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CHAPTER 3

Waves and Particles I: Electromagnetic Radiation Behaving as Particles

3.1 
You would put them in contact somehow, so that they could exchange energy. They will do so until their temperatures are equal. The cavity walls are “in contact” (able to exchange energy) with the electromagnetic radiation within the cavity. When they cease to exchange energy, they are necessarily at the same temperature.

3.2 
The amount of light clearly is not the deciding factor. The feeble light has less intensity, but what intensity it has is composed of little particles each of which has enough energy to knock an electron out of the metal. The bright light has many particles, but each has insufficient energy to eject an electron.

3.3 
Quite a bit. No matter how few ultraviolet photons there are, each has quite a bit more energy than a 500 nm photon, so it will produce an electron able to surmount the electrostatic barrier by a considerable amount. The stopping potential would have to be made a considerably larger.

3.4 
No difference. The cutoff wavelength corresponds to all the kinetic energy of the incoming particle going to one photon. If the same accelerating potential is used, the protons would have the same kinetic energy as the electrons.

3.5 We have freedom to orient the xy plane any way we like, so long as the xaxis is along the initial direction of motion of the photon. In particular we may orient it so that the recoiling electron’s momentum has only x and y components, i.e., that it is in the xy plane. How about the scattered photon? Were it to have a nonzero zcomponent after the collision, momentum could not be conserved, since the initial momentum is strictly in the xdirection. (Both the y and z components after the collision must cancel.) Thus, it too can have only x and y components—it must be in the same xy plane. 

(b)
The outcome of a moving billiard ball striking a stationary one varies according to the “impact parameter”, the distance from the line describing the motion of the center of the moving object to the center of the stationary one: Were that distance zero, the collision would be headon; were it greater than the sum of the radii, there would be no collision at all.
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(c)
No, for even if we could monitor or control the collision with great precision, the photon cannot be treated as a sphere. It is necessarily fuzzy, so the impact parameter is necessarily vague. (Actually, the same applies to the electron.)

3.6 
No. This is the reverse of a completely inelastic collision. Kinetic energy would have to increase, meaning that internal energy would have to decrease. The photon has none, and the electron’s cannot change, for it is a fundamental particle.

3.7 
The metal sample is involved in the process. However, as in the case of the heavy nucleus in pair production, this large object can “absorb” a lot of momentum without affecting the energies shared by small particles.

3.8 
The ball’s momentum is not conserved—it changes sign. Therefore, Earth must gain some momentum. However, if this momentum is comparable to that of the ball, Earth’s kinetic energy is absolutely negligible. Earth performs the same role as the heavy nucleus: absorbing significant momentum but negligible energy.

3.9 
The flashes are “experiments” in which the phenomenon is behaving as particles. The fact that they are detected at a very wide angle after passing through the slit is a manifestation of a wave behavior: diffraction.

3.10 
9X. The amplitude of the electric field is three times as large are before, so the intensity—and with it the particle detection probability—is nine times as large.

3.11 The factor 
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Inserting this back into the formula gives 
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, the classical formula.

(b)
The f 2 causes a divergence in the classical formula, but the f in the exponential in the denominator of Planck’s formula causes that denominator to increase without bound as f increases, causing Planck’s formula to go to zero.
3.12 70ºF = 294K. maxT = 2.898103m·K  T =
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3.13 
To find the wavelength where the spectrial density is maximum, we differentiate. Ignoring the multiplicative constant, 
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Multiplying by 6 
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Then multiplying by 
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Now 
[image: image14.wmf]B

hc

k

 = 0.01439, so that 
[image: image15.wmf]0.01439

l

T

 5 + 5 e0.01439/T = 0.

Inserting T = 0.002898 solves this pretty well.

3.14 
dU =
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Dividing by V and multiplying by c/4, the intensity is therefore
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3.16 
KEmax = hf    
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  (The classical expression for KE is OK since 
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(b)
The cutoff wavelength is the longest (smallest f ) that can eject electrons—no KE to spare.

KEmax = hf    0 = (6.631034J·s) f  4.991019J  f = 7.531014Hz.  = 
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KEmax = hf   = 
[image: image26.wmf]8

3418

9

310m/s

(6.6310Js)(6.2510eV/J)4.3eV

25010m

-

-

æö

´

´×´-

ç÷

´

èø

 = 0.67eV. 0.67V
3.17 
KEmax = hf   
[image: image27.wmf]1

2

(9.11 1031kg)(2 106m/s)2
 =
[image: image28.wmf]8

34

310m/s

(6.6310Js)

l

-

æö

´

´×

ç÷

èø

 3.7  1.6 1019J   = 82.4nm
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3.18 
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3.19 
E = 
[image: image35.wmf]l

c

h

 ≥ 1.2eV  
[image: image36.wmf]8

34

310m/s

(6.6310Js)

l

-

æö

´

´×

ç÷

èø

 ≥ 1.2  1.6 J   ≤ 1,036nm

All visible light (~400700nm) would thus be capable of exposing film.
3.20 
590nm is cutoff: KE = 0  hf =   
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Now  = 
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 3.371019J = 6.741019J.
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3.21 
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    = 3.68 1019J = 2.3eV.
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 (9.11 1031kg)(4.81 105m/s)2 = (6.63 1034J·s)
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(b)
It would seem to match sodium.

KEmax = hf    e∙Vstop = 
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[image: image47.wmf]8

19

310m/s

1.610C

-

´

´

 h = 6.67 1034J·s. Correct within less than 1%.

[image: image48.png]Slope: 1.25V/um™!

1.82

/A (um™1)

5
o

0.908
0.286
0.060

(sop) 9035





By the time the photons reach your eye they are spread over the surface of a sphere of radius 10m and thus surface area 4(10m)2. The fraction that enter your eye is the ratio of the area of your pupil to this total area: 
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The total number per unit time is:
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Thus, the rate at which they enter your eye is: 108  2.961019photons/s = 31011photons/s.

(6.6260755 ( 10–34 J·s)( 2.99792458 ( 108 m/s)/(1.60217733(10(19J/eV) (109nm/m = 1240eV∙nm

3.22 
30keV = 
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KEelectron  
[image: image55.wmf]l

c

h

. Thus 
[image: image56.wmf]1

2

(9.11 1031kg)v2 = 
[image: image57.wmf]8

34

11

310m/s

(6.6310Js)

6.210m

-

-

´

´×

´

 v = 8.4 107m/s.

This is pretty fast. Let’s try the relativistic formula:

(u 1) (9.11 1031kg) (3 108m/s)2 = 
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3.23 
A 10eV photon would have  given by:

E = 
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Xrays have wavelengths many orders of magnitude smaller, so would have energies many orders of magnitude larger. The 10eV could be ignored 
3.24   = 
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(b)
Here’s one of many ways:

Using (3–4), 
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Another way is to find the kinetic energy imparted to the electron (the difference in the photon energies), and from this find its speed and momentum; then use this in either (3–4) or (3–5).
3.25 
The fastest are those that are hit headon, such that  = 180º.   = 
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The electron’s kinetic energy is the difference between the photon energies. 

KEe = (u1)mec2 = 
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3.26 
In place of 
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But KEe = (u1)mec2 = 
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3.28 Set equal: 
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But  = 60º, u = 0.45108m/s = 0.15c and u = 
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(0.01144)2(9.111031kg)c2  2 
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Solving: 
[image: image98.wmf]l

h

 = 1.62 1031 kg c   = 1.37  1011m.

The maximum amount of energy will be imparted to the electron in the case where the photon loses the maximum amount. That is, when the final wavelength  is longest, or  is greatest.  = 
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  = 
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We also know that the photon energies differ by 80keV:
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KEf KEi = 2 (0.6c1)mdc2  
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Now subtracting (A) from (B): 
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But u2 (1u2/c2) = 1, so 
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3.29 
Must eliminate u and . 
[image: image132.wmf]l

h

 
[image: image133.wmf]l

¢

h

cos = umeu cos and 
[image: image134.wmf]l

¢

h

sin = umeu sin. 
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3.30 
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In first case, uPb = 
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In second case, uPb =
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= 3.76 1010J. Lead absorbs about 0.6% of photon’s energy.
3.31 
The initial momentum is zero; a single photon cannot have zero momentum.

(b)
To conserve momentum, the photons must move in opposite directions, with equal momenta 
[image: image157.wmf]l
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. The energy of each photon must equal the mass/internal energy of a muon.
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3.32 
A mass/internal energy of 2mec2 disappears, so each photon must have mec2 of energy.
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3.33 
Let’s start with nonrelativistic formulas. 
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, so the nonrelativistic formulas are sufficient. The mass calculated is about that of a small nucleus. Particles even smaller would “steal” an even larger fraction of the available energy.

3.34 

[image: image168.wmf]348

12

329

photons/s(6.6310)(310)J

10

photon

(10m)50010

-

--

´´

´

´

 = 0.398W/m2.

(b)
The amplitude of the electromagnetic wave is twice as large, giving an intensity four times as large, and corresponding to a probability of photon detection four times as large. 41012
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3.35 
First diffraction minimum occurs when: a sin = 1 , or at an angle of  = sin(1(/a). The angle from the first min. on one side to the first min. on the other is thus  = 2 sin(1(/a). (a) 2 sin(500 1m/m) = 60º.

(b)
2 sin(1(0.05 10(9m/10(6m) = 5.73 10(º 

(c)
Diffraction, a wave phenomenon, is more pronounced for the long wavelength, the visible light; a particle (moving in a straight line, not diffracting) nature is more evident when the wavelength is very small compared to dimensions of the apparatus: X-ray<< a.

3.36 
Using p = h/, the diffraction equation becomes n h/p = w sin or n h = w (psin). Thus, w and psin are inversely proportional.

3.37 
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3.38 For massive object, KE = 
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If it is moving slowly, its momentum is surely much less than pc, so the ratio is small.

(b)
KE = E  mc2 = 
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For p << mc, this becomes  
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(d)
That the ratio is unity shows it, but from above: KE = 
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 mc2. As p becomes much greater than mc, the mc2 terms may be ignored. At very high speeds, the kinetic energies of massive objects certainly cannot be ignored.
3.39 
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(b)
5 10N/m2  (6.37 106m)2 = 6.37 108N.

3.40 
With 
[image: image194.wmf]energy

photon

 = h
[image: image195.wmf]l

c

, 
[image: image196.wmf]energy/time

energy/photon

 = 
[image: image197.wmf]8

34

9

2.5J/s

310m/s

6.6310J·s

55010m

-

-

´

´

´

 = 6.91 1018photons per sec
Force = 
[image: image198.wmf]D

D

p

t

 = 
[image: image199.wmf]photons

photonsecond

D

p

 = 
[image: image200.wmf]energy/time

2

energy/photon

l

æö

ç÷

èø

h

 = 2 
[image: image201.wmf]2.5J/s

/

ll

h

hc

 = 
[image: image202.wmf]8

2(2.5J/s)

310m/s

´

 = 1.67 10(8N
3.41 
Intensity = 
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3.42 
Assume possible: Photon of wavelength  collides with a stationary electron.

Before collision: pi = 
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, Ei = 
[image: image210.wmf]l

c

h

 + mec2 (photon has momentum and energy and electron has rest energy). After collision: pf = umeu, Ef = umec2 (electron only.) Both conserved.

h/ = umeu and 
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Divide last equation by first. 
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This has two solutions: u = 0 and u = c. Returning to h/ = umeu, we see that the first solution means that the photon would have to have infinite wavelength, and thus no energy or momentum. The second solution (u = ) requires the photon to have zero wavelength, and thus it would have infinite energy and momentum. Neither is realistic. Actually, there is a much simpler argument: There is always a frame of reference where the electron and photon would have equal and opposite momenta. After the absorption, the electron would have to be stationary. KE is lost in such a completely inelastic collision, so mass would have to increase. But the electron is a fundamental particle, whose mass cannot increase. Both proofs really hinge on this fact.

3.43 
Momentum conserved: 
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Dividing energy equation by c and adding the two: 

2
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3.44 Momentum conserved: 0.8mi (0.8c)  h/ = 0.6mf (0.6c). Energy conserved: 0.8mi c2 + hc/ = 0.6mf c2. We may eliminate  by dividing the second equation by c, then adding the first:

0.8mi(0.8c) + 0.8mi c = 0.6mf (0.6c) + 0.6mf c Or: 0.8mi (1.8) c = 0.6mf (1.6) c. 
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(b)
Mass increases—kinetic energy must decrease! In fact, 

KEf  KEi = (0.6 1) mf c2  
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But with the energy equation, the first two terms in brackets may be replaced: 

KE = (0.6 1) mf c2  
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= (mf c2  mi c2) =  (1.5 mi c2  mi c2) =  0.5mic2.

As expected: KE decreases by amount of internal energy increase.
3.45 
px conserved: h/ = 2  0.6m0 (0.6c) cos60º = 0.6m0 (0.6c), so that hc/ = 0.6m0 0.6 c2 = 
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Energy conserved: hc/ + Mc2 = 2 0.6m0c2 or 
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m0 c2 or M = (7/4)m0
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