dx e x D y x y x x Cρ = = = ⋅ = ⋅ = +∫  

 ( ) 5 /y x x C x= +  
 
8. ( ) ( )(ln ) / 3 4 / 33 3 3 3exp (1/ 3 ) ; 4 ; 3x

xx dx e x D y x x y x x Cρ = = = ⋅ = ⋅ = +∫  

 1/ 3( ) 3y x x Cx−= +  
 
9. ( ) ( )lnexp ( 1/ ) 1/ ; 1/ 1/ ; 1/ lnx

xx dx e x D y x x y x x Cρ −= − = = ⋅ = ⋅ = +∫   

( ) ln ; (1) 7 implies 7 so ( ) ln 7y x x x C x y C y x x x x= + = = = +  
 
10. ( ) ( 3ln ) / 2 3/ 2exp ( 3/ 2 ) ;xx dx e xρ − −= − = =∫  

 ( )3/ 2 1/ 2 3/ 2 3/ 29 / 2; 3 ;xD y x x y x x C− −⋅ = ⋅ = +  3 3/ 2( ) 3y x x Cx= +  
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11. ( ) ( )ln 3 3 3 3exp (1/ 3) ; 0;x x x x x
xx dx e x e D y x e y x e Cρ − − − −= − = = ⋅ = ⋅ =∫  

 1 3( ) ; (1) 0 implies 0 so ( ) 0 (constant)xy x C x e y C y x−= = = ≡  

 
12. ( ) ( )3 ln 3 3 7 3 81

4exp (3/ ) ; 2 ;x
xx dx e x D y x x y x x Cρ = = = ⋅ = ⋅ = +∫   

5 3 5 31 1
4 4( ) ; (2) 1 implies 56 so ( ) 56y x x C x y C y x x x− −= + = = − = −  

 
13. ( ) ( ) 2 21

2exp 1 ; ;x x x x x
xdx e D y e e y e e Cρ = = ⋅ = ⋅ = +∫   

1 1 1 1
2 2 2 2( ) ; (0) 1 implies so ( )x x x xy x e C e y C y x e e− −= + = = = +  

 
14. ( ) ( )3ln 3 3 1 3exp ( 3/ ) ; ; lnx

xx dx e x D y x x y x x Cρ − − − − −= − = = ⋅ = ⋅ = +∫   

3 3 3 3( ) ln ; (1) 10 implies 10 so ( ) ln 10y x x x C x y C y x x x x= + = = = +  
 
15. ( ) ( )2 2 2 2 21

2exp 2 ; ;x x x x x
xx dx e D y e x e y e e Cρ = = ⋅ = ⋅ = +∫   

2 25 51 1
2 2 2 2( ) ; (0) 2 implies so ( )x xy x C e y C y x e− −= + = − = − = −  

 
16. ( ) ( )sin sin sin sin sinexp cos ; cos ;x x x x x

xx dx e D y e e x y e e Cρ = = ⋅ = ⋅ = +∫   

sin sin( ) 1 ; ( ) 2 implies 1 so ( ) 1x xy x C e y C y x eπ− −= + = = = +  
 
17. ( ) ( )( ) ( )ln(1 )exp 1/(1 ) 1 ; 1 cos ; 1 sinx

xx dx e x D y x x y x x Cρ += + = = + ⋅ + = ⋅ + = +∫   

sin 1 sin( ) ; (0) 1 implies 1 so ( )
1 1

C x xy x y C y x
x x

+ += = = =
+ +

 

 
18. ( ) ( )2ln 2 2 2exp ( 2 / ) ; cos ; sinx

xx dx e x D y x x y x x Cρ − − − −= − = = ⋅ = ⋅ = +∫   

( )2( ) siny x x x C= +  

 
19. ( ) ( )ln(sin )exp cot sin ; sin sin cosx

xx dx e x D y x x xρ = = = ⋅ =∫   

21 1
2 2sin sin ; ( ) sin cscy x x C y x x C x⋅ = + = +  
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20. ( ) ( )2 2 2/ 2 / 2 / 2exp ( 1 ) ; (1 )x x x x x x
xx dx e D y e x eρ − − − − − −= − − = ⋅ = +∫   

2 2 2/ 2 / 2 / 2; ( ) 1x x x x x xy e e C y x C e− − − − +⋅ = − + = − +  
2 / 2(0) 0 implies 1 so ( ) 1 x xy C y x e += = = − +  

 
21. ( ) ( )3ln 3 3 3exp ( 3/ ) ; cos ; sinx

xx dx e x D y x x y x x Cρ − − − −= − = = ⋅ = ⋅ = +∫   

3 3 3( ) sin ; (2 ) 0 implies 0 so ( ) siny x x x C x y C y x x xπ= + = = =  
 
22. ( ) ( )2 2 22 3exp ( 2 ) ; 3 ;x x x

xx dx e D y e x y e x Cρ − − −= − = ⋅ = ⋅ = +∫   

( ) ( )2 23 3( ) ; (0) 5 implies 5 so ( ) 5x xy x x C e y C y x x e+ += + = = = +  
 
23. ( ) ( )2 3ln 3 2 3 2 2exp (2 3/ ) ; 4x x x x x

xx dx e x e D y x e eρ − − −= − = = ⋅ =∫   

3 2 2 3 3 22 ; ( ) 2x x xy x e e C y x x C x e− −⋅ = + = +  
 
24. ( ) ( )22 3ln( 4) / 2 2 3/ 2 2 3/ 2 2 1/ 2exp 3 /( 4) ( 4) ; ( 4) ( 4)x

xx x dx e x D y x x xρ += + = = + ⋅ + = +∫   

2 3/ 2 2 3/ 2 2 3/ 21 1
3 3( 4) ( 4) ; ( ) ( 4)y x x C y x C x −⋅ + = + + = + +  

2 3/ 216 1
3 3(0) 1 implies so ( ) 1 16( 4)y C y x x − = = = + +   

 
25. First we calculate 
 

3
2 2

2 2
3 3 33 ln( 1)

1 1 2
x dx xx dx x x

x x
⌠⌠


 
⌡ ⌡

   = − = − +  + + 
. 

 
 It follows that  2 3/ 2 2( 1) exp(3 / 2)x xρ −= +  and thence that 
 

   

( )2 3/ 2 2 2 5/ 2

2 3/ 2 2 2 3/ 2

2 2 3/ 2 2

( 1) exp(3 / 2) 6 ( 4) ,

( 1) exp(3 / 2) 2( 4) ,
( ) 2exp(3 / 2) ( 1) exp( 3 / 2).

xD y x x x x

y x x x C
y x x C x x

− −

− −

⋅ + = +

⋅ + = − + +
= − + + −

 

 
 Finally,  y(0) = 1  implies that  C = 3  so the desired particular solution is 
 
      2 2 3/ 2 2( ) 2exp(3 / 2) 3( 1) exp( 3 / 2).y x x x x= − + + −  
 

Copyright © 2010 Pearson Education, Inc.  Publishing as Prentice Hall.



 Section 1.5 47 

26. With  /x dx dy′ = ,  the differential equation is  3 24 1.y x y x′ + =   Then with   y  as the 
independent variable we calculate 

 

( ) ( )4ln 4 4( ) exp (4 / ) ;y
yy y dy e y D x y yρ = = = ⋅ =∫  

  4 2
2 4

1 1; ( )
2 2

Cx y y C x y
y y

⋅ = + = +  

 
27. With  /x dx dy′ = ,  the differential equation is  .yx x y e′ − =   Then with   y  as the 

independent variable we calculate 
 

( ) ( )( ) exp ( 1) ;y y
yy dy e D x e yρ − −= − = ⋅ =∫  

  ( )2 21 1
2 2; ( )y yx e y C x y y C e−⋅ = + = +  

 
28. With  /x dx dy′ = ,  the differential equation is  2(1 ) 2 1.y x y x′+ − =   Then with   y  as the 

independent variable we calculate 
 

( ) 22 ln( 1) 2 1( ) exp ( 2 /(1 ) (1 )yy y y dy e yρ − + −= − + = = +∫  

( )2 1 2 2(1 ) (1 )yD x y y− −⋅ + = +  
 
 An integral table (or trigonometric substitution) now yields 
 

  ( )
( ) ( )

1
22 22

2 11
2

1 tan
1 2 11

( ) 1 tan

x dy y y C
y yy

x y y y y C

−

−

 = = + + + + +

 = + + + 

⌠

⌡    

 
29. ( ) ( )2 2 2 2 2

0
exp ( 2 ) ; ;

xx x x x t
xx dx e D y e e y e C e dtρ − − − − −= − = ⋅ = ⋅ = +∫ ∫   

 ( )2 1
2( ) erf ( )xy x e C xπ= +   

 
30. After division of the given equation by  2x,  multiplication by the integrating factor   
 ρ = x–1/2  yields 
 

( )
1/ 2 3/ 2 1/ 21

2

1/ 2 1/ 2

1/ 2 1/ 2

1

cos ,

cos ,

cos .

x

x

x y x y x x

D x y x x

x y C t t dt

− − −

− −

− −

′ − =

=

= + ∫
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 The initial condition   y(1)  =  0  implies that  C  =  0,  so the desired particular solution is 
 

1/ 2 1/ 2

1
( ) cos

x
y x x t t dt−= ∫ . 

 

31. (a) ( ) , so 0.
P dx

c c c cy C e P P y y P y−∫′ ′= − = − + =  
 

 (b) ( )
P dx P dx P dx P dx

p py P e Q e dx e Q e Py Q
− −  ∫ ∫ ∫ ∫′ = − ⋅ + ⋅ = − +    

⌠

⌡

 

 
32. (a) If  cos siny A x B x= +  then   
 
   ( )cos ( )sin 2siny y A B x B A x x′ + = + + − =  
 
 provided that  A = –1  and  B = 1.  These coefficient values give the particular solution   
 yp(x)  =  sin x – cos x. 
 
 (b) The general solution of the equation  0y y′ + =  is  y(x)  =  Ce–x   so addition to the 

particular solution found in part (a) gives  y(x)  =  Ce–x + sin x – cos x.    
 
 (c) The initial condition  y(0) = 1  implies that  C = 2,  so the desired particular 

solution is  y(x)  =  2e–x + sin x – cos x.  
 
33. The amount  ( )x t  of salt (in kg) after  t  seconds satisfies the differential equation  

/ 200,x x′ = −   so  / 200( ) 100 .tx t e−=   Hence we need only solve the equation  
/ 20010 100 te−=   for  t  = 461 sec = 7 min 41 sec (approximately). 

 
34. Let ( )x t  denote the amount of pollutants in the lake after  t  days, measured in millions of 

cubic feet (mft3). The volume of the lake is 8000 mft3, and the initial amount  (0)x  of  
 pollutants is  0 (0.25%)(8000) 20x = =  mft3.  We want to know when  

( ) (0.10%)(8000) 8x t = =  mft3.  We set up the differential equation in infinitesimal form 
by writing 

       [in] [out] (0.0005)(500) 500 ,
8000

xdx dt dt= − = − ⋅  

 which simplifies to 

       1 1 1, or .
4 16 16 4

dx x dx x
dt dt

= − + =  

 Using the integrating factor  /16 ,teρ =  we readily derive the solution  /16( ) 4 16 tx t e−= +  
for which  (0) 20.x =   Finally, we find that  8 when 16ln 4 22.2x t= = ≈  days. 
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35. The only difference from the Example 4 solution in the textbook is that  V = 1640 km3  
and  r = 410 km3/yr for Lake Ontario, so the time required is 

 

ln 4 4 ln 4 5.5452 years.Vt
r

= = ≈  

 
36. (a) The volume of brine in the tank after  t  min is  V(t)  =  60 – t gal,  so the initial 

value problem is 
 

32 , (0) 0.
60

dx x x
dt t

= − =
−

 

 The solution is 
3(60 )( ) (60 )

3600
tx t t −= − − . 

 
 (b) The maximum amount ever in the tank is  40 / 3 23.09 lb.≈   This occurs after  

60 20 3 25/ 36 min.t = − ≈  
 
37. The volume of brine in the tank after  t  min is  V(t)  =  100 + 2t  gal, so the initial value 

problem is 
35 , (0) 50.

100 2
dx x x
dt t

= − =
+

 

 
 The integrating factor  ( )tρ = (100 + 2t)3/2  leads to the solution 
 

3/ 2
50000( ) (100 2 )

(100 2 )
x t t

t
= + −

+
. 

 
 such that  x(0)  =  50.  The tank is full after  t  =  150 min,  at which time   
 x(150)  =  393.75 lb. 
  
38. (a) / / 20 and (0) 50dx dt x x= − =   so  / 20( ) 50 tx t e−= . 
  
 (b) The solution of the linear differential equation 
 

/ 205 5 5 1
100 200 2 40

tdy x y e y
dt

−= − = −  

 
 with   y(0)  =  50  is  

/ 40 / 20( ) 150 100 .t ty t e e− −= −  
 
 (c) The maximum value of  y  occurs when   
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  ( )/ 40 / 20 / 40 / 4015 5( ) 5 3 4 0
4 4

t t t ty t e e e e− − − −′ = − + = − − = . 

 
 We find that  ymax =  56.25 lb  when  t  =  40 ln(4/3)  ≈  11.51 min. 
 
39. (a) The initial value problem 
 

, (0) 100
10

dx x x
dt

= − =  

 
 for Tank 1 has solution  /10( ) 100 .tx t e−=   Then the initial value problem 
 

/1010 , (0) 0
10 10 10

tdy x y ye y
dt

−= − = − =  

 
 for Tank 2 has solution  /10( ) 10 .ty t t e−=  
 
  
 (b) The maximum value of  y  occurs when   
 
   /10 /10( ) 10 0t ty t e t e− −′ = − =  
  
 and thus when  t = 10.  We find that  ymax  =   y(10)  =  100e–1  ≈  36.79  gal. 
 
40. (b) Assuming inductively that  ( )/ 2 / !2n t n

nx t e n−= ,  the equation for  xn+1  is 
 

/ 2
1

1 11
1 1 1 .
2 2 ! 2 2

n t
n

n n nn
dx t ex x x

dt n

−
+

+ ++= − = −  

 
 We easily  solve this first–order equation with  1(0) 0nx + =   and find that   
 

1 / 2

1 1 ,
( 1)! 2

n t

n n
t ex

n

+ −

+ +=
+

 

 
 thereby completing the proof by induction. 
 
41. (a) A'(t)  =  0.06A + 0.12S  =  0.050.06 3.6 tA e+  
 
 (b) The solution with  A(0)  =  0  is 
 
             A(t)  =  360(e0.06 t – e0.05 t), 
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 so  A(40)  ≈  1308.283  thousand dollars. 
 
42. The mass of the hailstone at time  t  is  3 3 3(4 / 3) (4 / 3) .m r k tπ π= =   Then the equation  

d(mv)/dt  =  mg  simplifies to 
 
     tv' + 3v  =  gt. 
 
 The solution satisfying the initial condition  v(0)  =  0  is  v(t)  =  gt/4,  so  v'(t)  =  g/4. 
 
43. The solution of the initial value problem  0, ( 5)y x y y y′ = − − =   is  
 

5
0( ) 1 ( 6) .xy x x y e− −= − + +  

 
 Substituting  x = 5,  we therefore solve the equation  10

0 14 ( 6)y e y−+ + =    
 with  y1  =  3.998,  3.999,  4,  4.001,  4.002  for the desired initial values   
 y0  =  –50.0529,   –28.0265,   –6.0000,  16.0265,  38.0529,  respectively. 
 
 
44. The solution of the initial value problem  0, ( 5)y x y y y′ = + − =   is  
 

5
0( ) 1 ( 4) .xy x x y e += − − + −  

 
 Substituting  x = 5,  we therefore solve the equation  10

0 16 ( 4)y e y− + − =    
 with  y1  =  –10,  –5,  0,  5, 10  for the desired initial values   
 y0  =  3.99982,   4.00005,   4.00027,  4.00050,  4.00073,  respectively. 
 
45. With the pollutant measured in millions of liters and the reservoir water in millions of 

cubic meters, the inflow-outflow rate is  1
5 ,r =  the pollutant concentration in the inflow 

is  o 10,c =  and the volume of the reservoir is  2.V =  Substituting these values in the  
 equation  o ( / ) ,x rc r V x′ = −  we get the equation 

     12
10

dx x
dt

= −  

 for the amount  ( )x t  of pollutant in the lake after  t  months.  With the aid of the  
 integrating factor  /10 ,teρ =   we readily find that the solution with  (0) 0x =  is 

     ( )/10( ) 20 1 .tx t e−= −  

 Then we find that  10 when 10ln 2 6.93x t= = ≈  months, and observe finally that, as 
expected,  ( ) 20 as .x t t→ → ∞  
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46. With the pollutant measured in millions of liters and the reservoir water in millions of 
cubic meters, the inflow-outflow rate is  1

5 ,r =  the pollutant concentration in the inflow 
is  o 10(1 cos ),c t= +  and the volume of the reservoir is  2.V =  Substituting these values  

 in the equation  o ( / ) ,x rc r V x′ = −  we get the equation 

       1 12(1 cos ) , that is, 2(1 cos )
10 10

dx dxt x x t
dt dt

= + − + = +  

 for the amount  ( )x t  of pollutant in the lake after  t  months.  With the aid of the  
 integrating factor  /10 ,teρ =   we get 
 
   /10 /10 /10(2 2 cos )t t tx e e e t dt⋅ = +∫  

         
/10

/10
2 21

10

20 2
( ) 1

t
t ee= + ⋅

+
1 cos sin .

10
t t C + + 

 
 

  

 When we impose the condition  (0) 0,x =  we get the desired particular solution 
 

    ( )/1020( ) 101 102 cos 10sin .
101

tx t e t t−= − + +  

 In order to determine when  10,x =  we need to solve numerically.  For instance, we can  
 use the Mathematica commands 
 
  x = (20/101)(101 - 102 Exp[-t/10] + Cos[t] + 10 Sin[t]);

FindRoot[ x == 10, {t,7} ]

{t -> 6.474591767017537}

 and find that this occurs after about 6.47 months.  Finally, as  t → ∞  we observe that  
( )x t  approaches the function  20

10120 (cos 10sin )t t+ +   that does, indeed, oscillate about 
the equilibrium solution  ( ) 20.x t ≡  

 
 
SECTION 1.6 
 
SUBSTITUTION METHODS AND EXACT EQUATIONS 
 
It is traditional for every elementary differential equations text to include the particular types of 
equations that are found in this section.  However, no one of them is vitally important solely in 
its own right.  Their main purpose (at this point in the course) is to familiarize students with the 
technique of transforming a differential equation by substitution.  The subsection on airplane 
flight trajectories (together with Problems 56–59) is included as an application, but is optional 
material and may be omitted if the instructor desires. 
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The differential equations in Problems 1–15 are homogeneous, so we make the substitutions 
 

   , , .y dy dvv y v x v x
x dx dx

= = = +     
 
For each problem we give the differential equation in  x,  ( ),v x and  /v dv dx′ =  that results, 
together with the principal steps in its solution. 
 

1. ( ) ( ) ( )2 2
2

2( 1)1 2 1 ; 2 ; ln 2 1 2ln ln
2 1

v dvx v v v v x dx v v x C
v v

+′+ = − + − = − + − = − +
+ −

⌠
⌡ ∫  

 ( )2 2 2 22 1 ; 2x v v C y xy x C+ − = + − =  
 

2. ( )2 2 22 1; 2 ; ln ; lndxx v v v dv v x C y x x C
x

′ = = = + = +⌠
⌡∫  

 

3. ( )22 ; ; ln ; ln
2
dv dxx v v v x C y x x C

xv
′ = = = + = +⌠ ⌠

⌡⌡
 

 

4. ( ) ( )2 1 2
2

2(1 ) 21 1 ; ; 2 tan ln( 1) 2 ln
1

v dv dxx v v v v v x C
v x

−−′− = − + = − + = +
+

⌠ ⌠ 
⌡ ⌡

 

 ( )1 2 22 tan / ln( / 1) 2 lny x y x x C− − + = +  
 

5. ( ) 2
2

1 1 2 11 2 ; ; ln 2lndxx v v v dv v x C
v v x v

 ′+ = − + = − − = − + 
 

⌠ ⌠ ⌡⌡
 

 ln ln 2ln ; ln( )x xy x x C xy C
y y

− − = − + = +  

 

6. ( ) 2 2
2

2 1 2 12 1 2 ; ; ln 2 lndxx v v v dv v x C
v v x v

 ′+ = − + = − − = − + 
 

⌠ ⌠ ⌡⌡
 

 2 ln 2ln 2ln ; 2 lnxy x x C y y x C y
y

− − = − + = +  

 

7. ( )2 2 3 3 331; 3 ; 3ln ; 3lndxx v v v dv v x C y x x C
x

′ = = = + = +⌠
⌡∫  

 

8. ; ; ln ; ln( ln )v v vdxx v e e dv e x C v C x
x

− −′ = − = − = − + − = −⌠
⌡∫  

 ( )ln lny x C x= − −  
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9. ( )2
2

1; ; ln ; lndv dxx v v x C x y C x
v x v

′ = − = − = − + = −⌠ ⌠ 
⌡ ⌡

 

 

10. ( )2 2
2

4 42 1; ; ln 2 1 4ln ln
2 1

v dv dxx v v v v x C
v x

′ = + = + = +
+

⌠ ⌠
⌡⌡

 

 2 2 4 2 2 62 / 1 ; 2y x C x x y C x+ = + =  
 

11. ( )
2

2 3
3 2

1 1 21 ; ;
1

v dx v dxx v v v v dv dv
v v x v v x

−  ′− = + = − = + + 

⌠⌠ ⌠ ⌠  ⌡ ⌡⌡ ⌡
 

 ( ) ( ) ( )2 2 2 2ln ln 1 ln ln ; 1 ;v v x C v C x v y C x y− + = + = + = +  
 

12. 2 2

2
4; ; 4 ln

4
v dv dxx v v v v x C

xv
′ = + = + = +

+
⌠ ⌠ ⌡⌡

 

 ( ) ( )2 22 2 2 24 ln ; 4 lnv x C x y x x C+ = + + = +  
 

13. ( )2 2

2
1; ; ln 1 ln ln

1
dv dxx v v v v x C

xv
′ = + = + + = +

+
⌠ ⌠ ⌡⌡

 

 2 2 2 21 ;v v C x y x y C x+ + = + + =  
 
14. ( )2 21 1x v v v v′ = + − +  

 ( )

2 2

2

ln
1 (1 )

1 ( 1 )
2 1

ln ln

v dvx
v v

du u v
u u

dw w C
w

⌠


⌡

⌠



⌡

⌠


⌡

=
+ − +

= = +
−

= − = − +

 

 
 with   1w u= − .  Back-substitution and simplification finally yields the implicit 

solution  2 2 .x x y C− + =  
 

15. ( ) ( )2 2
2

2( 1) 4( 1) 2 2 ; ; ln 2 4ln ln
2

v dv dxx v v v v v v x C
v v x

+′+ = − + = − + = − +
+

⌠ ⌠ 
⌡ ⌡

 

 2 4 2 2 32 / ; 2v v C x x y x y C+ = + =  
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16. The substitution  v  =  x +  y + 1  leads to 
 

22 ( )
11

2 2ln(1 )

2 1 2 ln(1 1)

dv u dux v u
uv

u u C

x x y x y C

⌠ ⌠
 


⌡⌡

= = =
++

= − + +

= + + − + + + +

 

 

 17. v  =  4x +  y;     2 1
2

14; tan
4 2 2 2

dv v Cv v x
v

−′ = + = = +
+

⌠
⌡

 

 2 tan(2 ); 2 tan(2 ) 4v x C y x C x= − = − −  
 

18. v  =  x +  y;     11; 1 ln( 1)
1 1

v dvv v v x dv v v C
v v

 ′ = + = = − = − + − + + 

⌠⌠ ⌡ ⌡
 

 y  =  ln(x +  y + 1) + C. 

 
Problems 19–25 are Bernoulli equations.  For each, we indicate the appropriate substitution as 
specified in Equation (10) of this section, the resulting linear differential equation in  v,  its 
integrating factor  ρ,  and finally the resulting solution of the original Bernoulli equation. 
 
19. ( )2 2 4 2 5; 4 / 10 / ; 1/ ; / 2v y v v x x x y x Cxρ− ′= − = − = = +  
 
20. 

2 23 3 3 3; 6 18 ; ; 3x xv y v x v x e y C eρ −′= + = = = +  
 
21. ( )2 2 2 2; 2 2; ; 1/ 1x xv y v v e y Ceρ− −′= + = − = = −  
 
22. ( )3 2 6 3 7; 6 / 15/ ; ; 7 / 7 15v y v v x x x y x Cxρ− −′= − = − = = +  
 

23. ( ) 31/ 3 2 2; 2 / 1; ;v y v v x x y x C xρ
−− −′= − = − = = +  

 
24. 2 2 2 2 2; 2 / ; ; /( ln )x x xv y v v e x e y e C xρ− −′= + = = = +  
 

25. ( ) ( )3 4 3 3 4 3; 3 / 3/ 1 ; ; 3 1 / 2v y v v x x x y C x xρ′= + = + = = + +  

 
26. The substitution  v  =  y3  yields the linear equation  v' + v  =  e–x  with integrating  
 factor  ρ  =  ex.  Solution:   y3  =  e–x(x + C) 
 
27. The substitution  v  =  y3  yields the linear equation  x v' – v  =  3x4  with integrating 
 factor  ρ  =  1/x.  Solution:   y  =  (x4 +  C x)1/3 
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 28. The substitution  v  =  ey  yields the linear equation  x v' – 2v  =  2x3e2x  with integrating 
 factor  ρ  =  1/x2.  Solution:   y  =  ln(C x2 + x2e2x) 
 
29. The substitution  v  =  sin y  yields the homogeneous equation  2xv v'  =  4x2 + v2. 
 Solution:  sin2y  =  4x2 – C x 
 
30. First we multiply each side of the given equation by  ey.  Then the substitution  v  =  ey  

gives the homogeneous equation  (x + v) v'   =  x – v  of Problem 1 above. 
 Solution:  x2 – 2x ey – e2 y  =   C 
 
Each of the differential equations in Problems 31–42 is of the form  0,M dx N dy+ =  and the 
exactness condition  / /M y N x∂ ∂ = ∂ ∂  is routine to verify.  For each problem we give the 
principal steps in the calculation corresponding to the method of Example 9 in this section. 
 
31.  2(2 3 ) 3 ( ); 3 ( ) 3 2yF x y dx x xy g y F x g y x y N′= + = + + = + = + =∫  

 2 2 2( ) 2 ; ( ) ; 3g y y g y y x xy y C′ = = + + =  
 
32.  2(4 ) 2 ( ); ( ) 6yF x y dx x xy g y F x g y y x N′= − = − + = − + = − =∫  

 2 2 2( ) 6 ; ( ) 3 ; 3g y y g y y x xy y C′ = = − + =  
 
33.  2 2 3 2 2(3 2 ) ( ); 4 ( ) 4 6yF x y dx x xy g y F xy g y xy y N′= + = + + = + = + =∫  

 2 3 3 2 3( ) 6 ; ( ) 2 ; 2 2g y y g y y x xy y C′ = = + + =  
 
34.  2 2 3 2 2 2 2 3(2 3 ) ( ); 2 ( ) 2 4yF xy x dx x x y g y F x y g y x y y N′= + = + + = + = + =∫  

 3 4 3 2 2 4( ) 4 ; ( ) ;g y y g y y x x y y C′ = = + + =  
 
35.  3 4 21

4( / ) ln ( ); ln ( ) lnyF x y x dx x y x g y F x g y y x N′= + = + + = + = + =∫  

 2 3 3 21 1 1
3 4 3( ) ; ( ) ; lng y y g y y x y y x C′ = = + + =  

 
36.  (1 ) ( ); ( ) 2x y x y x y x y

yF y e dx x e g y F x e g y y x e N′= + = + + = + = + =∫  

 2 2( ) 2 ; ( ) ; x yg y y g y y x e y C′ = = + + =  
 
37.  (cos ln ) sin ln ( ); / ( ) / y

yF x y dx x x y g y F x y g y x y e N′= + = + + = + = + =∫  

 ( ) ; ( ) ; sin lny y yg y e g y e x x y e C′ = = + + =  
 

Copyright © 2010 Pearson Education, Inc.  Publishing as Prentice Hall.



 
 Section 1.6 57 

38.  1 2 11
2 2 2( tan ) tan ( ); ( )

1 1y
x x yF x y dx x x y g y F g y N
y y

− − +′= + = + + = + = =
+ +∫  

 2 2 1 21 1 1
2 2 22( ) ; ( ) ln(1 ); tan ln(1 )

1
yg y g y y x x y y C
y

−′ = = + + + + =
+

 

 
39.  2 3 4 3 3 4(3 ) ( );F x y y dx x y x y g y= + = + +∫  

 3 2 3 3 2 4 33 4 ( ) 3 4yF x y xy g y x y y xy N′= + + = + + =  

 4 5 3 3 4 51 1
5 5( ) ; ( ) ;g y y g y y x y xy y C′ = = + + =  

 
40.  ( sin tan ) sin tan ( );x xF e y y dx e y x y g y= + = + +∫  

 2 2cos sec ( ) cos secx x
yF e y x y g y e y x y N′= + + = + =  

 ( ) 0; ( ) 0; sin tanxg y g y e y x y C′ = = + =  
 

41.  
2 2 2

4 3
2 3 ( );x y x yF dx g y
y x y x

 
= − = + + 

 

⌠

⌡

 

 
2 2

2 3 2 3

2 2 1( )y
x y x yF g y N
y x y x y

′= − + + = − + + =  

 
2 2

3

1( ) ; ( ) 2 ; 2x yg y g y y y C
y xy

′ = = + + =  

 

42.  2 / 3 5/ 2 2 / 3 3/ 23 ( );
2

F y x y dx x y x y g y− − − − = − = + + 
 

⌠

⌡

 

 5/ 3 3/ 2 3/ 2 5/ 32 2( )
3 3yF x y x g y x x y N− − − −′= − + + = − =  

 2 / 3 3/ 2( ) 0; ( ) 0;g y g y x y x y C− −′ = = + =  
 
43. The substitution  ,y p y p′ ′′ ′= =  in  xy y′′ ′=  yields 

   

2 21
2

, (separable)

ln ln ln ,

,
( ) .

xp p
dp dx p x C
p x

y p Cx
y x Cx B Ax B

′ =

= ⇒ = +

′ = =
= + = +

⌠ ⌠
⌡⌡  
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44. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  ( )2 0yy y′′ ′+ =  yields 
 

   

2

2
2

0 , (separable)

ln ln ln ,

1/

( ) .
2

ypp p yp p
dp dy p y C
p y

yp C y x dy dy
p C

yx y B Ay B
C

′ ′+ = ⇒ = −

= − ⇒ = − +

= ⇒ = =

= + = +

⌠ ⌠

⌡⌡

⌠ ⌠
⌡⌡

 

 
45. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  4 0y y′′ + =  yields 
 

   

( )
2 21

2

2 2 21
2

4 0, (separable)

4 2 ,

4 2 4 ,

pp y

p dp y dy p y C

p y C C y

′ + =

= − ⇒ = − +

= − + = −
∫ ∫  

   

1

2 2

1 1 sin ,
22

( ) sin[2 2 ] (sin 2 cos2 cos2 sin 2 ),
( ) cos2 sin 2 .

dy yx dy D
p kk y

y x k x D k x D x D
y x A x B x

−= = = +
−

= − = −
= +

⌠⌠
 ⌡ ⌡

 

 
46. The substitution  ,y p y p′ ′′ ′= =  in  4xy y x′′ ′+ =  yields 
 

   

2

2

4 , (linear in )
[ ] 4 2 ,

2 ,

( ) ln .

x

xp p x p
D x p x x p x A

dy Ap x
dx x

y x x A x B

′ + =

⋅ = ⇒ ⋅ = +

= = +

= + +

 

 
47. The substitution  ,y p y p′ ′′ ′= =  in  ( )2y y′′ ′=  yields 
 

   

2

2

, (separable)
1 ,

1 ,

( ) ln .

p p
dp x dx x B
p p

dy
dx x B
y x A x A

′ =

= ⇒ − = +

= −
+

= − +

⌠

⌡ ∫
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48. The substitution  ,y p y p′ ′′ ′= =  in  2 3 2x y xy′′ ′+ =  yields 

   

2
2

3 3 2

3

2

3 23 2 , (linear in )

[ ] 2 ,
1 ,

( ) ln .

x

x p xp p p p
p x

D x p x x p x C
dy C
dx x x

Ay x x B
x

′ ′+ = ⇒ + =

⋅ = ⇒ ⋅ = +

= +

= + +

 

49. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  ( )2yy y yy′′ ′ ′+ =  yields 
 

   

2

2
2

(linear in ),
[ ] ,

1 1 ,
2 2 2

y

yp p p yp y p p y p
D y p y

y Cyp y C p
y

′ ′+ = ⇒ + =
⋅ =

+= + ⇒ =

 

   
( )

( )

2
2

1/ 22

1 2 ln ln ,

( ) .x x

y dyx dy y C B
p y C

y C Be y x A Be

= = = + −
+

+ = ⇒ = ± +

⌠ ⌠
 
⌡ ⌡  

 
50. The substitution  ,y p y p′ ′′ ′= =  in  ( )2y x y′′ ′= +  gives  2( ) ,p x p′ = +   and then the  
 substitution  , 1v x p p v′ ′= + = −   yields 

   

2 2

1
2

21
2

1 1 ,

tan ,
1

tan( ) tan( ) ,

( ) ln sec( ) .

dvv v v
dx

dv dx v x A
v

dyx y v x A x A x
dx

y x x A x B

−

′ − = ⇒ = +

= ⇒ = +
+

′+ = = + ⇒ = + −

= + − +

⌠
⌡ ∫  

 
51. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  ( )32y y y′′ ′=  yields 

   

3 2
2

3

3

12 2 ,

1 1 ,
3

3 0

dpp p yp y dy y C
p p

x dy y Cx D
p

y x Ay B

′ = ⇒ = ⇒ − = +

= = − − +

+ + + =

⌠

⌡

⌠

⌡

∫
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52. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  3 1y y′′ =  yields 
 

   

3 2
3 2

2
2

2 2

2 2

2 2

1 11 ,
2 2 2

1 1 ,
1

1 1 1,

( ) 1.

dy Ay p p p dp p
y y

Ay y dyp x dy
y p Ay

x Ay C Ax B Ay
A

Ay Ax B

′ = ⇒ = ⇒ = − +

−= ⇒ = =
−

= − + ⇒ + = −

− + =

⌠

⌡

⌠ ⌠
 

⌡⌡

∫

 

 
53. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  2y yy′′ ′=  yields 
 

   

2 2

1
2 2

2 2 ,

1 1 tan ,

p p yp dp y dy p y A

dy yx dy C
p y A A A

−

′ = ⇒ = ⇒ = +

= = = +
+

⌠ ⌠

⌡⌡

∫ ∫
 

   
1tan ( ) tan( ),

( ) tan( ).

y yA x C Ax AC
A A

y x A Ax B

− = − ⇒ = −

= +
 

 
54. The substitution  , ( / )y p y p p p dp dy′ ′′ ′= = =  in  ( )23yy y′′ ′=  yields 
 

   

2

3

3 2

2

33

ln 3ln ln ,
1 1 ,

2
( ) 1.

dp dyyp p p
p y

p y C p Cy
dyx dy B

p Cy Cy
Ay B x

′ = ⇒ =

= + ⇒ =

= = = − +

− =

⌠ ⌠
 
⌡ ⌡

⌠ ⌠

⌡⌡

 

 
55. The substitution  , ( ) /v ax by c y v ax c b= + + = − −   in  ( )y F ax by c′ = + +  yields the 
 separable differential equation  ( / ) / ( ),dv dx a b F v− =   that is,  / ( ).dv dx a b F v= +  
 
56. If  1 nv y −=   then  1/(1 )ny v −=   so  /(1 ) /(1 )n ny v v n−′ ′= − .  Hence the given Bernoulli 

equation transforms to 
 

    
/(1 )

1/(1 ) /(1 ).( ) ( )
1

n n
n n nv dv P x v Q x v

n dx

−
− −+ =

−
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 Multiplication by  /(1 )(1 ) / n nn v −−  then yields the linear differential equation  
(1 ) (1 ) .v n P v n Q v′ + − = −  

 
 
57. If  lnv y=   then  vy e=   so  .vy e v′ ′=   Hence the given equation transforms to  

( ) ( ) .v v ve v P x e Q x v e′ + =   Cancellation of the factor  ve  then yields the linear 
differential equation  ( ) ( ).v Q x v P x′ − =  

 
58. The substitution  v = ln y,  y = ev,  y' = ev v'  yields the linear equation  x v' + 2 v  =  4x2 
 with integrating factor  ρ  =  x2.  Solution:   y  =  exp(x2 + C/x2) 
 
59. The substitution  x  =  u – 1,   y  =  v – 2  yields the homogeneous equation 
 

     dv u v
du u v

−=
+

. 

  
 The substitution  v  =  pu  leads to 
 

( )2
2

( 1) 1ln ln 2 1 ln .
( 2 1) 2

p dpu p p C
p p

⌠


⌡

+
 = − = − + − − + −

 

 
We thus obtain the implicit solution  
 

( )2 2

2
2 2 2

2

2 2

2 2

2 1

2 1 2

( 2) 2( 1)( 2) ( 1)
2 2 6 .

u p p C

v vu v uv u C
u u

y x y x C
y xy x x y C

+ − =

 
+ − = + − = 

 

+ + + + − + =
+ − + + =

 

 
60. The substitution  x  =  u – 3,   y  =  v – 2  yields the homogeneous equation 
 

     2
4 3

dv u v
du u v

− +=
−

. 

  
 The substitution  v  =  pu  leads to 
 

[ ]

(4 3 ) 1 1 15ln
(3 1)( 1) 4 1 3 1

1 ln( 1) 5ln(3 1) ln .
4

p dpu dp
p p p p

p p C

⌠


⌡

 −= = − + − − + 

= − − + +

⌠

⌡  
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We thus obtain the implicit solution  
 

4
4

5 5 5

5

5

( 1) ( / 1) ( )
(3 1) (3 / 1) (3 )

(3 ) ( )
( 3 3) ( 5).

C p C v u C u v uu
p v u v u

v u C v u
x y C y x

− − −= = =
+ + +

+ = −
+ + = − −

 

 
61. The substitution  v  =  x – y  yields the separable equation  v'   =  1 – sin v.  With the aid 

of the identity 
2

2

1 1 sin sec sec tan
1 sin cos

v v v v
v v

+= = +
−

 

  
 we obtain the solution 
 
    x  =  tan(x –  y) + sec(x –  y) + C. 
 
62. The substitution  y vx=  in the given homogeneous differential equation yields the  
 separable equation  ( ) ( )3 42 1x v v v v′− = − +  that we solve as follows: 
 

   

3

4

2

2

2

2 2

3 3

2 1

2 1 1 1 (partial fractions)
1 1

ln( 1) ln ln( 1) ln ln
( 1)( 1)

( )( )

v dxdv
v v x

v dxdv
v v v v x

v v v v x C
x v v v C v
y xy x x y C xy

x y C xy

− = −
+

− − + = − − + + 

− + − + + = − +

− + + =

− + + =
+ =

⌠ ⌠
⌡⌡

⌠ ⌠ ⌡⌡
 

 
63. If we substitute  2

1 11/ , /y y v y y v v′ ′ ′= + = −  (primes denoting differentiation with 
respect to  x) into the Riccati equation  2y Ay By C′ = + +  and use the fact that 

 2
1 1 1y Ay By C′ = + + ,  then we immediately get the linear differential equation 

 1( 2 )v B A y v A′ + + = − . 
 
In Problems 64 and 65 we outline the application of the method of Problem 63 to the given 
Riccati equation. 
 
64. The substitution  1/y x v= +  yields the linear equation  2 1v x v′ − =  with integrating 

factor  
2

.xeρ −=   In Problem 29 of Section 1.5 we saw that the general solution of this 
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linear equation is  
2

2( ) erf ( )xv x e C xπ = +   in terms of the error function  erf(x) 

introduced there.  Hence the general solution of our Riccati equation is given by 
2 1

2( ) erf ( ) .xy x x e C xπ
−−  = + +   

  
65. The substitution  1/y x v= +  yields the trivial linear equation  1v′ = −  with immediate 

solution  ( ) .v x C x= −   Hence the general solution of our Riccati equation is given by 
 ( ) 1/( ).y x x C x= + −  
 
66. The substitution  y'  =  C  in the Clairaut equation immediately yields the general solution  

y  =  Cx + g(C). 
 
67. Clearly the line  y  =  Cx – C2/4  and the tangent line at  (C/2, C2/4)  to the parabola   
 y  =  x2  both have slope  C. 
 

68. ( ) ( )2ln 1 ln ln ln / kv v k x k a x a −+ + = − + =  

 ( )21 / kv v x a −+ + =  

 ( )
2

2/ 1kx a v v− − = +
 

 

 ( ) ( )2 2 2/ 2 / 1k kx a v x a v v− −− + = +  

 
21 11 /

2 2

k k k kx x x xv
a a a a

− − −          = − = −          
             

 

 
69. With  a  =  100  and  k  =  1/10,  Equation (19) in the text is 
 
    y  =  50[(x/100)9/10 – (x/100)11/10]. 
 
 The equation  y'(x)  =  0  then yields   
 
    (x/100)1/10  =  (9/11)1/2, 
 
 so it follows that 
 
   ymax  =  50[(9/11)9/2 – (9/11)11/2]  ≈  3.68 mi. 
 
70. With  0/ 10 / 500 1/10,k w v= = =  Eq. (16) in the text gives 

    ( )2 1ln 1 ln
10

v v x C+ + = − +  
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 where  / .v y x=   Substitution of   200, 150, 3/ 4x y v= = =  yields  ( )1/10ln 2 200 ,C = ⋅  
 thence  

   ( )
2

1/10
2

1ln 1 ln ln 2 200 ,
10

y y x
x x

 
+ + = − + ⋅ 

 
 

 

 
 which — after exponentiation and then multiplication of the resulting equation by  x — 
 simplifies as desired to  ( )1/102 2 92 200 .y x y x+ + =   If  0x =   then this equation 
 yields   0,y = thereby  verifying that the airplane reaches the airport at the origin. 
 
71. (a) With  a = 100 and  0/ 2 / 4 1/ 2,k w v= = =  the solution given by equation (19) in 

the textbook is  y(x)  =  50[(x/100)1/2 – (x/100)3/2].  The fact that  y(0)  =  0  means that 
this trajectory goes through the origin where the tree is located. 

 
 (b) With  k = 4/4 = 1  the solution is  y(x)  =  50[1 – (x/100)2]  and we see that the 

swimmer hits the bank at a distance  y(0)  =  50  feet north of the tree. 
 
 (c) With  k = 6/4 = 3/2 the solution is  y(x)  =  50[(x/100)–1/2 – (x/100)5/2].  This 

trajectory is asymptotic to the positive x-axis, so we see that the swimmer never reaches 
the west bank of the river. 

 
72. The substitution  ,y p y p′ ′′ ′= =  in  2 3/ 2[1 ( ) ]ry y′′ ′= +   yields 

   2 3/ 2
2 3/ 2(1 ) .

(1 )
r dprp p dx

p
′ = + ⇒ =

+
⌠

⌡ ∫  

 Now integral formula #52 in the back of our favorite calculus textbook gives 

   2 2 2 2

2
(1 )( ) ,

1
rp x a r p p x a

p
= − ⇒ = + −

+
 

 and we solve readily for 

   
2

2
2 2 2 2

( ) ,
( ) ( )

x a dy x ap p
r x a dx r x a

− −= ⇒ = =
− − − −

 

 whence 

   2 2

2 2

( ) ( ) ,
( )

x a dxy r x a b
r x a

−= = − − − +
− −

⌠

⌡

 

 which finally gives  2 2 2( ) ( )x a y b r− + − =   as desired. 
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CHAPTER 1 Review Problems 
 
The main objective of this set of review problems is practice in the identification of the different 
types of first-order differential equations discussed in this chapter.  In each of Problems 1–36 we 
identify the type of the given equation and indicate an appropriate method of solution. 
 
1. If we write the equation in the form  2(3/ )y x y x′ − =  we see that it is linear with 

integrating factor  3.xρ −=   The method of Section 1.5 then yields the general solution   
 y  =  x3(C + ln x). 
 
2. We write this equation in the separable form  2 2/ ( 3) / .y y x x′ = +   Then separation of 

variables and integration as in Section 1.4 yields the general solution   
 y  =  x / (3 –  Cx – x ln x). 
 
3. This equation is homogeneous.  The substitution  y vx=  of Equation (8) in Section 1.6 

leads to the general solution y  =  x/(C – ln x). 
 
4. We note that  ( ) ( )3 2 2 22 3 sin 6 ,x

y xD xy e D x y y xy+ = + =   so the given equation is 
exact.   The method of Example 9 in Section 1.6 yields the implicit general solution 

 x2y3 + ex – cos  y  =  C. 
 
5. We write this equation in the separable form  2 4/ (2 3) / .y y x x′ = −   Then separation  
 of variables and integration as in Section 1.4 yields the general solution   
 y  =  C exp[(1 – x)/x3]. 
 
6. We write this equation in the separable form  2 2/ (1 2 ) / .y y x x′ = −   Then separation  
 of variables and integration as in Section 1.4 yields the general solution   
 y  =  x / (1 + Cx + 2x ln x). 
 
7. If we write the equation in the form  3(2 / ) 1/y x y x′ + =  we see that it is linear with 

integrating factor  2.xρ =   The method of Section 1.5 then yields the general solution   
 y  =  x–2(C + ln x). 
 
8. This equation is homogeneous.  The substitution  y vx=  of Equation (8) in Section 1.6 

leads to the general solution y  =  3Cx/(C – x3). 
 
9. If we write the equation in the form  (2 / ) 6y x y x y′ + =  we see that it is a Bernoulli 

equation with  n  =  1/2.  The substitution  1/ 2v y−=  of Eq. (10) in Section 1.6 then 
yields the general solution  y  =  (x2 + C/x)2. 

 
10. We write this equation in the separable form  ( )2 2/ 1 1 .y y x′ + = +   Then separation  
 of variables and integration as in Section 1.4 yields the general solution   
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 y  =  tan(C + x + x3/3). 
 
11. This equation is homogeneous.  The substitution  y vx=  of Equation (8) in Section 1.6 

leads to the general solution  y  =  x / (C – 3 ln x). 
 
12. We note that  ( ) ( )3 4 2 2 3 2 36 2 9 8 18 8 ,y xD xy y D x y xy xy y+ = + = +   so the given 

equation is exact.  The method of Example 9 in Section 1.6 yields the implicit general 
solution  3x2y3 + 2xy4  =   C. 

 
13. We write this equation in the separable form  2 4/ 5 4 .y y x x′ = −   Then separation  
 of variables and integration as in Section 1.4 yields the general solution     
 y  =  1 / (C + 2x2 – x5). 
 
14. This equation is homogeneous.  The substitution  y vx=  of Equation (8) in Section 1.6 

leads to the implicit general solution  y2  =  x2 / (C + 2 ln x). 
 
15. This is a linear differential equation with integrating factor  3 .xeρ =   The method of 

Section 1.5 yields the general solution   y  =  (x3 + C)e-3x. 
 
16. The substitution  , , 1v y x y v x y v′ ′= − = + = +   gives the separable equation  

2 21 ( )v y x v′ + = − =  in the new dependent variable  v.  The resulting implicit general 
solution of the original equation is  y – x – 1  =  C e2x(y – x + 1).  

 
17. We note that  ( ) ( ) ,x x y y x y x y x y

y xD e y e D e x e e xy e+ = + = +   so the given equation is 
exact.  The method of Example 9 in Section 1.6 yields the implicit general solution   

 ex + ey + ex y  =   C. 
 
18. This equation is homogeneous.  The substitution  y vx=  of Equation (8) in Section 1.6 

leads to the implicit general solution  y2  =   Cx2(x2 –  y2). 
 
19. We write this equation in the separable form  ( )2 5 3/ 2 3 / .y y x x′ = −   Then separation  
 of variables and integration as in Section 1.4 yields the general solution 
 y  =  x2 / (x5 + Cx2 + 1). 
 
20. If we write the equation in the form  5/ 2(3/ ) 3y x y x−′ + =  we see that it is linear with 

integrating factor  3.xρ =   The method of Section 1.5 then yields the general solution   
 y  =  2x–3/2 +  Cx–3. 
 
21. If we write the equation in the form  ( ) 21/( 1) 1/( 1)y x y x′ + + = −  we see that it is linear 

with integrating factor  1.xρ = +   The method of Section then 1.5 yields the general 
solution  y  =  [C + ln(x – 1)] / (x + 1). 
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22. If we write the equation in the form  3 2 / 3(6 / ) 12y x y x y′ − =  we see that it is a Bernoulli 
equation with  n  =  1/3.  The substitution  2 / 3v y−=  of Eq. (10) in Section 1.6 then 
yields the general solution  y  =  (2x4 +  Cx2)3. 

 
23. We note that  ( ) ( )cos sin cos ,y y y

y xD e y x D x e x e x+ = + = +   so the given equation  
 is exact.  The method of Example 9 in Section 1.6 yields the implicit general solution   
 x ey +  y sin x  =  C . 
 
24. We write this equation in the separable form  ( )2 2 3/ 2/ 1 9 / .y y x x′ = −   Then separation  
 of variables and integration as in Section 1.4 yields the general solution     
 y  =  x1/2 / (6x2 + Cx1/2 + 2). 
 
25. If we write the equation in the form  ( )2 /( 1) 3y x y′ + + =  we see that it is linear with 

integrating factor  ( )21 .xρ = +   The method of Section 1.5 then yields the general 
solution  y  =  x + 1 + C (x + 1)–2. 

 
26. We note that  ( ) ( )1/ 2 4 / 3 1/5 3/ 2 3/ 2 1/ 3 6 / 5 1/ 29 12 8 15y xD x y x y D x y x y− = − =    

 1/ 2 1/ 3 1/5 1/ 212 18 ,x y x y− so the given equation is exact.  The method of Example 9 in 
Section 1.6 yields the implicit general solution  6x3/2y4/3 – 10x6/5y3/2  =  C. 

 
27. If we write the equation in the form  2 4(1/ ) / 3y x y x y′ + = −  we see that it is a Bernoulli 

equation with  n  =  4.  The substitution  3v y−=  of Eq. (10) in Section 1.6 then yields 
the general solution  y  =  x–1(C + ln x)–1/3. 

 
28. If we write the equation in the form  2(1/ ) 2 /xy x y e x′ + =  we see that it is linear with 

integrating factor  .xρ =   The method of Section 1.5 then yields the general solution   
 y  =  x–1(C + e2x). 
 
29. If we write the equation in the form  ( ) 1/ 21/(2 1) (2 1)y x y x′ + + = +  we see that it is 

linear with integrating factor  ( )1/ 22 1 .xρ = +   The method of Section 1.5 then yields  
 the general solution y  =  (x2 + x + C)(2x + 1)–1/2. 
 
30. The substitution  , , 1v x y y v x y v′ ′= + = − = −   gives the separable equation  

1v v′ − =  in the new dependent variable  v.  The resulting implicit general solution of 
the original equation is  x  =  2(x +  y)1/2 – 2 ln[1 + (x +  y)1/2] + C. 

 
31. 2/( 7) 3dy y x dx+ = is separable;  2 23 21y x y x′ + = is linear. 
 
32. 2/( 1)dy y x dx− = is separable;  3y x y x y′ + = is a Bernoulli equation with  n = 3. 
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33. 2 2(3 2 ) 4 0x y dx xy dy+ + = is exact;  ( )1

4 3 / 2 /y x y y x′ = − + is homogeneous.   
 

34. ( 3 ) (3 ) 0x y dx x y dy+ + − = is exact;  1 3 /
/ 3

y xy
y x
+′ =

−
is homogeneous. 

 
35. ( )2/( 1) 2 / 1dy y x dx x+ = + is separable;  ( )2 22 /( 1) 2 /( 1)y x x y x x′ − + = + is linear.  
 
36. ( )/ cotdy y y x dx− = is separable;   (cot ) (cot )y x y x y′ + = is a Bernoulli equation  

with  n = 1/2. 
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