INSTRUCTOR’S RESOURCE GUIDE
SOLUTIONS TO PROGRAMMING PROJECTS
TO ACCOMPANY

PROBLEM

SOLVING

WITH

C++

Tenth Edition

Walter Savitch

UNIVERSITY OF CALIFORNIA, SAN DIEGO

http://www.pearsonhighered.com/savitch/
and please visit our general computer science and engineering web site at:

http://www.pearsonhighered.com/cs/
Copyright © 2018 by Pearson Education, Inc.
All right reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photo-copying, recording, or any other media embodiments now known or hereafter to become known, without the prior written permission of the publisher. Manufactured in the United States of America.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where these designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

The programs and the applications presented in this book have been included for their instructional value. They have been tested with care but are not guaranteed for any particular purpose. The publisher does not offer any warranties or representations, nor does it accept any liabilities with respect to the programs or applications.

Pearson Education Inc.
501 Boylston St., Suite 900

Boston, MA 02116

Contents

Preface

Chapter 1 Introduction to Computers and C++ Programming

Chapter 2 C++ Basics

Chapter 3 More Flow of Control

Chapter 4 Procedural Abstraction and Functions that Return a Value

Chapter 5 Functions for all Subtasks

Chapter 6 I/O Streams as an Introduction to Objects and Classes

Chapter 7 Arrays

Chapter 8 Strings and Vectors

Chapter 9 Pointers and Dynamic Arrays

Chapter 10 Defining Classes

Chapter 11 Friends, Overloaded Operators, and Arrays in Classes
Chapter 12 Separate Compilation and Namespaces

Chapter 13 Pointers and Linked Lists

Chapter 14 Recursion

Chapter 15 Inheritance

Chapter 16 Exception Handling

Chapter 17 Templates

Chapter 18 Standard Template Library and C++11
Preface

This is a document that is meant to be a supplement the text for the instructor. There is a discussion of the ideas in each chapter, teaching suggestions, and some supplementary ideas. There are solutions to many of the programming problems. Some problems have several different solutions that correspond to different paths through the book. The test bank contains 25 to 50 test questions with answers for each chapter. The questions are of both short answer (multiple choice, true false, fill in the blank) type as well as read-the-code questions and short programming problems. I urge that explanations to the short answer questions be required of the student.

With regard to the content of this manual, it should be noted that C++ leaves many options on how to do any problem, and any book will necessarily choose a subset to present. Our author has made such a set of choices. I have also made what I hope is a complementary set of choices for this Instructor's resource Manual. I am striving to produce a complementary document to the text, a document for the instructor, but I necessarily will do some things differently. Please do not hold the student responsible for what I have put here. The reader of this document must note that it is necessary to read the text, as that is what the student has to work with. In spite of our efforts at consistency of content and style, there will be some variance between some of the presentation here and the presentation in the text.

The code has been compiled and tested with g++ (gcc 4.8.4) and Visual Studio C++ .NET 2017. Much of the code will work on Visual Studio C++ 6.0 updated to service pack 6 but a newer compiler is recommended that is compliant with C++11. The text uses only mainstream features of C++, consequently, most compilers will compile the code and produce output that does not differ significantly from the results presented here. We have attempted to supply warnings where any of these compilers gives trouble.

Instructor's Resource Manual

for

Savitch, Problem Solving with C++

Chapter 1

Introduction to Computers and C++ Programming

This document is intended to be a resource guide for instructors using Savitch, Problem Solving with C++. This guide follows the text chapter by chapter. Each chapter of this guide contains the following sections:

1. Solutions to, and remarks on, selected Programming Projects

2. Outline of topics in the chapter

3. General remarks on the chapter

Solutions and remarks on selected Programming Projects

These programming exercises are intended to help familiarize the student with the programming environment. Solutions are very system dependent. Consequently, only two solutions are provided for the programming projects in this chapter.

Programming Project 3. Change calculator

// Ch1 Programming Project 3.cpp

//

// This program calculates the monetary value of a number of

// quarters, dimes, and nickels.

// ***

#include <iostream>

using namespace std;

// ====================

// main function

// ====================

int main()

{

 int quarters, dimes, nickels, total;

 // Input coins

 cout << "Enter number of quarters." << endl;

 cin >> quarters;

 cout << "Enter number of dimes." << endl;

 cin >> dimes;

 cout << "Enter number of nickels." << endl;

 cin >> nickels;

 // Calculate and output total

 total = (quarters * 25) + (dimes * 10) + (nickels * 5);

 cout << "The monetary value of your coins is " << total << " cents." << endl;

 return 0;

}

Programming Project 4. Distance in freefall
// Ch1 Programming Project 4.cpp

// This program allows the user to enter a time in seconds

// and then outputs how far an object would drop if it is
// in freefall for that length of time
#include <iostream>

using namespace std;

int main()

{

 int ACCELERATION = 32;

 // Declare integer variables for the time and distance. A later

 // chapter will describe variables that can hold non-integer numbers.

 int time, distance;

 // Prompt the user to input the time

 cout << "Enter the time in seconds, that the object falls: ";

 cin >> time;

 // Compute the distance

 distance = ACCELERATION/2 * time * time;

 cout << "\nThe object will fall " << distance << " feet in "

 << time << " seconds.\n";

 return 0;

}

Outline of Topics in the Chapter 1

1.1 Computer Systems

1.2 Programming and Problem-Solving

1.3 Introduction to C++

1.4 Testing and Debugging

Suggested course outlines:

There seem to be three major approaches to teaching C++ as the first course in programming. In the one approach, classes and objects are done very early, frequently with a library of some sort that must be used with the text. In another, all of the ANSI C subset of C++ is covered prior to even mentioning classes or objects. This text takes a third road that is more middle of the road. Here, enough of the control constructs and functions are covered prior to doing classes and objects. However, reorderings of the chapters are possible that allow any of these approaches.

Here is a "classes early" course that follows the text closely. This outline assumes no background in computing. Topics beyond Chapter 11 may be studied as time permits.

Day
days allotted

1
1
Startup business

2-3
2
Chapter 1: Introduction to Computers

4-8
5
Chapter 2: C++ Basics. If the students have programming experience, the time spent can be significantly reduced.

 9-11
3
Chapter 3: Flow of control
12-14
3
Chapter 4: Procedural Abstraction
Test 1

16-18
3
Chapter 5: Functions for all subtasks
19-22
4
Chapter 6: I/O Streams
23-27
5
Chapter 7: Arrays
Test 2

29-32
4
Chapter 8: Strings and Vectors

Chapter 9: Pointers and Dynamic Arrays
33-37
5
Chapter 10: Classes
38-41
3
Chapter 11: Friends and Overloaded Operators
Test 3

5
Chapter 12 Separate compilation and namespaces

3
Chapter 13 Pointers and Linked Lists

3
Chapter 14: Recursion

3
Chapter 15: Inheritance

3
Chapter 16: Exception Handling

3
Chapter 17: Templates

2
Chapter 18: Standard Template Library and C++11
Reorderings:

The author suggests a reordering in the preface that allow almost all of ANSI C (with the tighter C++ type-checking) to be covered before classes. Several variants on this reordering that allow classes a bit earlier are presented in the text. The author describes interdependency of the chapters in the preface of the text. Other reorderings are certainly possible.

Chapter 1:

The student should do all the programming assignments in this chapter. These teach the locally available program development system and familiarize the student with some of the more common compiler errors. Error messages are quite specific to the compiler being used. It is very important that the student learn these ideas as early as possible.

Outline of topics in the chapter:

1.1 Computer Systems

1.2 Programming and Problem-Solving

1.3 Introduction to C++

1.4 Testing and Debugging

General remarks on the chapter

This chapter serves as an introduction to computers and the language of computers for those students who have no computer experience. The terminology is very important. Many students only want to learn how the programming language works, and seem to be unhappy when they find that they are required to learn the terminology associated with the language. The students who learn the terminology have less trouble by far with this course.

Students should be given an indication of the amount of work that must be done before coding begins. There are instances where several man-years of work have gone into software before a single line of code was written.

Emphasize the importance of the problem-solving phase of program design. This will save the student work in the long run. It is further important to emphasize that the problem definition and algorithm design phases may need correcting once the actual coding and testing is in process. This is true even if the algorithm was carefully desktop tested. Emphasize that the program design process is an 'iterative' process. You make a start, test, correct and repeat until you have a solution.

It is a fact that the sooner the coding is started (on most problems), the longer the problem will take to finish. My students insist on learning this the hard way. The algorithm design can be given a boost by dividing the problem definition into INPUT, PROCESS, OUTPUT phases. The algorithm will be primarily concerned with PROCESS, but frequently just getting information into the computer, or out of the computer in a desirable format is a significant part of the task, if not the whole problem.

In the text, Section 1.4, subsection "Kinds of Program Errors", there is a discussion of compiler error messages. The error message from g++ when the wrong operator << or >> is used for input or output, is something like errormessage.cpp:8: no match for `_IO_ostream_withassign & >> int. The point is that compiler error messages are not clear, and anything your can do to help students to associate error messages with errors that cause them will help the student to gain some intuition in debugging based on compiler messages.

Encourage students to put only one statement per line. When errors are made, as they inevitably are, the compiler is better able to tell us which is the offending statement. The cost is little for the convenience gained in ability to find errors. The student should take compiler warnings to heart. If the compiler warns about something, and the student is not absolutely certain what the message is warning about, the student should treat the warning like the error that it probably is. The bottom line is that all warnings (in the first course, at least) should be treated as errors. Compilers vary with respect to what is reported as an error and what is reported with a warning. The GNU project C++ compiler, g++ is more permissive by default. Encourage your students to compile using

g++ -W -Wall --pedantic file.cpp

This provides error messages that are close to the lint C-code checker.

GNU g++ 4.7 and Visual Studio 2013 very nearly meet the C++11 Standard. With g++ you may need to add the –std=c++11 flag to compile with C++11.

The student should be encouraged to ask the compiler questions about the C++ language, to create examples and to actually test the questions on the computer. The compiler is the final authority on the version of the language that the compiler accepts, regardless of the ISO Standard. An example is Practice Program 6, where the student is asked to type in a simple program, then test the effect of deliberately introducing common errors.

5

Copyright © 2018 Pearson Education, Inc.

