Chapter 1
FUNDAMENTAL PRINCIPLES

Problem 1.1 We are told that the scales of the two major terms in the two groups of terms in
eq. (1.5) or eq. (1.6) are measured experimentally:
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Therefore, if eq. (1.8) is to apply, then the first scale must be negligible,
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in other words, the relationship between dp/ox and du/dx must be
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Note that "<" means "less than, in an order-of-magnitude sense", or "negligible with respect to".
The scale analysis literature often uses "“<<" to say the same thing; in the present treatment I use
"<", because one sign is enough when we compare orders of magnitude (the use of multiple signs
such as "<<" leads to the temptation to read too much in the length of the sign, for example, by
using something like "<<<" to stress the word "negligible").

Problem 1.2. Consider the control volume (Ar)(rA6)(Az) drawn around the point (r,0,z) in
Fig. 1.1. Around this control volume we write graphically eq. (1.1):
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The term dMgy/ot is zero because p is constant. Note also that the "in" arrows cancel,
respectively, the leading terms of the "out” arrows. Dividing the three surviving terms by the
control volume rABArAz, we are left with

which is the same as eq. (1.9),
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Problem 1.3. Consider the control volume described by the point (r,8,9) in Fig. 1.1, asr, 0 and ¢
change by Ar, AB and A, respectively
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mass flowrates "in™: mass flowrates "out":
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Since —=* =0, the six flowrates add up to
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which is the same as eq. (1.10).




Problem 1.4. The mass conservation equation for constant-density flow is
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With this property in mind, the x-momentum equation (1.17) can be simplified:
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In conclusion, we obtain
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Problem 1.5. Graphically, the limit r — o and the transformation Ar — Ax, rAB — Ay, Az — Az
can be sketched as follows:

Ineq. (1.9) we have
0 r 1 ave aV
CAS A A
Ox oo ay

or, since vy ~> u, vg = v and vz = w,
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The momentum equations (1.21) have the same property; for example, the r equation (1.21a) can
be written as
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in other words,
2 2 2
p(%%+u%—+v§—+w-%g)—"‘y+ﬂ(gg 32 gz)+Fr (1.19a)

The message of this exercise is that, through a sirnple transformation, the validity of equations in
cylindrical coordinates may be tested based on the considerably more familiar Cartesian forms.

Problem 1.6: Inthe r — <o limit, the spherical coordinates sketched in Fig. 1.1 become
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in other words, Ar — Ax, 1 sin ¢ A® — Ay and rAd — Az. The mass continuity equation (1.10)

can be expanded as:
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Noting that vy — u, vg — v and vy — w, the above equation reduces to
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Following the same procedure, the momentum equation (1.22a) reduces to eq. (1.19a)




