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CHAPTER 1 
 

1.1 Use calculus to solve Eq. (1.9) for the case where the initial velocity υ(0) is nonzero. 

 

We will illustrate two different methods for solving this problem: (1) separation of variables, and (2) 

Laplace transform. 

 

dv c
g v

dt m
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Separation of variables: Separation of variables gives 
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The integrals can be evaluated as 
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where C = a constant of integration, which can be evaluated by applying the initial condition to yield 
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which can be substituted back into the solution 
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This result can be rearranged algebraically to solve for v, 
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where the first part is the general solution and the second part is the particular solution for the constant 

forcing function due to gravity. For the case where, v(0) = 0, the solution reduces to Eq. (1.10) 
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Laplace transform solution: An alternative solution is provided by applying Laplace transform to the 

differential equation to give 
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Solve algebraically for the transformed velocity 

 

(0)
( )

/ ( / )
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The second term on the right of the equal sign can be expanded with partial fractions 
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By equating like terms in the numerator, the following must hold 

 

                         0
c

g A As Bs
m

    

 

The first equation can be solved for A = mg/c. According to the second equation, B = –A, so B = –mg/c. 

Substituting these back into (2) gives 
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This can be substituted into Eq. 1 to give 
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Taking inverse Laplace transforms yields 
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or collecting terms 
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1.2 Repeat Example 1.2. Compute the velocity to t = 10 s, with a step size of (a) 1 and (b) 0.5 s. Can 

you make any statement regarding the errors of the calculation based on the results? 

 

At t = 10 s, the analytical solution is 44.91893 (Example 1.1). The relative error can be calculated with 

 

analytical numerical
relative true error  100%

analytical


   

 

The numerical results are: 

 

step v(10) 
magnitude of 
relative error 

2 48.0179 6.899% 
1 46.4112 3.322% 

0.5 45.6509 1.630% 

The error versus step size can then be plotted as 
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Thus, halving the step size approximately halves the error. 

 

1.3 Rather than the linear relationship of Eq. (1.7), you might choose to model the upward force on the 

parachutist as a second-order relationship, 

 
U

F c v v= - ¢ ∣ ∣  

where c′ = a bulk second-order drag coefficient (kg/m). Note that the second-order term could be 

represented as v
2
 if the parachutist always fell in the downward direction. For the present case, we use the 

more general representation, v v∣ ∣, so that the proper sign is obtained for both the downward and the 

upward directions. 

(a) Using calculus, obtain the closed-form solution for the case where the jumper is initially at rest  

(υ = 0 at t = 0). 

(b) Repeat the numerical calculation in Example 1.2 with the same initial condition and parameter values, 

but with second-order drag. Use a value of 0.225 kg/m for cd′. 

 

(a) You are given the following differential equation with the initial condition, v(t = 0) = 0, 
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Multiply both sides by m/c′ gives 
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Integrate by separation of variables, 
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A table of integrals can be consulted to find that 
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Therefore, the integration yields 
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If v = 0 at t = 0, then because tanh
–1

(0) = 0, the constant of integration C = 0 and we obtain the equation 
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This result can then be rearranged to solve for v 
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(b) Using Euler’s method, the first two steps are computed 

 

20.225
(2) 0 9.81 (0) 2 19.62

68.1
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6
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The computation can be continued and the results summarized along with the analytical result as: 

 

t v-numerical dv/dt v-analytical 

0 0 9.81 0 

2 19.62 8.538157 18.8138836 

4 36.69631454 5.360817 33.61984724 

6 47.41794779 2.381162 43.22542283 

8 52.18027088 0.814029 48.7004867 

10 53.80832813 0.243911 51.59332241 

12 54.29615076 0.069674 53.06072073 

 54.48999908 0 54.48999908 
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A plot of the numerical and analytical results can be developed 

 

 
 

 

1.4 For the free-falling parachutist with linear drag, assume a first jumper is 70 kg and has a drag 

coefficient of 12 kg/s. If a second jumper has a drag coefficient of 15 kg/s and a mass of 75 kg, how long 

will it take him to reach the same velocity the first jumper reached in 10 s? 
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Solve the equation for time as a function of velocity 

ln 1
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jumper #1: (12 / 70) 99.81(70)
( ) (1 64 .91922)

12
v t e


    

jumper #2: 
(15 / 75)9.81(75)

(1 )46.91922
15

t
e


   

75 15(46.91922)
ln 1 15.68175

15 75(9.81)
t

æ ö
÷ç ÷= - - =ç ÷ç ÷çè ø

  

The second jumper will reach the t=10 s velocity of the first jumper after about 15.68 seconds. 

 

1.5 Compute the velocity of a parachutist using Euler’s method for the case where m = 80 kg and  

c = 10 kg/s. Perform the calculation from t = 0 to 20 s with a step size of 1 s. Use an initial condition that 

the parachutist has an upward velocity of 20 m/s at t = 0. At t = 10 s, assume that the chute is 

instantaneously deployed so that the drag coefficient jumps to 50 kg/s. 

 

Before the chute opens (t < 10), Euler’s method can be implemented as 

 

10
( ) ( ) 9.81 ( )

80
v t t v t v t t

 
     

 
 

 

 

  

0 

10 

20 

30 

40 

50 

60 

0 2 4 6 8 10 12 14 

ve
lo

ci
ty

 (
m

/s
) 

time (s) 

Second Order Drag 

Euler Approx dt = 2 

Analytical 



6 

 

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior 

written consent of McGraw-Hill Education. 

After the chute opens (t  10), the drag coefficient is changed and the implementation becomes 

 

50
( ) ( ) 9.81 ( )

80
v t t v t v t t

 
     

 
 

 

Here is a summary of the results along with a plot: 

 

Chute closed Chute opened 
t v dv/dt t v dv/dt 

0 -20.00000 12.31000 10 52.57232 -23.04770 
1 -7.69000 10.77125 11 29.52462 -8.64289 
2 3.08125 9.42484 12 20.88173 -3.24108 
3 12.50609 8.24674 13 17.64065 -1.21541 
4 20.75283 7.21590 14 16.42524 -0.45578 
5 27.96873 6.31391 15 15.96947 -0.17092 
6 34.28264 5.52467 16 15.79855 -0.06409 
7 39.80731 4.83409 17 15.73446 -0.02404 
8 44.64139 4.22983 18 15.71042 -0.00901 
9 48.87122 3.70110 19 15.70141 -0.00338 

   20 15.69803 -0.00127 

 

 
 

1.6 The following information is available for a bank account: 

 

Date Deposits Withdrawals Interest Balance 

5/1    1512.33 

 220.13 327.26   

6/1     

 216.80 378.61   

7/1     

 450.25 106.80   

8/1     
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Note that the money earns interest, which is computed as 

 Interest
i

iB=  

where i = the interest rate expressed as a fraction per month and Bi = the initial balance at the beginning of 

the month. 

(a) Use the conservation of cash to compute the balance on 6/1, 7/1, 8/1, and 9/1 if the interest rate is  

1% per month (i = 0.01/month). Show each step in the computation. 

(b) Write a differential equation for the cash balance in the form  

 ( ( ), ( ), )
dB

f D t W t i
dt
=  

where t = time (months), D(t) = deposits as a function of time ($/month), W(t) = withdrawals as a 

function of time ($/month). For this case, assume that interest is compounded continuously; that is, 

interest = iB. 

(c) Use Euler’s method with a time step of 0.5 month to simulate the balance. Assume that the deposits 

and withdrawals are applied uniformly over the month. 

(d) Develop a plot of balance versus time for (a) and (c). 

 

(a) This is a transient computation. For the period ending June 1: 

 

Balance = Previous Balance + Deposits – Withdrawals + Interest 

Balance = 1522.33 + 220.13 – 327.26 + 0.01(1522.33) = 1430.42 

 

Note that the interest added to the account is for maintaining the account the previous month; for example, 

the interest collected during from May 1 to June 1 is calculated on the May 1
st
 balance.   

The balances for the remainder of the periods can be computed in a similar fashion as tabulated below:  

 
Date Deposit Withdrawal Interest Balance 

1-May     $  1,512.33  
  $  220.13   $  327.26   $    15.12   

1-Jun     $  1,420.32  
  $  216.80   $  378.61   $    14.20   

1-Jul     $  1,272.72  
  $  450.25   $  106.80   $    12.73   

1-Aug     $  1,628.89  
  $  127.31   $  350.61   $    16.29   

1-Sep     $  1,421.88  

 

(b) ( ) ( )
dB

D t W t iB
dt

    

 

(c) for t = 0 to 0.5: 

220.13 327.26 0.01(1512.33) 92.01
dB

dt
       

(0.5) 1512.33 92.01(0.5) 1466.33B      

 

for t = 0.5 to 1: 

220.13 327.260 0.01(1466.33) 92.47
dB

dt
       

(0.5) 1466.33 92.47(0.5) 1420.09B      
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The balances for the remainder of the periods can be computed in a similar fashion as tabulated below. 

Parenthesis indicate negative numbers.   

 

Date Deposit Withdrawal Interest dB/dt Balance 

1-May $  220.13 $       327.26 $    15.12 $     (92.01) $   1,512.33 
16-May $  220.13 $       327.26 $    14.66 $     (92.47) $   1,466.33 
1-Jun $  216.80 $       378.61 $    14.20 $   (147.61) $   1,420.09 
16-Jun $  216.80 $       378.61 $    13.46 $   (148.35) $   1,346.29 
1-Jul $  450.25 $       106.80 $    12.72 $     356.17 $   1,272.12 

16-Jul $  450.25 $       106.80 $    14.50 $     357.95 $   1,450.20 
1-Aug $  127.31 $       350.61 $    16.29 $   (207.01) $   1,629.18 

16-Aug $  127.31 $       350.61 $    15.26 $   (208.04) $   1,525.67 
1-Sep     $   1,421.65 

 

(d) As in the plot below, the results of the two approaches are very close. 

 

 
 

1.7 The amount of a uniformly distributed radioactive contaminant contained in a closed reactor is 

measured by its concentration c (becquerel/liter, or Bq/L). The contaminant decreases at a decay 

rate proportional to its concentration—that is, 

 decay rate kc= -  

where k is a constant with units of day
−1

. Therefore, according to Eq. (1.13), a mass balance for the reactor 

can be written as 

change decrease

in m ass by decay

dc
kc

dt
= -

æ ö æ ö
÷ ÷ç ç=÷ ÷ç ç÷ ÷ç çè ø è ø

 

(a) Use Euler’s method to solve this equation from t = 0 to 1 d with k = 0.2 d
−1

. Employ a step size of  

Δt = 0.1. The concentration at t = 0 is 10 Bq/L. 

(b) Plot the solution on a semilog graph (i.e., ln c versus t) and determine the slope. Interpret your results. 
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(a) The first two steps are 

 

(0.1) 100 0.2(10)0.1 9.8 Bq/Lc      

(0.2) 9.80 0.2(9.80)0.1 9.604 Bq/Lc      

 

The process can be continued to yield 

 

t c dc/dt 

0 10.0000 -2.0000 
0.1 9.8000 -1.9600 
0.2 9.6040 -1.9208 
0.3 9.4119 -1.8824 
0.4 9.2237 -1.8447 
0.5 9.0392 -1.8078 
0.6 8.8584 -1.7717 
0.7 8.6813 -1.7363 
0.8 8.5076 -1.7015 
0.9 8.3375 -1.6675 

1 8.1707 -1.6341 

 

(b) The results when plotted on a semi-log plot yields a straight line 

 

 
 

The slope of this line can be estimated from the first and last points as 

 

ln(8.1707) ln(10)
0.2020

1


    

 

Thus, the slope is approximately equal to the negative of the decay rate, within 10%. If we had used a 

smaller step size, the result would be more exact. A linear regression fit is shown on the graph using all 

points.  
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1.8 A group of 35 students attend a class in a room that measures 11 m by 8 m by 3 m. Each student 

takes up about 0.075 m
3
 and gives out about 80 W of heat (1 W = 1 J/s). Calculate the air temperature rise 

during the first 15 minutes of the class if the room is completely sealed and insulated. Assume the heat 

capacity, Cυ, for air is 0.718 kJ/(kg K). Assume air is an ideal gas at 20°C and 101.325 kPa. Note that the 

heat absorbed by the air Q is related to the mass of the air m, the heat capacity, and the change in 

temperature by the following relationship: 

 

2

1

2 1( )
T

T

Q m C dT m C T T   
 

The mass of air can be obtained from the ideal gas law: 

 M w t

m
PV RT

 

where P is the gas pressure, V is the volume of the gas, Mwt is the molecular weight of the gas (for air, 

28.97 kg/kmol), and R is the ideal gas constant [8.314 kPa m
3
/(kmol K)]. 

 

students

J s kJ
35 ind 80 15 min 60 2, 520  kJ

ind s min 1000  J
Q        

3

3

M wt (101.325 kPa )(11m 8m 3m 35 0.075 m )(28.97  kg/kmol)
314.796  kg

(8.314  kPa m / (kmol K)((20 273.15)K )

   
  



PV
m

RT
 

students 2, 520  kJ
11.14928 K

(314.796  kg)(0.718 kJ/(kg K))v

Q
T

mC
     

 

The final temperature is 20 + 11.14928 = 31.14928 
o
C, though only T  is requested. 

 

1.9 A storage tank contains a liquid at depth y, where y = 0 when the tank is half full (Fig. P1.9). Liquid 

is withdrawn at a constant flow rate Q to meet demands. The contents are resupplied at a sinusoidal rate  

3Q sin
2
(t). 

 
 

Equation (1.13) can be written for this system as 

 

( ) ( )

2( )
3 sin ( )

change in
inflow outflow

volum e

d Ay
Q t Q

dt
= -

æ ö
÷ç = -÷ç ÷çè ø

 

or, since the surface area A is constant, 
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2

3 sin ( )
dy Q Q

t
dt A A
= -  

Use Euler’s method to solve for the depth y from t = 0 to 10 d with a step size of 0.5 d. The parameter 

values are A = 1200 m
2
 and Q = 500 m

3
/d. Assume that the initial condition is y = 0. 

 

The first two steps yield 

 

2500 500
(0.5) 0 3 sin (0) 0.5  0 ( 0.41667)  0.5 0.20833

1200 1200
y

 
       

 
 

 

2500 500
(1) 0.20833 3 sin (0.5) 0.5  0.20833 ( 0.12936)  0.5 0.23588

1200 1200
y

 
         

 
 

 

 

The process can be continued to give the following table and plot: 

 

t y dy/dt t y dy/dt 

0 0.00000 -0.41667 5.5 1.27629 0.20557 
0.5 -0.20833 -0.12936 6 1.37907 -0.31908 
1 -0.27301 0.46843 6.5 1.21953 -0.35882 

1.5 -0.03880 0.82708 7 1.04012 0.12287 
2 0.37474 0.61686 7.5 1.10156 0.68314 

2.5 0.68317 0.03104 8 1.44313 0.80687 
3 0.69869 -0.39177 8.5 1.84656 0.38031 

3.5 0.50281 -0.26286 9 2.03672 -0.20436 
4 0.37138 0.29927 9.5 1.93453 -0.40961 

4.5 0.52101 0.77779 10 1.72973 -0.04672 
5 0.90991 0.73275    

 

graph of result of Euler. Analytical solution also shown as a cross-check. Smaller step sizes match better. 
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1.10 For the same storage tank described in Prob. 1.9, suppose that the outflow is not constant but rather 

depends on the depth. For this case, the differential equation for depth can be written as 

 
1.5

2 (1 )
3 sin ( )

dy Q y
t

dt A A

a +
= -  

Use Euler’s method to solve for the depth y from t = 0 to 10 d with a step size of 0.5 d. The parameter 

values are A = 1200 m
2
, Q = 500 m

3
/d, and α = 150. Assume that the initial condition is y = 0. 

 

The first two steps yield 

 
1.5

2500 150(1 0)
(0.5) 0 3 sin (0) 0.5 0 0.12(0.5)  0.0625

1200 1200
y

 
       

 

 

1.5
2500 150(1 0.0625)

(1) 0.0625 3 sin (0.5) 0.5 0.0625 0.17384(0.5) 0 .02442
1200 1200

y
 

        

 

 

 

The process can be continued to give 

t y dy/dt t y dy/dt 

0 0.00000 -0.12500 5.5 1.87262 0.01364 
0.5 -0.06250 0.17384 6 1.87944 -0.51317 
1 0.02442 0.75548 6.5 1.62286 -0.47313 

1.5 0.40216 1.03620 7 1.38629 0.07876 
2 0.92027 0.70090 7.5 1.42567 0.62757 

2.5 1.27072 0.02000 8 1.73946 0.65677 
3 1.28072 -0.40565 8.5 2.06784 0.12530 

3.5 1.07789 -0.22060 9 2.13049 -0.48005 
4 0.96759 0.37094 9.5 1.89046 -0.60721 

4.5 1.15306 0.79955 10 1.58686 -0.15013 
5 1.55284 0.63957    
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1.11 Apply the conservation of volume (see Prob. 1.9) to simulate the level of liquid in a conical  

storage tank (Fig. P1.11). The liquid flows in at a sinusoidal rate of 2

in
3 sin ( )Q t=  and flows out  

according to 

 
1.5

out out out

out out

3( )

0

Q y y y y

Q y y

  

 
 

where flow has units of m
3
/d and y = the elevation of the water surface above the bottom of the tank (m). 

Use Euler’s method to solve for the depth y from t = 0 to 8 d with a step size of 0.4 d. The parameter values 

are rtop = 2.5 m, ytop = 4 m, and yout = 1 m. Assume that the level is initially below the outlet pipe with  

y(0) = 0.75 m. 

 

 
 

When the water level is above the outlet pipe, the volume balance can be written as 

 

2 1.5

out3 sin ( ) 3( )
dV

t y y
dt

    

 

In order to solve this equation, we must relate the volume to the level. To do this, we recognize that the 

volume of a cone is given by V = r
2
y/3. Defining the side slope as s = ytop/rtop, the radius can be related to 

the level (r = y/s) and the volume can be reexpressed as  

 

3

2
3

V y
s


  

 

which can be solved for 

 

2

3
3s V

y


            

           (1) 
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and substituted into the volume balance 

 
1.5

2
2 3

out

3
3 sin ( ) 3

dV s V
t y

dt 

 
   
 
 

       (2) 

 

For the case where the level is below the outlet pipe, outflow is zero and the volume balance simplifies to  

 

2
3 sin ( )

dV
t

dt
           (3) 

 

These equations can then be used to solve the problem. Using the side slope of s = 4/2.5 = 1.6, the 

initial volume can be computed as 

 

3 3

2
(0) 0. 775  

1
0

(
. m1

3 .6)
725V


   

 

For the first step, y < yout and Eq. (3) gives 

 

2
(0) 3 sin (0) 0

dV

dt
    

 

and Euler’s method yields 

 

0.17257 0.17257(0.4) (0) (0) 0(0.4)
dV

V V t
dt

       

 

For the second step, Eq. (3) still holds and 

 

2
0.45494(0.4) 3 sin (0.4)

dV

dt
    

(0.8) (0.4) (0.4) 0.17257 (0.4) 0.354550.45494
dV

V V t
dt

       

 

Equation (1) can then be used to compute the new level, which is still below the output pipe. For the thirs 

step, V(1.2) = 0.97207, and  

 

2

3
3(1.6) (0.97207)

1.33445  my


      

 

Because this level is now higher than the outlet pipe, Eq. (2) holds for the next step 

 

 
1.5

(1.2) 1.543799 3 1.33445 1 2.025833
dV

dt
       

0.97207 2.025833 1.78240(1.6) (0.4)V     
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The remainder of the calculation is summarized in the following table and figure. 

 
t Qin V y Qout dV/dt 

0 0 0.17257 0.75000 0 0 
0.4 0.45494 0.17257 0.75000 0 0.45494 
0.8 1.543799 0.35455 0.95345 0 1.543799 
1.2 2.606091 0.97207 1.33445 0.580257 2.025833 
1.6 2.997442 1.78240 1.63332 1.512029 1.485413 
2 2.480465 2.37657 1.79771 2.137429 0.343037 

2.4 1.368752 2.51378 1.83167 2.275332 -0.90658 
2.8 0.336651 2.15115 1.73898 1.90576 -1.56911 
3.2 0.010223 1.52351 1.55007 1.223913 -1.21369 
3.6 0.587473 1.03803 1.36398 0.658768 -0.07129 
4 1.71825 1.00951 1.35137 0.624839 1.093411 

4.4 2.71664 1.44688 1.52363 1.136748 1.579892 
4.8 2.977032 2.07883 1.71927 1.830027 1.147004 
5.2 2.341476 2.53763 1.83744 2.299073 0.042403 
5.6 1.195493 2.55460 1.84153 2.315915 -1.12042 
6 0.234219 2.10643 1.72684 1.859008 -1.62479 

6.4 0.040751 1.45651 1.52701 1.147755 -1.107 
6.8 0.732444 1.01371 1.35324 0.629836 0.102608 
7.2 1.889726 1.05475 1.37126 0.678647 1.211079 
7.6 2.810605 1.53919 1.55537 1.241642 1.568964 
8 2.936489 2.16677 1.74318 1.922027 1.014462 
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1.12 In our example of the free-falling parachutist, we assumed that the acceleration due to gravity was a 

constant value. Although this is a decent approximation when we are examining falling objects near the 

surface of the earth, the gravitational force decreases as we move above sea level. A more general 

representation based on Newton’s inverse square law of gravitational attraction can be written as 

 

2

2
( ) (0)

( )

R
g x g

R x



 

where g(x) = gravitational acceleration at altitude x (in m) measured upward from the earth’s surface  

(m/s
2
), g(0) = gravitational acceleration at the earth’s surface (≅ 9.81 m/s

2
), and R = the earth’s radius  

6
( 6.37 10 m ).@ ´  

(a) In a fashion similar to the derivation of Eq. (1.9), use a force balance to derive a differential equation 

for velocity as a function of time that utilizes this more complete representation of gravitation. 

However, for this derivation, assume that upward velocity is positive. 

(b) For the case where drag is negligible, use the chain rule to express the differential equation as a 

function of altitude rather than time. Recall that the chain rule is 

 
d d dx

dt dx dt

 
  

(c) Use calculus to obtain the closed-form solution where υ = υ0 at x = 0. 

(d) Use Euler’s method to obtain a numerical solution from x = 0 to 100,000 m using a step size of 10,000 m 

where the initial velocity is 1400 m/s upward. Compare your result with the analytical solution. 
 

(a) The force balance can be written as: 
 

2

2
(0)

( )
d

dv R
m mg c v v

dt R x
  


 

 

Dividing by mass gives 
 

2

2
(0)

( )

dcdv R
g v v

dt mR x
  


 

 

(b) Recognizing that dx/dt = v, the chain rule is 

 

dv dv
v

dt dx
  

 

Setting drag to zero and substituting this relationship into the force balance gives 
 

2

2

(0)

( )

dv g R

dx v R x
 


 

 

(c) Using separation of variables 
 

2

2
 (0)

( )

R
v dv g dx

R x
 


 

 

Integrating gives 
 

2 2

 (0)
2

v R
g C

R x
 


 

Applying the initial condition yields 
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2 2

0
(0)

2 0

v R
g C

R
= +

+
 

 

which can be solved for C = v0
2
/2 – g(0)R, which can be substituted back into the solution to give 

 
22 2

0
(0) (0)

2 2

vv R
g g R

R x
= + -

+
 

 

or 

 

2

2

0
2 (0) 2 (0)

R
v v g g R

R x
= ± + -

+
 

 

Note that the plus sign holds when the object is moving upwards and the minus sign holds when it is 

falling. 

 

(d) Euler’s method can be developed as 

 

2

1 12

(0)
( ) ( ) ( )

( ) ( )
i i i i

i i

g R
v x v x x x

v x R x
 

 
    

  

 

 

The first step can be computed as 

 
6 2

6 2

9.81 (6.37 10 )
(10, 000) 1, 400 (10, 000 0) 1, 400 ( 0.00701)10, 0 00 1329.9286

1, 400 (6.37 10 0)
v

 
        

  

 

 

The remainder of the calculations can be implemented in a similar fashion as in the following table 

 

x v dv/dx v-analytical 

0 1400 -0.00701 1400 
10000 1329.9286 -0.00735 1328.197 
20000 1256.3963 -0.00776 1252.529 
30000 1178.8038 -0.00824 1172.245 
40000 1096.3622 -0.00884 1086.323 
50000 1007.9977 -0.00958 993.2976 
60000 912.18608 -0.01055 890.946 
70000 806.63991 -0.0119 775.5825 
80000 687.65376 -0.01391 640.2093 
90000 548.51163 -0.01739 467.7616 
100000 374.61267 -0.02538 168.2991 

 

For the analytical solution, the value at 10,000 m can be computed as 

 

6 2
2 6

6

(6.37 10 )
1, 400 2(9.81) 2(9.81)(6.37 10 ) 1328.197

(6.37 10 10, 000)
v


    

 
 

 

The remainder of the analytical values can be implemented in a similar fashion as in the last column of the 

above table. The numerical and analytical solutions can be displayed graphically. 
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1.13 Suppose that a spherical droplet of liquid evaporates at a rate that is proportional to its surface area, 

 
dV

kA
dt

   

where V = volume (mm
3
), t = time (min), k = the evaporation rate (mm/min), and A = surface area (mm

2
). 

Use Euler’s method to compute the volume of the droplet from t = 0 to 10 min using a step size of  

0.25 min. Assume that k = 0.1 mm/min and that the droplet initially has a radius of 3 mm. Assess the 

validity of your results by determining the radius of your final computed volume and verifying that it is 

consistent with the evaporation rate. 
 

The volume of the droplet is related to the radius as 
 

3
4

3

r
V


           (1) 

 

This equation can be solved for radius as 
 

3
3

4

V
r


           (2) 

 

The surface area is 

 
2

4A r           (3) 
 

Equation (2) can be substituted into Eq. (3) to express area as a function of volume 
 

2 / 3
3

4
4

V
A 



 
  

 
      

 

This result can then be substituted into the original differential equation, 
 

2 / 3
3

4
4

dV V
k

dt




 
   

 
         (4) 
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The initial volume can be computed with Eq. (1), 

 
3 3

34 4 (3.0)
113.0973 mm

3 3

r
V

 
    

 

Euler’s method can be used to integrate Eq. (4). For the first step, the result is 

 
2 / 3

113.0973
113.0973

113.0973 11.3097 110.2699

3( )
(0.25) (0) (0) 0.1(4) 0.25

4

            (0.25)

dV
V V t

dt




 
       

 

  

 

 

Here are the beginning and ending steps 

 

t V dV/dt 

0 113.0973 -11.3097 
0.25 110.2699 -11.1204 
0.5 107.4898 -10.9327 

0.75 104.7566 -10.7466 
1 102.07 -10.5621 
• 

• 

• 
  

9 38.29357 -5.49416 
9.25 36.92003 -5.36198 
9.5 35.57954 -5.2314 

9.75 34.27169 -5.1024 
10 32.99609 -4.97499 

 

A plot of the results is shown below. We have included the radius on this plot (dashed line and right scale): 

 

 
 

Eq. (2) can be used to compute the final radius as 

 

3 7
3( )

9
4

32.99609
1.98 71r


   
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Therefore, the average evaporation rate can be computed as 

 

(3.0 )  mm mm

10  

1.989717
0.101028313

min min
k

-
= =  

 

which is approximately equal to the given evaporation rate of 0.10 mm/min. 

 

1.14 Newton’s law of cooling says that the temperature of a body changes at a rate proportional to the 

difference between its temperature and that of the surrounding medium (the ambient temperature), 

 ( )a

dT
k T T

dt
    

where T = the temperature of the body (°C), t = time (min), k = the proportionality constant (per minute), 

and Ta = the ambient temperature (°C). Suppose that a cup of coffee originally has a temperature of  

68°C. Use Euler’s method to compute the temperature from t = 0 to 10 min using a step size of 1 min if  

Ta = 21°C and k = 0.019/min. 

 

The first two steps can be computed as 

 

 

 

(1) 68 0.019(68 21)  2 68 ( 0.893)2 67.107

(2) 67.107 0.019(67.107 21)  2 68.1 ( 0.87603)2 66.23097

T

T

       

       
 

 

The remaining results are displayed below along with a plot of the results. 

 

t T dT/dt Tanalytical t T dT/dt Tanalytical 

0 68 -0.893 68 6 62.89015 -0.79591 62.93612 
1 67.107 -0.87603 67.11543 7 62.09424 -0.78079 62.14686 
2 66.23097 -0.85939 66.24751 8 61.31345 -0.76596 61.37245 
3 65.37158 -0.84306 65.39592 9 60.54749 -0.7514 60.61261 
4 64.52852 -0.82704 64.56036 10 59.79609 -0.73713 59.86708 
5 63.70148 -0.81133 63.74053     
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1.15 As depicted in Fig. P1.15, an RLC circuit consists of three elements: a resistor (R), an inductor (L), 

and a capacitor (C). The flow of current across each element induces a voltage drop. Kirchhoff’s second 

voltage law states that the algebraic sum of these voltage drops around a closed circuit is zero, 

 0
di q

iR L
dt C

+ + =  

where i = current, R = resistance, L = inductance, t = time, q = charge, and C = capacitance. In addition, the 

current is related to charge as in 

 
dq

i
dt
=  

(a) If the initial values are i(0) = 0 and q(0) = 0.5 C, use Euler’s method to solve this pair of differential 

equations from t = 0 to 0.1 s using a step size of Δt = 0.01 s. Employ the following parameters for your 

calculation: R = 250 Ω, L = 5 H, and C = 10
–4

 F. 

(b) Develop a plot of i and q versus t. 
 

 
 

The pair of differential equations to be solved are  

 

1di R
i q

dt L CL
    

dq
i

dt
  

 

or substituting the parameters 

 

40 2, 000
di

i q
dt

    

dq
i

dt
  

 

The first step can be implemented by first using the differential equations to compute the slopes 

 

40(0) 2, 000(1) 2, 000
di

dt
      

0
dq

dt
  

 

Then, Euler’s method can be applied as 
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(0.01) 0 2, 000(0.01) 20i      

(0.01) 1 0(0.01) 1q     

 

For the second step 

 

40( 20) 2, 000(1) 1, 200
di

dt
       

20
dq

dt
   

(0.02) 20 1, 200(0.01) 32i       

(0.02) 1 20(0.01) 0.8q     

 

The remaining steps are summarized in the following table and plot: 

 

t i q di/dt dq/dt 

0 0 0.5 -1000 0 
0.01 -10 0.5 -500 -10 
0.02 -15 0.4 -50 -15 
0.03 -15.5 0.25 275 -15.5 
0.04 -12.75 0.095 447.5 -12.75 
0.05 -8.275 -0.0325 478.75 -8.275 
0.06 -3.4875 -0.11525 404.875 -3.4875 
0.07 0.56125 -0.15013 272.1875 0.56125 
0.08 3.283125 -0.14451 124.8688 3.283125 
0.09 4.5318125 -0.11168 -3.22813 4.531813 
0.1 4.4995313 -0.06636 -92.2503 4.499531 
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1.16 A fluid is pumped into the network shown in Fig. P1.16. If Q2 = 0.7, Q3 = 0.5, Q7 = 0.1, and  

Q8 = 0.3 m
3
/s, determine the other flows. 

 
 

Continuity at the nodes can be used to determine the flows as follows: 

 
3

1 2 3 0.7 0.5 1.2  m sQ Q Q      

3

10 1 1.2  m sQ Q   

3

9 10 2 1.2 0.7 0.5  m sQ Q Q      

3

4 9 8 0.5 0.3 0.2  m sQ Q Q      

3

5 3 4 0.5 0.2 0.3 m sQ Q Q      

3

6 5 7 0.3 0.1 0.2  m sQ Q Q      

 

 
 

1.17 The velocity is equal to the rate of change of distance x (m), 

  ( )
dx

t
dt

  (P1.17) 

(a) Substitute in Eq. (1.10) and develop an analytical solution for distance as a function of time. Assume 

that x(0) = 0. 

1.2 0.5 0.3 

0.7 0.2 0.2 0.1 

0.3 0.5 1.2 
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(b) Use Euler’s method to numerically integrate Eqs. (P1.17) and (1.9) in order to determine both the 

velocity and distance fallen as a function of time for the first 10 s of free-fall using the same 

parameters as in Example 1.2. 

(c) Develop a plot of your numerical results together with the analytical solution. 

 

(a) Substituting Eq. (1.10) into Eq. (P1.18) gives 

 

( / )
(1 )


 

c m tdx gm
e

dt c
 

 

Separation of variables gives 

 

( / )

0 0

1


  
x t

c m tgm
dx e dt

c
 

 

Integration yields 

 
2

( / )

2
(1 )


  

c m tgm gm
x t e

c c
 

 

(b) Euler’s method can be applied for the first step as 

 

12.5
(0) 9.81 0 9.81

68.1

(0) 0

    

 

dv c
g v

dt m

dx
v

dt

 

(2) (0) (0) 0 9.81(2) 19.62

(2) (0) (0) 0 0(2) 0

     

     

dv
v v t

dt

dx
x x t

dt

 

 

For the second step: 

 

12.5
(2) 9.81 19.62 6.2087

68.1

(0) 19.62

  



dv

dt

dx

dt

 

(4) 19.62 6.2087(2) 32.0374

(4) 0 19.62(2) 39.24

  

  

v

x
 

 

The remaining steps can be computed in a similar fashion as tabulated below along with the analytical 

solution:  

 

t vnum xnum dv/dt dx/dt vanal xanal 

0 0.0000 0.0000 9.8100 0.0000 0.0000 0.0000 
2 19.6200 0.0000 6.2087 19.6200 16.4217 17.4242 
4 32.0374 39.2400 3.9294 32.0374 27.7976 62.3380 
6 39.8962 103.3147 2.4869 39.8962 35.6781 126.2949 
8 44.8700 183.1071 1.5739 44.8700 41.1372 203.4435 
10 48.0179 272.8472 0.9961 48.0179 44.9189 289.7305 

 

(c) 
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1.18 You are working as a crime-scene investigator and must predict the temperature of a homicide 

victim over a 5-hr period. You know that the room where the victim was found was at 12°C when the body 

was discovered. 

(a) Use Newton’s law of cooling (Prob. 1.14) and Euler’s method to compute the victim’s body 

temperature for the 5-hr period using values of k = 0.12/hr and Δt = 0.5 hr. Assume that the victim’s 

body temperature at the time of death was 37°C and that the room temperature was at a constant value 

of 12°C over the 5-hr period. 

(b) Further investigation reveals that the room temperature had actually dropped linearly from 20 to 12°C 

over the 5-hr period. Repeat the same calculation as in (a) but incorporate this new information. 

(c) Compare the results from (a) and (b) by plotting them on the same graph. 

 

(a) For the constant temperature case, Newton’s law of cooling is written as 

 

0.12( 10)  
dT

T
dt

 

 

The first two steps of Euler’s methods are 

 

(0.5) (0) (0) 37 0.12(12 37)(0.5) 37 3 0.50 35.5000

(1) 35.5000 0.12(12 35.5000)(0.5) 35.3800 2.820 0.50 34.0900

dT
T T t

dt

T

          

      

 

 

The remaining calculations are summarized in the following table: 

 

t Ta T dT/dt 

0:00 12 37.0000 -3.0000 
0:30 12 35.5000 -2.8200 
1:00 12 34.0900 -2.6508 
1:30 12 32.7646 -2.4918 
2:00 12 31.5187 -2.3422 
2:30 12 30.3476 -2.2017 
3:00 12 29.2467 -2.0696 
3:30 12 28.2119 -1.9454 
4:00 12 27.2392 -1.8287 
4:30 12 26.3249 -1.7190 
5:00 12 25.4654 -1.6158 
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(b) For this case, the room temperature can be represented as 

 

20 1.6aT t   

 

where t = time (hrs). Newton’s law of cooling is written as 

 

0.12( 20 1.6 )
dT

T t
dt

     

 

The first two steps of Euler’s methods are 

 

(0.5) 37 0.12(20 37)(0.5) 37 2.040 0.50 35.9800

(1) 35.9800 0.12(19.2 35.9800)(0.5) 35.9800 2.0136 0.50 34.9732

T

T

= + - = - ´ =

= + - = - ´ =
 

 

The remaining calculations are summarized in the following table: 

 

t Ta T dT/dt 

0:00 20 37.0000 -2.0400 
0:30 19.2 35.9800 -2.0136 
1:00 18.4 34.9732 -1.9888 
1:30 17.6 33.9788 -1.9655 
2:00 16.8 32.9961 -1.9435 
2:30 16 32.0243 -1.9229 
3:00 15.2 31.0629 -1.9035 
3:30 14.4 30.1111 -1.8853 
4:00 13.6 29.1684 -1.8682 
4:30 12.8 28.2343 -1.8521 
5:00 12 27.3083 -1.8370 

 

Comparison with (a) indicates that the effect of the room air temperature has a significant effect on the 

expected temperature at the end of the 5-hr period (difference = 27.3083 – 25.4654 = 1.8429
o
C). 

 

(c) The solutions for (a) Constant Ta, and (b) Cooling Ta are plotted below: 
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1.19 Suppose that a parachutist with linear drag (m = 70 kg, c = 12.5 kg/s) jumps from an airplane flying 

at an altitude of 200 m with a horizontal velocity of 180 m/s relative to the ground. 

(a) Write a system of four differential equations for x, y, υx = dx/dt, and υy = dy/dt. 
(b) If the initial horizontal position is defined as x = 0, use Euler’s methods with Δt = 1 s to compute the 

jumper’s position over the first 10 s. 

(c) Develop plots of y versus t and y versus x. Use the plots to graphically estimate when and where the 

jumper would hit the ground if the chute failed to open. 

(d) At what angle would the parachutist be traveling in the last whole second before impact? 

 

(a) x

dx
v

dt
  y

dy
v

dt
   x

x

dv c
v

dt m
    

y

y

dv c
g v

dt m
     

 

Note here that y is defined positive up, and resistance to gravity from air is thus dependent upon the 

magnitude of the velocity. Using the convention of y positive down removes the need for the absolute 

value, but results in a plot that needs to be inverted to provide a physical representation. 

 

(b) The first step, 

 

(1) (0) 0 180(1) 180
dx

x x t
dt

       

(1) (0) 100 0(1) 100
dy

y y t
dt

         

12.5
(1) (0) 180 180(1) 147.8571

70

x

x x

dv
v v t

dt
       

12.5
(1) (0) 0 9.81 (0) (1) 9.81

70

y

y y

dv
v v t

dt

 
       

 
 

 

The second step 

 

(2) 180 147.8571(1) 327.8571

(1) 100 9.81(1) 90.19

12.5
(1) 147.8571 147.8571(1) 121.4541

70

12.5
(1) 9.81 9.81 (9.81) (1) 17.8682

70

x

y

x

y

v

v

  

    

  

 
    

 

 

 

These along with the remaining results can be tabulated as 

 

t x y vx vy dx/dt dy/dt dvx/dt dvy/dt 

0 0 200 180 0 180 0 -32.1429 -9.81 
1 180 200 147.8571 -9.81 147.8571 -9.81 -26.4031 -8.05821 
2 327.8571 190.19 121.4541 -17.8682 121.4541 -17.8682 -21.6882 -6.61925 
3 449.3112 172.3218 99.76585 -24.4875 99.76585 -24.4875 -17.8153 -5.43724 
4 549.0771 147.8343 81.95052 -29.9247 81.95052 -29.9247 -14.634 -4.4663 
5 631.0276 117.9096 67.3165 -34.391 67.3165 -34.391 -12.0208 -3.66875 
6 698.3441 83.51862 55.2957 -38.0598 55.2957 -38.0598 -9.87423 -3.01362 
7 753.6398 45.45887 45.42147 -41.0734 45.42147 -41.0734 -8.11098 -2.47547 
8 799.0613 4.385497 37.31049 -43.5488 37.31049 -43.5488 -6.66259 -2.03342 
9 836.3718 -39.1633 30.6479 -45.5823 30.6479 -45.5823 -5.47284 -1.67031 
10 867.0197 -84.7456 25.17506 -47.2526 25.17506 -47.2526 -4.49555 -1.37204 

 

(c) The following plots indicates that the jumper will hit the ground in about t = 8 s at about x = 800 m. 
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(d) The angle relative to ground during the last whole second can be estimated from finite difference 

between seconds 7 and 8 

 

(8) (7)
tan

(8) (7)

(8) (7)
arctan

(8) (7)

y y

x x

y y

x x

q

q

-
= -

-

æ ö- ÷ç ÷= -ç ÷ç ÷ç -è ø

 

 

This angle can also be estimated as average angle between at t = 7 and 8 seconds from  

tan ( ) / ( )
y x

v t v tq = -  

 

Finite difference method: 0.735 radians, or 42 degrees 

Average velocity angle method: (0.862 + 0.735)/2 = 0.80 radians, or 46 degrees 
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1.20 As noted in Prob. 1.3, drag is more accurately represented as depending on the square of velocity.  

A more fundamental representation of the drag force, which assumes turbulent conditions (i.e., a high 

Reynolds number), can be formulated as 

 
1

2
d dF AC     

where 
d

F =  the drag force (N), r =  fluid density (kg/m
3
), A = the frontal area of the object on a plane 

perpendicular to the direction of motion (m
2
), υ = velocity (m/s), and 

d
C =  a dimensionless drag 

coefficient. 

(a) Write the pair of differential equations for velocity and position (see Prob. 1.17) to describe the vertical 

motion of a sphere with diameter d (m) and a density of ρs (kg/m
3
). The differential equation for 

velocity should be written as a function of the sphere’s diameter. 

(b) Use Euler’s method with a step size of Δt = 2 s to compute the position and velocity of a sphere over 

the first 14 s. Employ the following parameters in your calculation: d = 125 cm, ρ = 1.3 kg/m
3
,  

ρs = 2650 kg/m
3
, and Cd = 0.475. Assume that the sphere has the initial conditions: y(0) = −100 m and 

υ(0) = –45 m/s. 

(c) Develop a plot of your results (i.e., y and υ versus t) and use it to graphically estimate when the sphere 

would hit the ground. 

(d) Compute the value for the bulk second-order drag coefficient 
dc   (kg/m). Note that, as described in 

Prob. 1.3, the bulk second-order drag coefficient is the term in the final differential equation for 

velocity that multiplies the term υ∣υ∣. 
 

(a) The force balance can be written as 

 

1

2
  d

dv
m mg v v AC

dt
 

 

Dividing by mass gives 

 

2


 

dACdv
g v v

dt m
         (1) 

 

The mass of the sphere is sV where V = volume (m
3
). The area and volume of a sphere are d

2
/4 and 

d
3
/6, respectively. Substituting these relationships gives 

 

3

4




 



d

s

Cdv
g v v

dt d

dx
v

dt

 

 

(b) The first step for Euler’s method is 

 

3(1.3)0.475
9.81 ( 45) 45 10.09312

4(1.25)2650

45

dv

dt

dx

dt

    

 

 

 

45 10.09312(2) 24.8138

100 45(2) 190

v

dx

dt

    

    
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The remaining steps are shown in the following table: 

 

t x v dx/dt dv/dt 

0 -100 -45 -45 10.09312 
2 -190 -24.8138 -24.8138 9.896085 
4 -239.628 -5.02159 -5.02159 9.813526 
6 -249.671 14.60546 14.60546 9.780176 
8 -220.46 34.16581 34.16581 9.646798 
10 -152.128 53.4594 53.4594 9.410432 
12 -45.2094 72.28027 72.28027 9.079565 
14 99.35116 90.4394 90.4394 8.666443 

 

(c) The results can be graphed as (notice that we have reversed the left axis for the height, x, so that the 

positive elevations point down).  The sphere will hit the ground around 12.6 seconds.  

 

 
 

 

(d) Inspecting the differential equation for velocity (Eq. 1) indicates that the bulk drag coefficient is 

 

'
2




dAC
c  

 

Therefore, for this case, because A = (1.2)
2
/4 = 1.131 m

2
, the bulk drag coefficient is 

 

1.3(1.2272)0.475 kg
' 0.37889

2 m
c    

 

1.21 As depicted in Fig. P1.21, a spherical particle settling through a quiescent fluid is subject to three 

forces: the downward force of gravity (FG), and the upward forces of buoyancy (FB) and drag (FD). Both the 

gravity and buoyancy forces can be computed with Newton’s second law, with the latter equal to the 

weight of the displaced fluid. For laminar flow, the drag force can be computed with Stokes’s law, 

 3DF d   

where μ = the dynamic viscosity of the fluid (N s/m
2
), d = the particle diameter (m), and υ = the particle’s 

settling velocity (m/s). Note that the mass of the particle can be expressed as the product of the particle’s 

volume and density ρs (kg/m
3
) and the mass of the displaced fluid can be computed as the product of the 
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particle’s volume and the fluid’s density ρ (kg/m
3
). The volume of a sphere is πd3

/6. In addition, laminar 

flow corresponds to the case where the dimensionless Reynolds number, Re, is less than 1, where  

Re = ρdυ/μ. 

(a) Use a force balance for the particle to develop the differential equation for dυ/dt as a function of d, ρ, 

ρs, and μ. 

(b) At steady-state, use this equation to solve for the particle’s terminal velocity. 

(c) Employ the result of (b) to compute the particle’s terminal velocity in m/s for a spherical silt particle 

settling in water: d = 8 μm, ρ = 1 g/cm
3
, ρs = 2.7 g/cm

3
, and μ = 0.014 g/(cm s). 

(d) Check whether flow is laminar. 

(e) Use Euler’s method to compute the velocity from t = 0 to 2
−15

 s with Δt = 2
−18

 s given the provided 

parameters along with the initial condition: υ (0) = 0. 

 
 

(a) A force balance on a sphere can be written as: 

 

gravity buoyancy drag

dv
m F F F

dt
    

 

where 

 

gravity
F mg  

buoyancy
F Vg  

drag
3F dv  

 

Substituting the individual terms into the force balance yields 

 

3
dv

m mg Vg dv
dt

     

 

Divide by m 

 

3dv Vg dv
g

dt m m

 
    

 

Note that m = sV, so 

 

3

s s

dv g dv
g

dt V

 

 
    

 

The volume can be represented in terms of more fundamental quantities as V = d
3
/6. Substituting this 

relationship into the differential equation gives the final differential equation 
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2

18
1

s s

dv
g v

dt d

 

 

 
   

 

 

 

(b) At steady-state, the equation is 
 

2

18
0 1

s s

g v
d

 

 

 
   

 

 

 

which can be solved for the terminal velocity 

 

2

18

s
g

v d
 





  

 

This equation is sometimes called Stokes Settling Law. 

 

(c) Before computing the result, it is important to convert all the parameters into consistent units. For the 

present problem, the necessary conversions are 

 

6

6

m
8 μm 8 10 m

10  μm
d


     

6 3

3 3 3 3

g 10  cm g kg
1 1000

cm m 10  kg m
      

6 3

3 3 3 3

g 10  cm g kg
2.7 2700

cm m 10  kg m
s

      
g 100 cm kg kg

0.014 0.0014
cm s m 1000 g m s

      

 

The terminal velocity can then computed as 

 

6 2 59.81 2700 1000 m
(8 10 ) 10

18 0.0014 s
4.23543v

 




     

 

(d) The Reynolds number can be computed as 

 
6 5

4.23543
0.000242024

1000(8 10 ) 10
Re

0.0014

dv



 
 

    

 

This is far below 1, so the flow is very laminar. 

 

(e) Before implementing Euler’s method, the parameters can be substituted into the differential equation to 

give 
 

2

1000 18(0.0014)
9.81 1 6.176667 145, 833

2700 2700(0.000008)

dv
v v

dt

 
     

 
 

 

NOTE: calculations are shown to several digits, with actual calculations completed using double precision.  

 

With 15 6
2 3.8147 10 st
 

    , the first two steps for Euler’s method are  

 
6 6 5

(3.8147 10 ) 0 (6.176667 145, 833(0)) 3.8147 10 2.3562 10v
  

         

6 5 5 6 5
(7.6294 10 ) 2.5362 10 (6.176667 145, 833(2.356 2 10 )) 3.8147 10 3.4016 10v

    
           

The remaining steps can be computed in a similar fashion as tabulated and plotted below:  
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t v dv/dt t v dv/dt 

0 0.0000E+00 6.176667 2.2910
–5

 4.2031E-05 0.047123 

3.8110
–6

 2.3562E-05 2.740525 2.6710
–5

 4.2211E-05 0.020908 

7.6310
–6

 3.4016E-05 1.215944 3.0510
–5

 4.2291E-05 0.009277 

1.1410
–5

 3.8655E-05 0.539502 3.4310
–5

 4.2326E-05 0.004116 

1.5310
–5

 4.0713E-05 0.239372 3.8110
–5

 4.2342E-05 0.001826 

1.9110
–5

 4.1626E-05 0.106207    

 

1.22 As described in Prob. 1.21, in addition to the downward force of gravity (weight) and drag, an object 

falling through a fluid is also subject to a buoyancy force that is proportional to the displaced volume.  

For example, for a sphere with diameter d (m), the sphere’s volume is V = πd3
/6 and its projected area is  

A = πd2
/4. The buoyancy force can then be computed as FB = –ρVg. We neglected buoyancy in our 

derivation of Eq. (1.9) because it is relatively small for an object like a parachutist moving through air. 

However, for a more dense fluid like water, it becomes more prominent. 

(a) Derive a differential equation in the same fashion as Eq. (1.9), but include the buoyancy force and 

represent the drag force as described in Prob. 1.20. 

(b) Rewrite the differential equation from (a) for the special case of a sphere. 

(c) Use the equation developed in (b) to compute the terminal velocity (i.e., for the steady-state case). Use 

the following parameter values for a sphere falling through water: sphere diameter = 1.1 cm, sphere 

density = 2650 kg/m
3
, water density = 1000 kg/m

3
, and Cd = 0.47. 

(d) Use Euler’s method with a step size of Δt = 0.03125 s to numerically solve for the velocity from  

t = 0 to 0.25 s with an initial velocity of zero. 

 

(a) A force balance on a sphere can be written as: 

 

1

2
d

dv
m mg Vg v v AC

dt
     

 

(b) Dividing by mass gives 

 

2

dACdv Vg
g v v

dt m m


    

 

The mass of the sphere is sV where V = volume (m
3
). The area and volume of a sphere are d

2
/4 and 

d
3
/6, respectively. Substituting these relationships gives 

 

3
1

4

d

s s

Cdv
g v v

dt d



 

 
   

 

  

 

(c) At steady state, for a sphere falling downward 

 

23
0 1

4

d

s s

C
g v

d



 

 
   

 

  

 

which can be solved for 

 

4
1

3

s

d s

g d
v

C

 

 

 
  

 

  

Substituting the parameters gives 
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4(9.81)2650(0.011) 1000 m
1 0.710711

3(1000)0.47 2700 s
v

 
   

 
  

 

(d) Before implementing Euler’s method, the parameters can be substituted into the differential equation to 

give 
 

2 21000 3(1000)0.47
9.81 1 6.1108113 12.09262

2650 4(2650)(0.011)

dv
v v

dt

 
     

 
 

 

The first two steps for Euler’s method are 
 

2

2

(0.03125) 0 (6.1108113 12.09262(0) )0.03125 0.190879

(0.0625) 0.193021 (6.1108113 12.09262(0.190879) )0.03125 0.367989

v

v

   

   

 

 

The remaining steps can be computed in a similar fashion as tabulated and plotted below:  
 

t v dv/dt t v dv/dt 

0 0 6.108113 0.15625 0.655475 0.912547 
0.03125 0.190879 5.667523 0.1875 0.683992 0.450637 
0.0625 0.367989 4.470583 0.21875 0.698075 0.21528 

0.09375 0.507694 2.991196 0.25 0.704802 0.101152 
0.125 0.601169 1.737785    

 

 
 

1.23 As depicted in Fig. P1.23, the downward deflection y (m) of a cantilever beam with a uniform load 

w (kg/m) can be computed as 

 4 3 2 2
( 4 6 )

24

w
y x Lx L x

EI
    

where x = distance (m), E = the modulus of elasticity = 2 × 10
11

 Pa, I = moment of inertia = 3.3 × 10
–4

 m
4
, w 

= 12,000 N/m, and L = length = 4 m. This equation can be differentiated to yield the slope of the downward 

deflection as a function of x: 

  3 2 2
4 12 12

24

dy w
x Lx L x

dx EI
    

If y = 0 at x = 0, use this equation with Euler’s method (Δx = 0.125 m) to compute the deflection from x = 0 

to L. Develop a plot of your results along with the analytical solution computed with the first equation. 
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Substituting the parameters into the differential equation gives 

 

 

 

3 2 2

11

5 3 2

10000
4 12(4) 12(4)

24(2 10 )0.000325

     2.5641 10 12 48

dy
x x x

dx

x x x


  


   

 

 

The first step of Euler’s method is 

 

 5 3 2
2.5641 10 (0) 12(0) 48(0) 0

(0.125) 0 0(0.125) 0

dy

dx

y


    

  

 

 

The second step is 

 

 5 3 2

5

2.5641 10 (0.125) 12(0.125) 48(0.125) 0.000149

(0.25) 0 0.000149(0.125) 1.86361 10

dy

dx

y





    

   

 

 

The remainder of the calculations along with the analytical solution are summarized in the following table 

and plot. Note that the results of the numerical and analytical solutions are close. 

 

x y-Euler dy/dx y-analytical x y-Euler dy/dx y-analytical 

0 0 0 0 2.125 0.002165 0.00174 0.002275 
0.125 0 0.000176 1.11E-05 2.25 0.002383 0.001777 0.002495 
0.25 2.2E-05 0.000341 4.36E-05 2.375 0.002605 0.001809 0.002719 

0.375 6.47E-05 0.000496 9.6E-05 2.5 0.002831 0.001837 0.002947 
0.5 0.000127 0.00064 0.000167 2.625 0.003061 0.001861 0.003179 

0.625 0.000207 0.000774 0.000256 2.75 0.003293 0.00188 0.003412 
0.75 0.000304 0.000899 0.00036 2.875 0.003528 0.001896 0.003648 

0.875 0.000416 0.001015 0.00048 3 0.003765 0.001909 0.003886 
1 0.000543 0.001121 0.000614 3.125 0.004004 0.001919 0.004126 

1.125 0.000683 0.001219 0.00076 3.25 0.004244 0.001927 0.004366 
1.25 0.000835 0.001309 0.000918 3.375 0.004485 0.001932 0.004607 

1.375 0.000999 0.001391 0.001087 3.5 0.004726 0.001936 0.004849 
1.5 0.001173 0.001466 0.001266 3.625 0.004968 0.001938 0.005091 

1.625 0.001356 0.001533 0.001453 3.75 0.00521 0.001939 0.005333 
1.75 0.001548 0.001594 0.001649 3.875 0.005453 0.001939 0.005576 

1.875 0.001747 0.001649 0.001851 4 0.005695 0.001939 0.005818 
2 0.001953 0.001697 0.002061     
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1.24 Use Archimedes’ principle to develop a steady-state force balance for a spherical ball of ice floating 

in seawater (Fig. P1.24). The force balance should be expressed as a third-order polynomial (cubic) in 

terms of height of the cap above the water line (h), the seawater’s density (ρf), the ball’s density (ρs), and 

the ball’s radius (r). 
 

 
 
[Note that students can easily get the underlying equations for this problem off the web]. The volume of a 

sphere can be calculated as 

 

34

3
sV r  
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The portion of the sphere above water (the “cap”) can be computed as 

 

 
2

3
3

a

h
V r h


   

Therefore, the volume below water is 

 

 
2

34
3

3 3
s

h
V r r h


    

 

Thus, the steady-state force balance can be written as 

 

 
2

3 34 4
3 0

3 3 3
s f

h
g r g r r h


   

 
    

 

 

 

Cancelling common terms gives 

 

 
2

3 34 4
3 0

3 3 3
s f

h
r r r h 

 
    

 

 

 

Collecting terms yields 

 

 3 2 34
0

3 3

f

f s fh r h r


       

 

1.25 Beyond fluids, Archimedes’ principle has proven useful in geology when applied to solids on the 

earth’s crust. Figure P1.25 depicts one such case where a lighter conical granite mountain “floats on” a 

denser basalt layer at the earth’s surface. Note that the part of the cone below the surface is formally 

referred to as a frustum. Develop a steady-state force balance for this case in terms of the following 

parameters: basalt’s density (ρb), granite’s density (ρg), the cone’s bottom radius (r), and the height above 

(h1) and below (h2) the earth’s surface. 

 

 
 



38 

 

Copyright 2021 © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior 

written consent of McGraw-Hill Education. 

[Note that students can easily get the underlying equations for this problem off the web]. The total volume 

of a right circular cone can be calculated as 

 

2

2

1

3
tV r H  

 

The volume of the frustum below the earth’s surface can be computed as 

 

 
 1 2 2

1 2 1 2
3

b

H h
V r r r r

 
    

 

Archimedes’ principle says that, at steady state, the downward force of the whole cone must be balanced by 

the upward buoyancy force of the below ground frustum, 

 

 
 12 2 2

2 1 2 1 2

1

3 3
g b

H h
r H g r r r r g


  


         (1) 

 

Before proceeding we have too many unknowns: r1 and h1. So before solving, we must eliminate r1 by 

recognizing that using similar triangles (r1/h1 = r2/H) 

 

2
1 1

r
r h

H
  

 

which can be substituted into Eq. (1) (and cancelling the g’s) 

 

 
2 2

12 22 2
2 1 2 1

1

3 3
g b

H h r r
r H h r h

H H


  

   
       

 

 

Therefore, the equation now has only 1 unknown: h1, and the steady-state force balance can be written as 

 

 
2

3 34 4
3 0

3 3 3
s f

h
g r g r r h


   

 
    

 

 

 

Cancelling common terms gives 

 

 
2

3 34 4
3 0

3 3 3
s f

h
r r r h 

 
    

 

 

 

and collecting terms yields 

 

 3 2 34
0

3 3

f

f s fh r h r


       
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1.26 Figure P1.26 shows the forces exerted on a hot air balloon system. 

 

 
 

Forces on a hot air balloon: FB = buoyancy, FG = weight  
of gas, FP = weight of payload (including the balloon 
envelope), and FD = drag. Note that the direction of the 
drag is downward when the balloon is rising. 

 

Formulate the drag force as 

 21

2
D a dF AC   

where 
a
r =  air density (kg/m

3
), υ = velocity (m/s), A = projected frontal area (m

2
), and 

d
C =  the 

dimensionless drag coefficient (≅ 0.47 for a sphere). Note also that the total mass of the balloon 

consists of two components: 

 
G Pm m m   

where 
G

m =  the mass of the gas inside the expanded balloon (kg), and 
P

m =  the mass of the payload 

(basket, passengers, and the unexpanded balloon = 265 kg). Assume that the ideal gas law holds (P = ρRT), 

that the balloon is a perfect sphere with a diameter of 17.3 m, and that the heated air inside the envelope is 

at roughly the same pressure as the outside air. 

 Other necessary parameters are: 

Normal atmospheric pressure, P = 101,300 Pa 

The gas constant for dry air, R = 287 J/(kg K) 

The air inside the balloon is heated to an average temperature, 

 100 CT = °  

The normal (ambient) air density, ρ = 1.2 kg/m
3
 

(a) Use a force balance to develop the differential equation for dυ/dt as a function of the model’s 

fundamental parameters. 

(b) At steady-state, calculate the particle’s terminal velocity. 
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(c) Use Euler’s method and Excel to compute the velocity from t = 0 to 60 s with Δt = 2 s given the 

previous parameters along with the initial condition: υ(0) = 0. Develop a plot of your results. 

 

(a) Use force balance to find dv/dt. Positive is defined as down, and the payload buoyancy, from the mass 

of air displaced due to the basket and passengers, is considered negligible.  

  

 2

2

1

2

1

2

G P D B G P D B

a d d

d

a d

F F F F F F F F

dv
m mg v AC m g

dt

mdv
g v AC g

dt m m





      

  

  

 

 

where m is total mass of the balloon gas and payload, m = mG + mP, and md is the mass of the displaced air 

  

3 34

3 6
d a b a am V r d

 
     

  
and 

 
3

6

b

G b

PV Pd
V

RT RT
m


    

 
 

 

3

2

3

2

) 6

6 )

1

2(

2(

a

a d

G P G P

a a d

G P G P

gddv
g v AC

dt m m m m

gd ACdv
g v

dt m m m m




 

  
 

  
 

 

 

(b) find terminal velocity 

 

 

3

2

3 3
2

2 2

2

1
0

2(

2( 2 (

3

) 6

)

3

)

6

)2 (

a

a d

G P G P

G P a G P

a d G P d a d

G P

d a d

gd
g v AC

m m m m

m m gd g m mgd
v g

dAC m m C C

g m mgd
v

C C

d

d




 

  



  
 

  
   



 
 
 


 

 

given the parameters 

 
3

1 1

(101, 300  Pa)(17.3 m)

6(287  Jkg
2

K )(100 + 
5

273.1
2 64.37

5 K)
Gm



 
 


kg 

  

 2

3

(9.81)(17.3) 2(9.81)(2564.
1

(1.2)
m

(17( .3

7

)

3 2 265)
3.960 55 /s

3 0.47) (0.47)
v




      

 

part c) Simplify calculations by defining a constant and a coefficient 

 

 

2

1 2

3 2

1 2
6( ) 2( )

a a d

G P G P

dv
C C v

d

m

t

gd C d
C g C

m m m

 

 

  

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3

1

2

2

9.81 1.469
(1.2)(9.81)(17.3)

(1.2)(0.47)(17.3)

69
6(2564.372 265)

0.093713
2(2564.372 265)

C

C

p

p

= - = -
+

= =
+

 

and the first two steps are 

 

 

2 2

1 2

2

(2) (0) ( (0) )(2) 2.93938

(4) 2.93938 2.93938 )(2) 4.2594

) 0 ( 1.46969 0.093713(0)

( 1.46969 0.093713( )

v

v

tv C vC     

 

   

     

 

 

and the rest of the calculations proceed similarly  

 

t v dv/dt t v dv/dt 

0 0 -1.46969 32 -3.96017 9.29E-06 
2 -2.93938 -0.66001 34 -3.96015 -4.5E-06 
4 -4.2594 0.230504 36 -3.96016 2.18E-06 
6 -3.79839 -0.11761 38 -3.96015 -1.1E-06 
8 -4.03362 0.055035 40 -3.96016 5.12E-07 

10 -3.92355 -0.02704 42 -3.96015 -2.5E-07 
12 -3.97764 0.013005 44 -3.96015 1.2E-07 
14 -3.95163 -0.00632 46 -3.96015 -5.8E-08 
16 -3.96427 0.003058 48 -3.96015 2.82E-08 
18 -3.95816 -0.00148 50 -3.96015 -1.4E-08 
20 -3.96112 0.000718 52 -3.96015 6.62E-09 
22 -3.95969 -0.00035 54 -3.96015 -3.2E-09 
24 -3.96038 0.000169 56 -3.96015 1.55E-09 
26 -3.96004 -8.2E-05 58 -3.96015 -7.5E-10 
28 -3.96021 3.96E-05 60 -3.96015 3.64E-10 
30 -3.96013 -1.9E-05    
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